Artículos de revistas sobre el tema "Focusing Nonlinear schroedinger equation"

Siga este enlace para ver otros tipos de publicaciones sobre el tema: Focusing Nonlinear schroedinger equation.

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "Focusing Nonlinear schroedinger equation".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.

1

Kamvissis, Spyridon. "Long time behavior for the focusing nonlinear schroedinger equation with real spectral singularities". Communications in Mathematical Physics 180, n.º 2 (octubre de 1996): 325–41. http://dx.doi.org/10.1007/bf02099716.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Benci, Vieri, Marco Ghimenti y Anna Maria Micheletti. "The nonlinear Schroedinger equation: Solitons dynamics". Journal of Differential Equations 249, n.º 12 (diciembre de 2010): 3312–41. http://dx.doi.org/10.1016/j.jde.2010.09.026.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

ABLOWITZ, MARK J. y CONSTANCE M. SCHOBER. "HAMILTONIAN INTEGRATORS FOR THE NONLINEAR SCHROEDINGER EQUATION". International Journal of Modern Physics C 05, n.º 02 (abril de 1994): 397–401. http://dx.doi.org/10.1142/s012918319400057x.

Texto completo
Resumen
Hamiltonian integration schemes for the Nonlinear Schroedinger Equation are examined. The efficiency with respect to accuracy and integration time of an integrable scheme, a standard conservative scheme, and a symplectic method is compared.
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Kim, Jong Uhn. "Invariant measures for a stochastic nonlinear Schroedinger equation". Indiana University Mathematics Journal 55, n.º 2 (2006): 687–718. http://dx.doi.org/10.1512/iumj.2006.55.2701.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Plastino, A. R. y C. Tsallis. "Nonlinear Schroedinger equation in the presence of uniform acceleration". Journal of Mathematical Physics 54, n.º 4 (abril de 2013): 041505. http://dx.doi.org/10.1063/1.4798999.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Degasperis, A., S. V. Manakov y P. M. Santini. "Multiple-scale perturbation beyond the nonlinear Schroedinger equation. I". Physica D: Nonlinear Phenomena 100, n.º 1-2 (enero de 1997): 187–211. http://dx.doi.org/10.1016/s0167-2789(96)00179-0.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Jeanjean, Louis y Kazunaga Tanaka. "A positive solution for a nonlinear Schroedinger equation on R^N". Indiana University Mathematics Journal 54, n.º 2 (2005): 443–64. http://dx.doi.org/10.1512/iumj.2005.54.2502.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Duell, Wolf-Patrick y Guido Schneider. "Justification of the nonlinear Schroedinger equation for a resonant Boussinesq model". Indiana University Mathematics Journal 55, n.º 6 (2006): 1813–34. http://dx.doi.org/10.1512/iumj.2006.55.2824.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Mel'nikov, V. K. "Integration of the nonlinear Schroedinger equation with a self-consistent source". Communications in Mathematical Physics 137, n.º 2 (abril de 1991): 359–81. http://dx.doi.org/10.1007/bf02431884.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Bountis, Tassos y Fernando D. Nobre. "Travelling-wave and separated variable solutions of a nonlinear Schroedinger equation". Journal of Mathematical Physics 57, n.º 8 (agosto de 2016): 082106. http://dx.doi.org/10.1063/1.4960723.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
11

Boffetta, G. y A. R. Osborne. "Computation of the direct scattering transform for the nonlinear Schroedinger equation". Journal of Computational Physics 102, n.º 2 (octubre de 1992): 252–64. http://dx.doi.org/10.1016/0021-9991(92)90370-e.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
12

Schrader, D. "Explicit calculation of N-soliton solutions of the nonlinear Schroedinger equation". IEEE Journal of Quantum Electronics 31, n.º 12 (1995): 2221–25. http://dx.doi.org/10.1109/3.477750.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
13

Zakharov, V. E., E. A. Kuznetsov y S. L. Musher. "Quasi classical regime of collapse in the three-dimensional nonlinear Schroedinger equation". Physica D: Nonlinear Phenomena 28, n.º 1-2 (septiembre de 1987): 221. http://dx.doi.org/10.1016/0167-2789(87)90138-2.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
14

Osborne, A. R. "The Hyperelliptic Inverse Scattering Transform for the Periodic, Defocusing Nonlinear Schroedinger Equation". Journal of Computational Physics 109, n.º 1 (noviembre de 1993): 93–107. http://dx.doi.org/10.1006/jcph.1993.1202.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
15

Van, Cao Long. "Propagation of Ultrashort Pulses in Nonlinear Media". Communications in Physics 26, n.º 4 (10 de marzo de 2017): 301. http://dx.doi.org/10.15625/0868-3166/26/4/9184.

