Literatura académica sobre el tema "Flow simulation"

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Flow simulation".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Artículos de revistas sobre el tema "Flow simulation"

1

Bando, Kiyoshi y Kenkichi Ohba. "Numerical Simulation of Flow around LDV-Sensor for Measuring Blood Flow Velocities(Cardiovascular flow Simulation)". Proceedings of the Asian Pacific Conference on Biomechanics : emerging science and technology in biomechanics 2004.1 (2004): 55–56. http://dx.doi.org/10.1299/jsmeapbio.2004.1.55.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Liu, Youjun, Wei Huang, Haiwen Zhu, Song Gao y Yue Diao. "SIMULATION OF HEMODYNAMICS IN ABDOMINAL AORTA(Cardiovascular flow Simulation)". Proceedings of the Asian Pacific Conference on Biomechanics : emerging science and technology in biomechanics 2004.1 (2004): 49–50. http://dx.doi.org/10.1299/jsmeapbio.2004.1.49.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Janajreh, Isam, Syed Shabbar Raza y Khadije El Kadi. "Greenhouse Microclimate Flow Simulation: Influence of Inlet Flow Conditions". International Journal of Thermal and Environmental Engineering 17, n.º 1 (1 de diciembre de 2018): 11–18. http://dx.doi.org/10.5383/ijtee.17.01.002.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Wintterle, Thomas y Eckart Laurien. "ICONE15-10409 NUMERICAL SIMULATION OF FLOW REVERSAL IN COUNTERCURRENT HORIZONTAL STRATIFEID FLOWS". Proceedings of the International Conference on Nuclear Engineering (ICONE) 2007.15 (2007): _ICONE1510. http://dx.doi.org/10.1299/jsmeicone.2007.15._icone1510_212.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Minato, Akihiko, Nobuyuki Nakajima y Takahide Nagahara. "SIMULATION OF FREE SURFACE FLOW BY SP-VOF MODEL(Numerical Simulation)". Proceedings of the International Conference on Jets, Wakes and Separated Flows (ICJWSF) 2005 (2005): 717–20. http://dx.doi.org/10.1299/jsmeicjwsf.2005.717.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Li, Yongxing, Hongfei Jia, Ya-Nan Zhou y Lili Yang. "Simulation research on pedestrian counter flow subconscious behavior". International Journal of Modern Physics C 28, n.º 02 (febrero de 2017): 1750025. http://dx.doi.org/10.1142/s0129183117500255.

Texto completo
Resumen
Analyzing the pedestrian subconscious behavior and walking environment in the passage, right-moving preference subconscious strength and overtaking subconscious strength are introduced into the pedestrian simulation model which is based on lattice gas model. Two pedestrian subconscious behavior simulation models, which are distinguished by whether considering pedestrian flow ratio of two directions or not, are established respectively. With the platform of MATLAB software, the simulations of pedestrian counter flow subconscious behavior are realized. The simulations indicate that compared with the pedestrian subconscious behavior simulation model without considering the pedestrian flow ratio of two directions, the model that considers the pedestrian flow ratio of two directions is better in simulating the pedestrian subconscious behavior.
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

YI, H. H., L. J. FAN y Y. Y. CHEN. "LATTICE BOLTZMANN SIMULATION OF THE MOTION OF SPHERICAL PARTICLES IN STEADY POISEUILLE FLOW". International Journal of Modern Physics C 20, n.º 06 (junio de 2009): 831–46. http://dx.doi.org/10.1142/s0129183109014035.

Texto completo
Resumen
A technique, based on the stress-integration method, for the evaluation of hydrodynamic forces on solid boundaries is proposed to simulate the solid-fluid flow systems in three dimensions in lattice Boltzmann simulations. The accuracy of the scheme is demonstrated by simulating the sphere migrating in a pressure-driven Newtonian fluid flow in a cylindrical tube. The numerical simulation results recover the Segré–Silberberg effect. Using this scheme, we investigate the behavior of a pair of spheres in a tube Poiseuille flow. Oscillatory states are observed for two spheres with different radii placed on opposite sides. The simulation results show that the present model is an effective and efficient direct numerical simulation method for simulating particle motions in fluid flows at finite Reynolds numbers in three dimensions.
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Fořt, J., J. Fürst, J. Halama y K. Kozel. "Numerical simulation of 3D transonic flow through cascades". Mathematica Bohemica 126, n.º 2 (2001): 353–61. http://dx.doi.org/10.21136/mb.2001.134021.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

