Siga este enlace para ver otros tipos de publicaciones sobre el tema: Fluid-structure interaction.

Artículos de revistas sobre el tema "Fluid-structure interaction"

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "Fluid-structure interaction".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.

1

Xing, Jing Tang. "Fluid-Structure Interaction". Strain 39, n.º 4 (noviembre de 2003): 186–87. http://dx.doi.org/10.1046/j.0039-2103.2003.00067.x.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Bazilevs, Yuri, Kenji Takizawa y Tayfun E. Tezduyar. "Fluid–structure interaction". Computational Mechanics 55, n.º 6 (10 de mayo de 2015): 1057–58. http://dx.doi.org/10.1007/s00466-015-1162-1.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Lee, Kyoungsoo, Ziaul Huque, Raghava Kommalapati y Sang-Eul Han. "The Evaluation of Aerodynamic Interaction of Wind Blade Using Fluid Structure Interaction Method". Journal of Clean Energy Technologies 3, n.º 4 (2015): 270–75. http://dx.doi.org/10.7763/jocet.2015.v3.207.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Ortiz, Jose L. y Alan A. Barhorst. "Modeling Fluid-Structure Interaction". Journal of Guidance, Control, and Dynamics 20, n.º 6 (noviembre de 1997): 1221–28. http://dx.doi.org/10.2514/2.4180.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Ko, Sung H. "Structure–fluid interaction problems". Journal of the Acoustical Society of America 88, n.º 1 (julio de 1990): 367. http://dx.doi.org/10.1121/1.399912.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Semenov, Yuriy A. "Fluid/Structure Interactions". Journal of Marine Science and Engineering 10, n.º 2 (26 de enero de 2022): 159. http://dx.doi.org/10.3390/jmse10020159.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Takizawa, Kenji, Yuri Bazilevs y Tayfun E. Tezduyar. "Computational fluid mechanics and fluid–structure interaction". Computational Mechanics 50, n.º 6 (18 de septiembre de 2012): 665. http://dx.doi.org/10.1007/s00466-012-0793-8.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Bazilevs, Yuri, Kenji Takizawa y Tayfun E. Tezduyar. "Biomedical fluid mechanics and fluid–structure interaction". Computational Mechanics 54, n.º 4 (15 de julio de 2014): 893. http://dx.doi.org/10.1007/s00466-014-1056-7.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Souli, M., K. Mahmadi y N. Aquelet. "ALE and Fluid Structure Interaction". Materials Science Forum 465-466 (septiembre de 2004): 143–50. http://dx.doi.org/10.4028/www.scientific.net/msf.465-466.143.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Chung, H. y M. D. Bernstein. "Topics in Fluid Structure Interaction". Journal of Pressure Vessel Technology 107, n.º 1 (1 de febrero de 1985): 99. http://dx.doi.org/10.1115/1.3264418.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
11

van Rij, J., T. Harman y T. Ameel. "Slip flow fluid-structure-interaction". International Journal of Thermal Sciences 58 (agosto de 2012): 9–19. http://dx.doi.org/10.1016/j.ijthermalsci.2012.03.001.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
12

Izadpanah, Kamran, Robert L. Harder, Raj Kansakar y Mike Reymond. "Coupled fluid-structure interaction analysis". Finite Elements in Analysis and Design 7, n.º 4 (febrero de 1991): 331–42. http://dx.doi.org/10.1016/0168-874x(91)90049-5.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
13

Hsiao, George C., Francisco-Javier Sayas y Richard J. Weinacht. "Time-dependent fluid-structure interaction". Mathematical Methods in the Applied Sciences 40, n.º 2 (19 de marzo de 2015): 486–500. http://dx.doi.org/10.1002/mma.3427.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
14

Tijsseling, A. S. y C. S. W. Lavooij. "Waterhammer with fluid-structure interaction". Applied Scientific Research 47, n.º 3 (julio de 1990): 273–85. http://dx.doi.org/10.1007/bf00418055.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
15

Jensen, J. S. "FLUID TRANSPORT DUE TO NONLINEAR FLUID–STRUCTURE INTERACTION". Journal of Fluids and Structures 11, n.º 3 (abril de 1997): 327–44. http://dx.doi.org/10.1006/jfls.1996.0080.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
16

Bathe, Klaus-Ju¨rgen. "Fluid-structure Interactions". Mechanical Engineering 120, n.º 04 (1 de abril de 1998): 66–68. http://dx.doi.org/10.1115/1.1998-apr-4.