Texto completo
Resumen
In this paper, a general propagation equation of ultrashort pulses in an arbitrary dispersive nonlinear medium derived in [9] has been used for the case of Kerr media. This equation which is called Generalized Nonlinear Schroedinger Equation usually has very complicated form and looking for its solutions is usually a very difficult task. Theoretical methods reviewed in this paper to solve this equation are effective only for some special cases. As an example we describe the method of developed elliptic Jacobi function expansion and its expended form: F-expansion Method. Several numerical methods of finding approximate solutions are briefly discussed. We concentrate mainly on the methods: Split-Step, Runge-Kutta and Imaginary-time algorithms. Some numerical experiments are implemented for soliton propagation and interacting high order solitons. We consider also an interesting phenomenon, namely the collapse of solitons, where the variational formalism has been used.
Los estilos APA, Harvard, Vancouver, ISO, etc.
16

Tian, Huiping, Zhonghao Li y Guosheng Zhou. "Stable propagation of ultrashort optical pulses in modified higher-order nonlinear Schroedinger equation". Optics Communications 205, n.º 1-3 (abril de 2002): 221–26. http://dx.doi.org/10.1016/s0030-4018(02)01316-0.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
17

Dudko, G. M., Yu A. Filimonov, A. A. Galishnikov, R. Marcelli y S. A. Nikitov. "Nonlinear Schroedinger equation analysis of MSSW pulse propagation in ferrite-dielectric-metal structure". Journal of Magnetism and Magnetic Materials 272-276 (mayo de 2004): 999–1000. http://dx.doi.org/10.1016/j.jmmm.2003.12.673.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
18

Meškauskas, T. y F. Ivanauskas. "Initial Boundary-Value Problems for Derivative Nonlinear Schroedinger Equation. Justification of Two-Step Algorithm". Nonlinear Analysis: Modelling and Control 7, n.º 2 (5 de diciembre de 2002): 69–104. http://dx.doi.org/10.15388/na.2002.7.2.15195.

Texto completo
Resumen
We investigate two different initial boundary-value problems for derivative nonlinear Schrödinger equation. The boundary conditions are Dirichlet or generalized periodic ones. We propose a two-step algorithm for numerical solving of this problem. The method consists of Bäcklund type transformations and difference scheme. We prove the convergence and stability in C and H1 norms of Crank–Nicolson finite difference scheme for the transformed problem. There are no restrictions between space and time grid steps. For the derivative nonlinear Schrödinger equation, the proposed numerical algorithm converges and is stable in C1 norm.
Los estilos APA, Harvard, Vancouver, ISO, etc.
19

Marshall, Ian y Michael Semenov-Tian-Shansky. "Poisson Groups and Differential Galois Theory of Schroedinger Equation on the Circle". Communications in Mathematical Physics 284, n.º 2 (24 de junio de 2008): 537–52. http://dx.doi.org/10.1007/s00220-008-0539-9.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
20

Abdou, M. A. "New exact travelling wave solutions for the generalized nonlinear Schroedinger equation with a source". Chaos, Solitons & Fractals 38, n.º 4 (noviembre de 2008): 949–55. http://dx.doi.org/10.1016/j.chaos.2007.01.027.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
21

LeMesurier, B. J., G. Papanicolaou, C. Sulem y P. L. Sulem. "Focusing and multi-focusing solutions of the nonlinear Schrödinger equation". Physica D: Nonlinear Phenomena 31, n.º 1 (mayo de 1988): 78–102. http://dx.doi.org/10.1016/0167-2789(88)90015-2.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
22