VELKOVA, Cvetelina. "NUMERICAL 3D TRANSONIC FLOW SIMULATION OVER A WING". Review of the Air Force Academy 15, n.º 3 (14 de diciembre de 2017): 5–14. http://dx.doi.org/10.19062/1842-9238.2017.15.3.1.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Mäkipere, Krista y Piroz Zamankhan. "Simulation of Fiber Suspensions—A Multiscale Approach". Journal of Fluids Engineering 129, n.º 4 (18 de agosto de 2006): 446–56. http://dx.doi.org/10.1115/1.2567952.

Texto completo
Resumen
The present effort is the development of a multiscale modeling, simulation methodology for investigating complex phenomena arising from flowing fiber suspensions. The present approach is capable of coupling behaviors from the Kolmogorov turbulence scale through the full-scale system in which a fiber suspension is flowing. Here the key aspect is adaptive hierarchical modeling. Numerical results are presented for which focus is on fiber floc formation and destruction by hydrodynamic forces in turbulent flows. Specific consideration was given to dynamic simulations of viscoelastic fibers in which the fluid flow is predicted by a method that is a hybrid between direct numerical simulations and large eddy simulation techniques and fluid fibrous structure interactions will be taken into account. Dynamics of simple fiber networks in a shearing flow of water in a channel flow illustrate that the shear-induced bending of the fiber network is enhanced near the walls. Fiber-fiber interaction in straight ducts is also investigated and results show that deformations would be expected during the collision when the surfaces of flocs will be at contact. Smaller velocity magnitudes of the separated fibers compare to the velocity before collision implies the occurrence of an inelastic collision. In addition because of separation of vortices, interference flows around two flocs become very complicated. The results obtained may elucidate the physics behind the breakup of a fiber floc, opening the possibility for developing a meaningful numerical model of the fiber flow at the continuum level where an Eulerian multiphase flow model can be developed for industrial use.
Los estilos APA, Harvard, Vancouver, ISO, etc.

Tesis sobre el tema "Flow simulation"

1

Myre, David D. "Model fan passage flow simulation". Thesis, Monterey, California. Naval Postgraduate School, 1992. http://hdl.handle.net/10945/23962.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Enge, Leo y Felix Liu. "Crowd Simulation Using Flow Tiles". Thesis, KTH, Skolan för teknikvetenskap (SCI), 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-231025.

Texto completo
Resumen
Crowd simulations are being used in an increasing number of different applications, like evacuation scenarios, video games and movie special effects This creates a demand for crowd simulators that are simple to use and accessible to users of varying backgrounds. We will study the flow tile method proposed by Chenney [1], which provides an intuitive way of interactively designing divergence free velocity fields for various applications. A reimplementation of Chenney's method will be given and the implementation will be evaluated in terms of user-friendliness and how well the use of static spatially defined velocity fields suits crowd simulation. Furthermore the possibility of using the velocity fields for other related applications such as mobile robotics will be touched on as well.
Simuleringar av folkmassor används i ett ökande antal olika tillämpningar, som evakueringsscenarion, datorspel och speciale­ffekter för film. Detta skapar en efterfrågan efter simulatorer som är enkla att använda och tillgängliga för användare från olika ämnesområden och bakgrunder. Vi kommer att studera flow tile-metoden som Chenney [1] föreslår. Metoden är ett intuitivt och interaktivt sätt att skapa divergensfria hastighetsfält för olika tillämpningar. En omimplementation av Chenneys metod kommer att ges och implementationen kommer att evalueras i termer av användarvänlighet och hur väl användningen av hastighetsfält som är statiska och definierade i rummet passar för simulering av folkmassor. Vidare kommer möjligheten att använda hastighetsfälten för andra liknande tillämpningar, som robotik, att diskuteras också.
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Ahmad, Reza Amini. "Produktutveckling skorstensfläkt i Flow Simulation". Thesis, Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-80573.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Reasor, Daniel Archer. "Numerical simulation of cellular blood flow". Diss., Georgia Institute of Technology, 2011. http://hdl.handle.net/1853/42760.