Texto completo
Resumen
This article reviews finite element methods that are widely used in the analysis of solids and structures, and they provide great benefits in product design. In fact, with today’s highly competitive design and manufacturing markets, it is nearly impossible to ignore the advances that have been made in the computer analysis of structures without losing an edge in innovation and productivity. Various commercial finite-element programs are widely used and have proven to be indispensable in designing safer, more economical products. Applications of acoustic-fluid/structure interactions are found whenever the fluid can be modeled to be inviscid and to undergo only relatively small particle motions. The interplay between finite-element modeling and analysis with the recognition and understanding of new physical phenomena will advance the understanding of physical processes. This will lead to increasingly better simulations. Based on current technology and realistic expectations of further hardware and software developments, a tremendous future for fluid–structure interaction applications lies ahead.
Los estilos APA, Harvard, Vancouver, ISO, etc.
17

Rafatpanah, Ramin M. y Jianfeng Yang. "ICONE23-1732 SIMULATING FLUID-STRUCTURE INTERACTION UTILIZING THREE-DIMENSIONAL ACOUSTIC FLUID ELEMENTS FOR REACTOR EQUIPMENT SYSTEM MODEL". Proceedings of the International Conference on Nuclear Engineering (ICONE) 2015.23 (2015): _ICONE23–1—_ICONE23–1. http://dx.doi.org/10.1299/jsmeicone.2015.23._icone23-1_362.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
18

Toma, Milan, Rosalyn Chan-Akeley, Jonathan Arias, Gregory D. Kurgansky y Wenbin Mao. "Fluid–Structure Interaction Analyses of Biological Systems Using Smoothed-Particle Hydrodynamics". Biology 10, n.º 3 (2 de marzo de 2021): 185. http://dx.doi.org/10.3390/biology10030185.

Texto completo
Resumen
Due to the inherent complexity of biological applications that more often than not include fluids and structures interacting together, the development of computational fluid–structure interaction models is necessary to achieve a quantitative understanding of their structure and function in both health and disease. The functions of biological structures usually include their interactions with the surrounding fluids. Hence, we contend that the use of fluid–structure interaction models in computational studies of biological systems is practical, if not necessary. The ultimate goal is to develop computational models to predict human biological processes. These models are meant to guide us through the multitude of possible diseases affecting our organs and lead to more effective methods for disease diagnosis, risk stratification, and therapy. This review paper summarizes computational models that use smoothed-particle hydrodynamics to simulate the fluid–structure interactions in complex biological systems.
Los estilos APA, Harvard, Vancouver, ISO, etc.
19

Lefrançois, Emmanuel. "Fluid-structure interaction in rocket engines". European Journal of Computational Mechanics 19, n.º 5-7 (enero de 2010): 637–52. http://dx.doi.org/10.3166/ejcm.19.637-652.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
20

Chen, Wenli, Zifeng Yang, Gang Hu, Haiquan Jing y Junlei Wang. "New Advances in Fluid–Structure Interaction". Applied Sciences 12, n.º 11 (26 de mayo de 2022): 5366. http://dx.doi.org/10.3390/app12115366.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
21

Meywerk, M., F. Decker y J. Cordes. "Fluid-structure interaction in crash simulation". Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering 214, n.º 7 (julio de 2000): 669–73. http://dx.doi.org/10.1243/0954407001527547.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
22

Lohner, R., J. Cebral, Chi Yang, J. D. Baum, E. Mestreau, C. Charman y D. Pelessone. "Large-scale fluid-structure interaction simulations". Computing in Science & Engineering 6, n.º 3 (mayo de 2004): 27–37. http://dx.doi.org/10.1109/mcise.2004.1289306.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
23

Oden, J. T., L. Demkowicz y J. Bennighof. "Fluid-Structure Interaction in Underwater Acoustics". Applied Mechanics Reviews 43, n.º 5S (1 de mayo de 1990): S374—S380. http://dx.doi.org/10.1115/1.3120843.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
24

Benaroya, Haym y Rene D. Gabbai. "Modelling vortex-induced fluid–structure interaction". Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 366, n.º 1868 (5 de noviembre de 2007): 1231–74. http://dx.doi.org/10.1098/rsta.2007.2130.