Lee, T. D. "A New Approach to Solve the Low-lying States of the Schroedinger Equation". Journal of Statistical Physics 121, n.º 5-6 (diciembre de 2005): 1015–71. http://dx.doi.org/10.1007/s10955-005-5476-9.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
23

Strampp, W. y W. Oevel. "A Nonlinear Derivative Schroedinger-Equation: Its Bi-Hamilton Structures, Their Inverses, Nonlocal Symmetries and Mastersymmetries". Progress of Theoretical Physics 74, n.º 4 (1 de octubre de 1985): 922–25. http://dx.doi.org/10.1143/ptp.74.922.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
24

Nassif, Cláudio y P. R. Silva. "Anomalous coalescence from a nonlinear Schroedinger equation with a quintic term: interpretation through Thompson's approach". Physica A: Statistical Mechanics and its Applications 334, n.º 3-4 (marzo de 2004): 335–42. http://dx.doi.org/10.1016/j.physa.2003.11.019.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
25

Azzollini, A. y A. Pomponio. "On the Schroedinger equation in $\mathbb{R}^{N}$ under the effect of a general nonlinear term". Indiana University Mathematics Journal 58, n.º 3 (2009): 1361–78. http://dx.doi.org/10.1512/iumj.2009.58.3576.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
26

Tajiri, Masayoshi y Yosuke Watanabe. "Breather solutions to the focusing nonlinear Schrödinger equation". Physical Review E 57, n.º 3 (1 de marzo de 1998): 3510–19. http://dx.doi.org/10.1103/physreve.57.3510.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
27

Aktosun, Tuncay, Francesco Demontis y Cornelis van der Mee. "Exact solutions to the focusing nonlinear Schrödinger equation". Inverse Problems 23, n.º 5 (11 de septiembre de 2007): 2171–95. http://dx.doi.org/10.1088/0266-5611/23/5/021.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
28

Liu, Zhongxuan, Qi Feng, Chengyou Lin, Zhaoyang Chen y Yingchun Ding. "Bipolar solitons of the focusing nonlinear Schrödinger equation". Physica B: Condensed Matter 501 (noviembre de 2016): 117–22. http://dx.doi.org/10.1016/j.physb.2016.08.015.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
29

Sulem, Catherine y Pierre-Louis Sulem. "Focusing nonlinear schrödinger equation and wave-packet collapse". Nonlinear Analysis: Theory, Methods & Applications 30, n.º 2 (diciembre de 1997): 833–44. http://dx.doi.org/10.1016/s0362-546x(96)00168-x.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
30

Liu, Xiao, Gideon Simpson y Catherine Sulem. "Focusing singularity in a derivative nonlinear Schrödinger equation". Physica D: Nonlinear Phenomena 262 (noviembre de 2013): 48–58. http://dx.doi.org/10.1016/j.physd.2013.07.011.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
31

Kamvissis, Spyridon. "Focusing nonlinear Schrödinger equation with infinitely many solitons". Journal of Mathematical Physics 36, n.º 8 (agosto de 1995): 4175–80. http://dx.doi.org/10.1063/1.530953.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
32

Fibich, G. "Self-Focusing in the Damped Nonlinear Schrödinger Equation". SIAM Journal on Applied Mathematics 61, n.º 5 (enero de 2001): 1680–705. http://dx.doi.org/10.1137/s0036139999362609.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
33

Chen, Yu, Jing Lu y Fanfei Meng. "Focusing nonlinear Hartree equation with inverse‐square potential". Mathematische Nachrichten 293, n.º 12 (21 de septiembre de 2020): 2271–98. http://dx.doi.org/10.1002/mana.201900331.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
34

IBRAHIM, SLIM. "GEOMETRIC-OPTICS FOR NONLINEAR CONCENTRATING WAVES IN FOCUSING AND NON-FOCUSING TWO GEOMETRIES". Communications in Contemporary Mathematics 06, n.º 01 (febrero de 2004): 1–23. http://dx.doi.org/10.1142/s0219199704001239.