Texto completo
Resumen
In order to simulate cellular blood, a coarse-grained spectrin-link (SL) red blood cell (RBC) membrane model is coupled with a lattice-Boltzmann (LB) based suspension solver. The LB method resolves the hydrodynamics governed by the Navier--Stokes equations while the SL method accurately models the deformation of RBCs under numerous configurations. This method has been parallelized using Message Passing Interface (MPI) protocols for the simulation of dense suspensions of RBCs characteristic of whole blood on world-class computing resources. Simulations were performed to study rheological effects in unbounded shear using the Lees-Edwards boundary condition with good agreement with rotational viscometer results from literature. The particle-phase normal-stress tensor was analyzed and demonstrated a change in sign of the particle-phase pressure from low to high shear rates due to RBCs transitioning from a compressive state to a tensile state in the flow direction. Non-Newtonian effects such as viscosity shear thinning were observed for shear rates ranging from 14-440 inverse seconds as well as the strong dependence on hematocrit at low shear rates. An increase in membrane bending energy was shown to be an important factor for determining the average orientation of RBCs, which ultimately affects the suspension viscosity. The shear stress on platelets was observed to be higher than the average shear stress in blood, which emphasizes the importance of modeling platelets as finite particles. Hagen-Poiseuille flow simulations were performed in rigid vessels for investigating the change in cell-depleted layer thickness with shear rate, the Fåhraeus-Linqvist effect, and the process of platelet margination. The process of platelet margination was shown to be sensitive to platelet shape. Specifically, it is shown that lower aspect ratio particles migrate more rapidly than thin disks. Margination rate is shown to increase with hematocrit, due to the larger number of RBC-platelet interactions, and with the increase in suspending fluid viscosity.
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Swarbrick, Sean James. "Finite element simulation of viscoelastic flow". Thesis, Teesside University, 1990. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.278423.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Christian, Andrew D. (Andrew Dean). "Simulation of information flow in design". Thesis, Massachusetts Institute of Technology, 1995. http://hdl.handle.net/1721.1/11102.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Zhu, Lailai. "Simulation of individual cells in flow". Doctoral thesis, KTH, Stabilitet, Transition, Kontroll, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-142557.

Texto completo
Resumen
In this thesis, simulations are performed to study the motion ofindividual cells in flow, focusing on the hydrodynamics of actively swimming cells likethe self-propelling microorganisms, and of passively advected objects like the red bloodcells. In particular, we develop numerical tools to address the locomotion ofmicroswimmers in viscoelastic fluids and complex geometries, as well as the motion ofdeformable capsules in micro-fluidic flows. For the active movement, the squirmer is used as our model microswimmer. The finiteelement method is employed to study the influence of the viscoelasticity of fluid on theperformance of locomotion. A boundary element method is implemented to study swimmingcells inside a tube. For the passive counterpart, the deformable capsule is chosen as the modelcell. An accelerated boundary integral method code is developed to solve thefluid-structure interaction, and a global spectral method is incorporated to handle theevolving cell surface and its corresponding membrane dynamics. We study the locomotion of a neutral squirmer with anemphasis on the change of swimming kinematics, energetics, and flowdisturbance from Newtonian to viscoelastic fluid. We also examine the dynamics of differentswimming gaits resulting in different patterns of polymer deformation, as well as theirinfluence on the swimming performance. We correlate the change of swimming speed withthe extensional viscosity and that of power consumption with the phase delay of viscoelasticfluids. Moreover, we utilise the boundary element method to simulate the swimming cells in astraight and torus-like bent tube, where the tube radius is a few times the cell radius. Weinvestigate the effect of tube confinement to the swimming speed and power consumption. Weanalyse the motions of squirmers with different gaits, which significantly affect thestability of the motion. Helical trajectories are produced for a neutralsquirmer swimming, in qualitative agreement with experimental observations, which can beexplained by hydrodynamic interactions alone. We perform simulations of a deformable capsule in micro-fluidic flows. We look atthe trajectory and deformation of a capsule through a channel/duct with a corner. Thevelocity of capsule displays an overshoot as passing around the corner, indicating apparentviscoelasticity induced by the interaction between the deformable membrane and viscousflow. A curved corner is found to deform the capsule less than the straight one. In addition, we propose a new cell sorting device based on the deformability of cells. Weintroduce carefully-designed geometric features into the flow to excite thehydrodynamic interactions between the cell and device. This interaction varies andclosely depends on the cell deformability, the resultant difference scatters the cellsonto different trajectories. Our high-fidelity computations show that the new strategy achievesa clear and robust separation of cells. We finally investigate the motion of capsule in awall-bounded oscillating shear flow, to understand the effect of physiological pulsation to thedeformation and lateral migration of cells. We observe the lateral migration velocity of a cellvaries non-monotonically with its deformability.