Texto completo
Resumen
The principal goal of this research is developing physics-based, reduced-order, analytical models of nonlinear fluid–structure interactions associated with offshore structures. Our primary focus is to generalize the Hamilton's variational framework so that systems of flow-oscillator equations can be derived from first principles. This is an extension of earlier work that led to a single energy equation describing the fluid–structure interaction. It is demonstrated here that flow-oscillator models are a subclass of the general, physical-based framework. A flow-oscillator model is a reduced-order mechanical model, generally comprising two mechanical oscillators, one modelling the structural oscillation and the other a nonlinear oscillator representing the fluid behaviour coupled to the structural motion. Reduced-order analytical model development continues to be carried out using a Hamilton's principle-based variational approach. This provides flexibility in the long run for generalizing the modelling paradigm to complex, three-dimensional problems with multiple degrees of freedom, although such extension is very difficult. As both experimental and analytical capabilities advance, the critical research path to developing and implementing fluid–structure interaction models entails formulating generalized equations of motion, as a superset of the flow-oscillator models; and developing experimentally derived, semi-analytical functions to describe key terms in the governing equations of motion. The developed variational approach yields a system of governing equations. This will allow modelling of multiple d.f. systems. The extensions derived generalize the Hamilton's variational formulation for such problems. The Navier–Stokes equations are derived and coupled to the structural oscillator. This general model has been shown to be a superset of the flow-oscillator model. Based on different assumptions, one can derive a variety of flow-oscillator models.
Los estilos APA, Harvard, Vancouver, ISO, etc.
25

Souli, Mhamed y Nicolas Aquelet. "Fluid Structure Interaction for Hydraulic Problems". La Houille Blanche, n.º 6 (diciembre de 2011): 5–10. http://dx.doi.org/10.1051/lhb/2011054.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
26

Benyahia, Nabil y Ferhat Souidi. "Fluid-structure interaction in pipe flow". Progress in Computational Fluid Dynamics, An International Journal 7, n.º 6 (2007): 354. http://dx.doi.org/10.1504/pcfd.2007.014685.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
27

Chakraborty, Debadi, J. Ravi Prakash, James Friend y Leslie Yeo. "Fluid-structure interaction in deformable microchannels". Physics of Fluids 24, n.º 10 (octubre de 2012): 102002. http://dx.doi.org/10.1063/1.4759493.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
28

TAKIZAWA, KENJI y TAYFUN E. TEZDUYAR. "SPACE–TIME FLUID–STRUCTURE INTERACTION METHODS". Mathematical Models and Methods in Applied Sciences 22, supp02 (25 de julio de 2012): 1230001. http://dx.doi.org/10.1142/s0218202512300013.

Texto completo
Resumen
Since its introduction in 1991 for computation of flow problems with moving boundaries and interfaces, the Deforming-Spatial-Domain/Stabilized Space–Time (DSD/SST) formulation has been applied to a diverse set of challenging problems. The classes of problems computed include free-surface and two-fluid flows, fluid–object, fluid–particle and fluid–structure interaction (FSI), and flows with mechanical components in fast, linear or rotational relative motion. The DSD/SST formulation, as a core technology, is being used for some of the most challenging FSI problems, including parachute modeling and arterial FSI. Versions of the DSD/SST formulation introduced in recent years serve as lower-cost alternatives. More recent variational multiscale (VMS) version, which is called DSD/SST-VMST (and also ST-VMS), has brought better computational accuracy and serves as a reliable turbulence model. Special space–time FSI techniques introduced for specific classes of problems, such as parachute modeling and arterial FSI, have increased the scope and accuracy of the FSI modeling in those classes of computations. This paper provides an overview of the core space–time FSI technique, its recent versions, and the special space–time FSI techniques. The paper includes test computations with the DSD/SST-VMST technique.
Los estilos APA, Harvard, Vancouver, ISO, etc.
29

Gorla, Rama Subba Reddy, Shantaram S. Pai y Jeffrey J. Rusick. "Probabilistic study of fluid structure interaction". International Journal of Engineering Science 41, n.º 3-5 (marzo de 2003): 271–82. http://dx.doi.org/10.1016/s0020-7225(02)00205-7.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
30