Texto completo
Resumen
With the methods used in [1] and [4], we prove that in the absence of focus, nonlinear geometrical optics of the critical wave equation with variable coefficients, is reduced to linear geometrical optics combined with wave operators for the critical wave equation with coefficients fixed on concentrating points. On the odd-dimensional spheres, we prove that passing through a focus is generated by a modified scattering operator.
Los estilos APA, Harvard, Vancouver, ISO, etc.
35

Saanouni, Tarek. "Remarks on the critical nonlinear high-order heat equation". Arab Journal of Mathematical Sciences 26, n.º 1/2 (15 de marzo de 2019): 127–52. http://dx.doi.org/10.1016/j.ajmsc.2019.03.002.

Texto completo
Resumen
The initial value problem for a semi-linear high-order heat equation is investigated. In the focusing case, global well-posedness and exponential decay are obtained. In the focusing sign, global and non global existence of solutions are discussed via the potential well method.
Los estilos APA, Harvard, Vancouver, ISO, etc.
36

Ibrahim, Slim, Nader Masmoudi y Kenji Nakanishi. "Scattering threshold for the focusing nonlinear Klein–Gordon equation". Analysis & PDE 4, n.º 3 (28 de diciembre de 2011): 405–60. http://dx.doi.org/10.2140/apde.2011.4.405.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
37

Wright, Otis C. "Near homoclinic orbits of the focusing nonlinear Schrödinger equation". Nonlinearity 12, n.º 5 (13 de agosto de 1999): 1277–87. http://dx.doi.org/10.1088/0951-7715/12/5/304.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
38

Chen, Jinbing y Dmitry E. Pelinovsky. "Rogue periodic waves of the focusing nonlinear Schrödinger equation". Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474, n.º 2210 (febrero de 2018): 20170814. http://dx.doi.org/10.1098/rspa.2017.0814.

Texto completo
Resumen
Rogue periodic waves stand for rogue waves on a periodic background. The nonlinear Schrödinger equation in the focusing case admits two families of periodic wave solutions expressed by the Jacobian elliptic functions dn and cn . Both periodic waves are modulationally unstable with respect to long-wave perturbations. Exact solutions for the rogue periodic waves are constructed by using the explicit expressions for the periodic eigenfunctions of the Zakharov–Shabat spectral problem and the Darboux transformations. These exact solutions generalize the classical rogue wave (the so-called Peregrine’s breather). The magnification factor of the rogue periodic waves is computed as a function of the elliptic modulus. Rogue periodic waves constructed here are compared with the rogue wave patterns obtained numerically in recent publications.
Los estilos APA, Harvard, Vancouver, ISO, etc.
39

Fang, DaoYuan, Jian Xie y Thierry Cazenave. "Scattering for the focusing energy-subcritical nonlinear Schrödinger equation". Science China Mathematics 54, n.º 10 (octubre de 2011): 2037–62. http://dx.doi.org/10.1007/s11425-011-4283-9.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
40

Arora, Anudeep Kumar, Svetlana Roudenko y Kai Yang. "On the focusing generalized Hartree equation". Mathematics in Applied Sciences and Engineering 9999, n.º 9999 (16 de diciembre de 2020): 1–20. http://dx.doi.org/10.5206/mase/10855.

Texto completo
Resumen
In this paper we give a review of the recent progress on the focusing generalized Hartree equation, which is a nonlinear Schrodinger-type equation with the nonlocal nonlinearity, expressed as a convolution with the Riesz potential. We describe the local well-posedness in H1 and Hs settings, discuss the extension to the global existence and scattering, or finite time blow-up. We point out different techniques used to obtain the above results, and then show the numerical investigations of the stable blow-up in the L2 -critical setting. We finish by showing known analytical results about the stable blow-up dynamics in the L2 -critical setting.
Los estilos APA, Harvard, Vancouver, ISO, etc.
41

Lugiato, L. A., F. Prati, M. L. Gorodetsky y T. J. Kippenberg. "From the Lugiato–Lefever equation to microresonator-based soliton Kerr frequency combs". Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 376, n.º 2135 (12 de noviembre de 2018): 20180113. http://dx.doi.org/10.1098/rsta.2018.0113.