QC 20140313

Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Li, Yiguang. "Three-Dimensional Flow and Performance Simulation of Multistage Axial Flow Compressors". Thesis, Cranfield University, 2000. http://dspace.lib.cranfield.ac.uk/handle/1826/4591.

Texto completo
Resumen
\Yith the current develop111ent in computer technology and Computational Fluid D)"n<'tlllics techniques, t.he si11utlation within axial flow compressors becomes 1110re and 1110re pract.ical and beneficial to the compressor designs. Due to the insufficient capabilit)" of today's COll1put.ers for three-dimensional unsteady flow 1110delling of 111Ult i~Llg(' axial flow compressors, sophisticated models of steady state flow and perfor111ance 1110delling of the C0111prcssors deserve to be thoroughly investigated. In l1utltistage C0111pressor sinlulations with steady state methods, frame of reference is fixed on blades and the c0111putational domains for rotors and stators haye relati\"e rotation. One of the difficulties in such simulations is how to pass information across the interfaces between blade rows without losing continuity. Two 111ajor stead)" state modelling approaches, a mixing plane approach based on Denton's circu111ferentially non-uniform mixing plane model and a deterministic stress approach based on Adamczyk's average passage model, are investigated and compared with each other through the flow predictions of the third stage of Cranfield Low Speed Research Compressor at peak efficiency operating condition. In the deterministic stress approach, overlapped solution domains are introduced to calculate deterministic stresses in order to "close" the time-averaged governing equation system and the influence of the downstream blade row of the blade row under investigation has to be imposed through the simulation of bodyforce and blade blockage effect of the downstream blade row. An effective method of simulating bodyforce and blade blockage effect has been developed and proven to be simple in programming. ConYentionally, boundary conditions are specified in CFD calculations based on experimental data or other empirical calculations. By taking advantage of the special flow features in rear stages of multistage axial flow compressors where each rear stage behaves like a repeating stage of its neighbouring stages in terms of flow pattern at the inlet and the exit of these stages, a repeating stage model has been developed aiming at significantly simplifying the boundary conditions when simulating rear stages of a multistage axial flow compressor with only mass flow rate and stage exit average static pressure required as global input. A computer simulation system 1'/ STurbo3D has been developed to investigate a11d assess different steady state simulation models within multistage compressor environment. It has been proven that with the mixing plane model M STurbo3D is able to predict flows in multistage low speed axial flow compressors with acceptable accuracy. Application of the repeating stage model to the third stage of LS RC shows that the prediction with this model has equivalent accuracy to the prediction with the conventional boundary setting, and proves that the repeating stage model is an effective alternative to the expensive complete compressor simulation. The deterministic stress model provides more information of rotor-stator interaction and slightly better performance prediction than the mixing plane model, but the benefits of the model is not significant when applied to low speed axial flow compressors.
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

ABRUNHOSA, JOSE DINIZ MESQUITA. "TURBULENT COMPLEX FLOW SIMULATION WITH CLASSICAL MODELING AND LARGE EDDY SIMULATION". PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2003. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=4346@1.