Haase, Werner. "Unsteady aerodynamics including fluid/structure interaction". Air & Space Europe 3, n.º 3-4 (mayo de 2001): 83–86. http://dx.doi.org/10.1016/s1290-0958(01)90063-2.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
31

Casoni, Eva, Guillaume Houzeaux y Mariano Vázquez. "Parallel Aspects of Fluid-structure Interaction". Procedia Engineering 61 (2013): 117–21. http://dx.doi.org/10.1016/j.proeng.2013.07.103.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
32

Degroote, Joris. "Partitioned Simulation of Fluid-Structure Interaction". Archives of Computational Methods in Engineering 20, n.º 3 (14 de julio de 2013): 185–238. http://dx.doi.org/10.1007/s11831-013-9085-5.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
33

Griffith, Boyce E. y Neelesh A. Patankar. "Immersed Methods for Fluid–Structure Interaction". Annual Review of Fluid Mechanics 52, n.º 1 (5 de enero de 2020): 421–48. http://dx.doi.org/10.1146/annurev-fluid-010719-060228.

Texto completo
Resumen
Fluid–structure interaction is ubiquitous in nature and occurs at all biological scales. Immersed methods provide mathematical and computational frameworks for modeling fluid–structure systems. These methods, which typically use an Eulerian description of the fluid and a Lagrangian description of the structure, can treat thin immersed boundaries and volumetric bodies, and they can model structures that are flexible or rigid or that move with prescribed deformational kinematics. Immersed formulations do not require body-fitted discretizations and thereby avoid the frequent grid regeneration that can otherwise be required for models involving large deformations and displacements. This article reviews immersed methods for both elastic structures and structures with prescribed kinematics. It considers formulations using integral operators to connect the Eulerian and Lagrangian frames and methods that directly apply jump conditions along fluid–structure interfaces. Benchmark problems demonstrate the effectiveness of these methods, and selected applications at Reynolds numbers up to approximately 20,000 highlight their impact in biological and biomedical modeling and simulation.
Los estilos APA, Harvard, Vancouver, ISO, etc.
34

Kamakoti, Ramji y Wei Shyy. "Fluid–structure interaction for aeroelastic applications". Progress in Aerospace Sciences 40, n.º 8 (noviembre de 2004): 535–58. http://dx.doi.org/10.1016/j.paerosci.2005.01.001.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
35

Han, Luhui y Xiangyu Hu. "SPH modeling of fluid-structure interaction". Journal of Hydrodynamics 30, n.º 1 (febrero de 2018): 62–69. http://dx.doi.org/10.1007/s42241-018-0006-9.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
36

Dumitrache, C. L. y D. Deleanu. "Sloshing effect, Fluid Structure Interaction analysis". IOP Conference Series: Materials Science and Engineering 916 (11 de septiembre de 2020): 012030. http://dx.doi.org/10.1088/1757-899x/916/1/012030.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
37

Samuelides, E. y P. A. Frieze. "Fluid-structure interaction in ship collisions". Marine Structures 2, n.º 1 (enero de 1989): 65–88. http://dx.doi.org/10.1016/0951-8339(89)90024-5.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
38

Jung, Sunghwan y Ramiro Godoy-Diana. "Special issue: bioinspired fluid-structure interaction". Bioinspiration & Biomimetics 18, n.º 3 (3 de abril de 2023): 030401. http://dx.doi.org/10.1088/1748-3190/acc778.

Texto completo
Resumen
Abstract Fluid-structure interaction (FSI) studies the interaction between fluid and solid objects. It helps understand how fluid motion affects solid objects and vice versa. FSI research is important in engineering applications such as aerodynamics, hydrodynamics, and structural analysis. It has been used to design efficient systems such as ships, aircraft, and buildings. FSI in biological systems has gained interest in recent years for understanding how organisms interact with their fluidic environment. Our special issue features papers on various biological and bio-inspired FSI problems. Papers in this special issue cover topics ranging from flow physics to optimization and diagonistics. These papers offer new insights into natural systems and inspire the development of new technologies based on natural principles.
Los estilos APA, Harvard, Vancouver, ISO, etc.
39

Musharaf, Hafiz Muhammad, Uditha Roshan, Amith Mudugamuwa, Quang Thang Trinh, Jun Zhang y Nam-Trung Nguyen. "Computational Fluid–Structure Interaction in Microfluidics". Micromachines 15, n.º 7 (9 de julio de 2024): 897. http://dx.doi.org/10.3390/mi15070897.