Texto completo
Resumen
The model, that is usually called the Lugiato–Lefever equation (LLE), was introduced in 1987 with the aim of providing a paradigm for dissipative structure and pattern formation in nonlinear optics. This model, describing a driven, detuned and damped nonlinear Schroedinger equation, gives rise to dissipative spatial and temporal solitons. Recently, the rather idealized conditions, assumed in the LLE, have materialized in the form of continuous wave driven optical microresonators, with the discovery of temporal dissipative Kerr solitons (DKS). These experiments have revealed that the LLE is a perfect and exact description of Kerr frequency combs—first observed in 2007, i.e. 20 years after the original formulation of the LLE—and in particular describe soliton states. Observed to spontaneously form in Kerr frequency combs in crystalline microresonators in 2013, such DKS are preferred state of operation, offering coherent and broadband optical frequency combs, whose bandwidth can be extended exploiting soliton-induced broadening phenomena. Combined with the ability to miniaturize and integrate on-chip, microresonator-based soliton Kerr frequency combs have already found applications in self-referenced frequency combs, dual-comb spectroscopy, frequency synthesis, low noise microwave generation, laser frequency ranging, and astrophysical spectrometer calibration, and have the potential to make comb technology ubiquitous. As such, pattern formation in driven, dissipative nonlinear optical systems is becoming the central Physics of soliton micro-comb technology. This article is part of the theme issue ‘Dissipative structures in matter out of equilibrium: from chemistry, photonics and biology (part 2)’.
Los estilos APA, Harvard, Vancouver, ISO, etc.
42

Zhong, Wei-Ping, Zhengping Yang, Milivoj Belić y WenYe Zhong. "Breather solutions of the nonlocal nonlinear self-focusing Schrödinger equation". Physics Letters A 395 (abril de 2021): 127228. http://dx.doi.org/10.1016/j.physleta.2021.127228.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
43

Miller, Peter D. y Spyridon Kamvissis. "On the semiclassical limit of the focusing nonlinear Schrödinger equation". Physics Letters A 247, n.º 1-2 (octubre de 1998): 75–86. http://dx.doi.org/10.1016/s0375-9601(98)00565-9.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
44

Brydges, David C. y Gordon Slade. "Statistical mechanics of the 2-dimensional focusing nonlinear Schrödinger equation". Communications in Mathematical Physics 182, n.º 2 (diciembre de 1996): 485–504. http://dx.doi.org/10.1007/bf02517899.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
45

Borghese, Michael, Robert Jenkins y Kenneth D. T. R. McLaughlin. "Long time asymptotic behavior of the focusing nonlinear Schrödinger equation". Annales de l'Institut Henri Poincaré C, Analyse non linéaire 35, n.º 4 (julio de 2018): 887–920. http://dx.doi.org/10.1016/j.anihpc.2017.08.006.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
46

Lyng, Gregory D. y Peter D. Miller. "TheN-soliton of the focusing nonlinear Schrödinger equation forN large". Communications on Pure and Applied Mathematics 60, n.º 7 (2007): 951–1026. http://dx.doi.org/10.1002/cpa.20162.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
47

Luo, Yongming. "Sharp scattering for the cubic-quintic nonlinear Schrödinger equation in the focusing-focusing regime". Journal of Functional Analysis 283, n.º 1 (julio de 2022): 109489. http://dx.doi.org/10.1016/j.jfa.2022.109489.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
48

Serkin, Vladimir N., E. M. Schmidt, T. L. Belyaeva, E. Marti-Panameno y H. Salazar. "Femtosecond Maxwellian solitons. II. Verification of a model of the nonlinear Schroedinger equation in the theory of optical solitons". Quantum Electronics 27, n.º 11 (30 de noviembre de 1997): 940–43. http://dx.doi.org/10.1070/qe1997v027n11abeh001123.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
49

Masaki, Satoshi. "A sharp scattering condition for focusing mass-subcritical nonlinear Schrödinger equation". Communications on Pure & Applied Analysis 14, n.º 4 (2015): 1481–531. http://dx.doi.org/10.3934/cpaa.2015.14.1481.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
50

Ibrahim, Slim, Nader Masmoudi y Kenji Nakanishi. "Correction to “Scattering threshold for the focusing nonlinear Klein–Gordon equation”". Analysis & PDE 9, n.º 2 (24 de marzo de 2016): 503–14. http://dx.doi.org/10.2140/apde.2016.9.503.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!

Pasar a la bibliografía