Texto completo
Resumen
CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO
Uma investigação da capacidade de previsão de modelos de turbulência baseados na modelagem estatística clássica e de grandes escalas é apresentada. A modelagem estatística clássica de turbulência (média de Reynolds) foi analisada, através da solução de escoamentos complexos, como, por exemplo, o escoamento turbulento em degrau (backstep). Especial atenção foi dada aos modelos kapa-epsilon de baixo Reynolds e as variantes renormalizadas (RNG). O comportamento dos vários termos da equação da energia cinética turbulenta na região da parede foram analisados em detalhes, especialmente o termo de difusão de pressão. Avaliou-se a importância da correta modelagem do termo de difusão de pressão sobre as predições dos modelos de baixo número de Reynolds, nas regiões de recirculação. Alguns modelos, propostos na literatura para o termo de difusão de pressão, foram também avaliados teórica e numericamente. A capacidade de previsão da metodologia de simulação de grandes escalas (LES por Large Eddy Simulation) também foi realizada. O desempenho do modelo de Smagorinsky para prever escoamentos limitados por fronteiras sólidas foi avaliado do ponto de vista computacional. Utilizou-se o método de volumes finitos para integrar tanto as equações médias de Reynolds quanto as equações LES. O escoamento turbulento em canal foi resolvido de modo bidimensional e tridimensional. Já o escoamento em degrau (backstep) foi resolvido exclusivamente de modo bidimensional, enquanto o escoamento em um duto de seção quadrada foi simulado de modo tridimensional. Os resultados foram comparados com aqueles obtidos pelos modelos de baixo Reynolds, analisando-se a relação custo-benefício.
An investigation of turbulence models prediction capacity based on classical statistical modeling and large eddy simulation (LES) is presented. The classical statistical modeling (average of Reynolds) was analyzed, by investigating the solution of complex flows, as, for example, the turbulent flow past a backwardfacing- step (backstep). Special attention was given to low Reynolds number k-e models and models derived by renormalization group theory (RNG). The behavior of the different terms in the turbulent kinetic energy equation in the near wall region was examined in details, specially the pressure diffusion term. It was evaluated the importance of the correct modeling of the pressure diffusion term on the predictions of the low Reynolds number models, in recirculating flows. A few models, proposed in the literature for the pressure diffusion term, were also evaluated theoretically and numerically. The prediction capacity of large eddy simulation (LES) technique was also investigated. The ability of Smagorinsky model to predict complex limited wall flows was analyzed from a computational standpoint. The finite-volume method was employed to integrate both the Reynolds average and LES equations. The fully developed turbulent channel flow was solved in two- dimensional and three-dimensional numerical simulations. The turbulent flow over a backward-facing-step was computed exclusively in a twodimensional manner, while the fully developed turbulent flow in a straight square duct was simulated in a three-dimensional manner. The results were compared with those obtained by the low Reynolds models, analyzing the cost-benefit relation.
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Wang, Roy J. "Simulation based evaluation on the effects of jaywalking". Access to citation, abstract and download form provided by ProQuest Information and Learning Company; downloadable PDF file, 77 p, 2009. http://proquest.umi.com/pqdweb?did=1885755931&sid=1&Fmt=2&clientId=8331&RQT=309&VName=PQD.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.

Libros sobre el tema "Flow simulation"

1

Hirschel, Ernst Heinrich, ed. Numerical Flow Simulation I. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/978-3-540-44437-4.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Hirschel, Ernst Heinrich, ed. Numerical Flow Simulation I. Wiesbaden: Vieweg+Teubner Verlag, 1998. http://dx.doi.org/10.1007/978-3-663-10916-7.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Hirschel, Ernst Heinrich, ed. Numerical Flow Simulation II. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-540-44567-8.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Hirschel, Ernst Heinrich, ed. Numerical Flow Simulation III. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-540-45693-3.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Myre, David D. Model fan passage flow simulation. Monterey, Calif: Naval Postgraduate School, 1992.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

P, Boris Jay, ed. Numerical simulation of reactive flow. 2a ed. Cambridge, U.K: Cambridge University Press, 2001.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

P, Boris Jay, ed. Numerical simulation of reactive flow. New York: Elsevier, 1987.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Roussel, Nicolas y Annika Gram, eds. Simulation of Fresh Concrete Flow. Dordrecht: Springer Netherlands, 2014. http://dx.doi.org/10.1007/978-94-017-8884-7.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Zamankhan, Parsa. Complex flow dynamics in dense granular flows. Lappeenranta: Lappeenranta University of Technology, 2004.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

All fluid-flow-regimes simulation model for internal flows. New York: Nova Science Publishers, 2011.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.