Texto completo
Resumen
Micro elastofluidics is a transformative branch of microfluidics, leveraging the fluid–structure interaction (FSI) at the microscale to enhance the functionality and efficiency of various microdevices. This review paper elucidates the critical role of advanced computational FSI methods in the field of micro elastofluidics. By focusing on the interplay between fluid mechanics and structural responses, these computational methods facilitate the intricate design and optimisation of microdevices such as microvalves, micropumps, and micromixers, which rely on the precise control of fluidic and structural dynamics. In addition, these computational tools extend to the development of biomedical devices, enabling precise particle manipulation and enhancing therapeutic outcomes in cardiovascular applications. Furthermore, this paper addresses the current challenges in computational FSI and highlights the necessity for further development of tools to tackle complex, time-dependent models under microfluidic environments and varying conditions. Our review highlights the expanding potential of FSI in micro elastofluidics, offering a roadmap for future research and development in this promising area.
Los estilos APA, Harvard, Vancouver, ISO, etc.
40

Hou, Gene, Jin Wang y Anita Layton. "Numerical Methods for Fluid-Structure Interaction — A Review". Communications in Computational Physics 12, n.º 2 (agosto de 2012): 337–77. http://dx.doi.org/10.4208/cicp.291210.290411s.

Texto completo
Resumen
AbstractThe interactions between incompressible fluid flows and immersed structures are nonlinear multi-physics phenomena that have applications to a wide range of scientific and engineering disciplines. In this article, we review representative numerical methods based on conforming and non-conforming meshes that are currently available for computing fluid-structure interaction problems, with an emphasis on some of the recent developments in the field. A goal is to categorize the selected methods and assess their accuracy and efficiency. We discuss challenges faced by researchers in this field, and we emphasize the importance of interdisciplinary effort for advancing the study in fluid-structure interactions.
Los estilos APA, Harvard, Vancouver, ISO, etc.
41

Huerta, A. y W. K. Liu. "Viscous Flow Structure Interaction". Journal of Pressure Vessel Technology 110, n.º 1 (1 de febrero de 1988): 15–21. http://dx.doi.org/10.1115/1.3265561.

Texto completo
Resumen
Considerable research activities in vibration and seismic analysis for various fluid-structure systems have been carried out in the past two decades. Most of the approaches are formulated within the framework of finite elements, and the majority of work deals with inviscid fluids. However, there has been little work done in the area of fluid-structure interaction problems accounting for flow separation and nonlinear phenomenon of steady streaming. In this paper, the Arbitrary Lagrangian Eulerian (ALE) finite element method is extended to address the flow separation and nonlinear phenomenon of steady streaming for arbitrarily shaped bodies undergoing large periodic motion in a viscous fluid. The results are designed to evaluate the fluid force acting on the body; thus, the coupled rigid body-viscous flow problem can be simplified to a standard structural problem using the concept of added mass and added damping. Formulas for these two constants are given for the particular case of a cylinder immersed in an infinite viscous fluid. The finite element modeling is based on a pressure-velocity mixed formulation and a streamline upwind Petrov/Galerkin technique. All computations are performed using a personal computer.
Los estilos APA, Harvard, Vancouver, ISO, etc.
42

Nho, In-Sik y Sang-Mook Shin. "Fluid-Structure Interaction Analysis for Structure in Viscous Flow". Journal of the Society of Naval Architects of Korea 45, n.º 2 (20 de abril de 2008): 168–74. http://dx.doi.org/10.3744/snak.2008.45.2.168.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
43

Liu, Tiegang, A. W. Chowdhury y Boo Cheong Khoo. "The Modified Ghost Fluid Method Applied to Fluid-Elastic Structure Interaction". Advances in Applied Mathematics and Mechanics 3, n.º 5 (octubre de 2011): 611–32. http://dx.doi.org/10.4208/aamm.10-m1054.

Texto completo
Resumen
AbstractIn this work, the modified ghost fluid method is developed to deal with 2D compressible fluid interacting with elastic solid in an Euler-Lagrange coupled system. In applying the modified Ghost Fluid Method to treat the fluid-elastic solid coupling, the Navier equations for elastic solid are cast into a system similar to the Euler equations but in Lagrangian coordinates. Furthermore, to take into account the influence of material deformation and nonlinear wave interaction at the interface, an Euler-Lagrange Riemann problem is constructed and solved approximately along the normal direction of the interface to predict the interfacial status and then define the ghost fluid and ghost solid states. Numerical tests are presented to verify the resultant method.
Los estilos APA, Harvard, Vancouver, ISO, etc.
44

Wang, Xiaolin, Ken Kamrin y Chris H. Rycroft. "An incompressible Eulerian method for fluid–structure interaction with mixed soft and rigid solids". Physics of Fluids 34, n.º 3 (marzo de 2022): 033604. http://dx.doi.org/10.1063/5.0082233.

Texto completo
Resumen
We present a general simulation approach for incompressible fluid–structure interactions in a fully Eulerian framework using the reference map technique. The approach is suitable for modeling one or more rigid or finitely deformable objects or soft objects with rigid components interacting with the fluid and with each other. It is also extended to control the kinematics of structures in fluids. The model is based on our previous Eulerian fluid–soft solver [Rycroft et al., “Reference map technique for incompressible fluid–structure interaction,” J. Fluid Mech. 898, A9 (2020)] and generalized to rigid structures by constraining the deformation-rate tensor in a projection framework. Several numerical examples are presented to illustrate the capability of the method.
Los estilos APA, Harvard, Vancouver, ISO, etc.
45

Tchieu, A. A., D. Crowdy y A. Leonard. "Fluid-structure interaction of two bodies in an inviscid fluid". Physics of Fluids 22, n.º 10 (octubre de 2010): 107101. http://dx.doi.org/10.1063/1.3485063.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
46

Hamdan, F. H. "Near-field fluid–structure interaction using Lagrangian fluid finite elements". Computers & Structures 71, n.º 2 (abril de 1999): 123–41. http://dx.doi.org/10.1016/s0045-7949(98)00298-3.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
47

Yang, Liang. "One-fluid formulation for fluid–structure interaction with free surface". Computer Methods in Applied Mechanics and Engineering 332 (abril de 2018): 102–35. http://dx.doi.org/10.1016/j.cma.2017.12.016.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
48

Bazilevs, Yuri, Kenji Takizawa y Tayfun E. Tezduyar. "Special issue on computational fluid mechanics and fluid–structure interaction". Computational Mechanics 48, n.º 3 (8 de julio de 2011): 245. http://dx.doi.org/10.1007/s00466-011-0621-6.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
49

Leary, P. C. "Relating microscale rock-fluid interaction to macroscale fluid flow structure". Geological Society, London, Special Publications 147, n.º 1 (1998): 243–60. http://dx.doi.org/10.1144/gsl.sp.1998.147.01.16.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
50

TAN, V. B. C. y T. BELYTSCHKO. "BLENDED MESH METHODS FOR FLUID-STRUCTURE INTERACTION". International Journal of Computational Methods 01, n.º 02 (septiembre de 2004): 387–406. http://dx.doi.org/10.1142/s0219876204000186.

Texto completo
Resumen
In many cases, it is advantageous to discretize a domain using several finite element meshes instead of a single mesh. For example, in fluid-structure interaction problems, an Eulerian mesh is advantageous for the fluid domain while a Lagrangian mesh is most suited for the structure. However, the interface conditions between different types of meshes often lead to significant errors. A method of treating different meshes by smoothly varying the description from Lagrangian to Eulerian in an interface or blending domain is presented. A Lagrangian mesh is used for the structure while two different types of mesh are used for the fluid. Arbitrary Lagrangian-Eulerian (ALE) meshes are used in the regions of the fluid-structure interfaces while Eulerian meshes are used for the remainder of the fluid domain. A blending function is used to couple the ALE and Eulerian meshes to ensure a smooth transition from one mesh to another. The method is tested on two fluid-structure problems — flow past a hinged plate, and fluid expansion in a closed container. Results are in good agreement with standard finite element and analytical solutions.
Los estilos APA, Harvard, Vancouver, ISO, etc.
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!

Pasar a la bibliografía