Capítulos de libros sobre el tema "Flow simulation"

1

Bangsow, Steffen. "Information Flow Objects". En Manufacturing Simulation with Plant Simulation and SimTalk, 183–221. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-05074-9_8.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Bangsow, Steffen. "Information Flow, Controls". En Tecnomatix Plant Simulation, 181–259. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-19503-2_4.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Bangsow, Steffen. "Information Flow, Controls". En Tecnomatix Plant Simulation, 181–272. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-41544-0_4.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Schmid, Karl. "Numeric Flow Simulation". En Laser Wakefield Electron Acceleration, 41–70. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-19950-9_3.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Grijsen, J. G. "River Flow Simulation". En River Flow Modelling and Forecasting, 241–72. Dordrecht: Springer Netherlands, 1986. http://dx.doi.org/10.1007/978-94-009-4536-4_9.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Kolev, Nikolay Ivanov. "Large eddy simulation". En Multiphase Flow Dynamics 4, 195–207. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-20749-5_10.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Berezin, Ihor, Prasanta Sarkar y Jacek Malecki. "Fluid–Structure Interaction Simulation". En Recent Progress in Flow Control for Practical Flows, 263–81. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-50568-8_14.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Bangsow, Steffen. "Simtalk and Material Flow Objects". En Manufacturing Simulation with Plant Simulation and SimTalk, 117–38. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-05074-9_6.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Jacobson, Sheldon H., Shane N. Hall y James R. Swisher. "Discrete-Event Simulation of Health care Systems". En Patient Flow, 273–309. Boston, MA: Springer US, 2013. http://dx.doi.org/10.1007/978-1-4614-9512-3_12.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Elefteriadou, Lily. "Simulation Modeling". En An Introduction to Traffic Flow Theory, 137–62. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-8435-6_7.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.

Actas de conferencias sobre el tema "Flow simulation"

1

Fanelli, M., R. Arora, A. Glass, R. Litt, D. Qiu, L. Silva, A. L. Tonkovich y D. Weidert. "Micro-scale distillation—I: simulation". En MULTIPHASE FLOW 2007. Southampton, UK: WIT Press, 2007. http://dx.doi.org/10.2495/mpf070201.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Karube, K., M. Maekawa, S. Lo y K. Mimura. "Ammonia concentration analysis for the steam condenser by combining two phase flow CFD simulation with condensation and process simulation". En MULTIPHASE FLOW 2009. Southampton, UK: WIT Press, 2009. http://dx.doi.org/10.2495/mpf090071.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Belmrabet, T., R. Russo, M. Mulas y S. Hanchi. "Lagrangian Monte Carlo simulation of spray-flow interaction". En MULTIPHASE FLOW 2007. Southampton, UK: WIT Press, 2007. http://dx.doi.org/10.2495/mpf070261.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Ogawa, H. "Simulation of Complex Fluids with Multiple Intrinsic Lengths". En FLOW DYNAMICS: The Second International Conference on Flow Dynamics. AIP, 2006. http://dx.doi.org/10.1063/1.2204517.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Maliska, C. R., J. Cordazzo y A. F. C. Silva. "Petroleum reservoir simulation using EbFVM: the negative transmissibility issue". En MULTIPHASE FLOW 2007. Southampton, UK: WIT Press, 2007. http://dx.doi.org/10.2495/mpf070131.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Sikanen, T., J. Vaari y S. Hostikka. "Large scale simulation of high pressure water mist systems". En MULTIPHASE FLOW 2013. Southampton, UK: WIT Press, 2013. http://dx.doi.org/10.2495/mpf130071.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Lee, J. C. "Optimization of Thermal Puffer Chambers Using Multidisciplinary Simulation Techniques". En FLOW DYNAMICS: The Second International Conference on Flow Dynamics. AIP, 2006. http://dx.doi.org/10.1063/1.2204530.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Gallerano, F., L. Melilla y G. Cannata. "Large eddy simulation and the filtered equation of a contaminant". En MULTIPHASE FLOW 2007. Southampton, UK: WIT Press, 2007. http://dx.doi.org/10.2495/mpf070381.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Paz, C., E. Suárez, M. Concheiro, J. Porteiro y R. Valdés. "CFD simulation of a CT scan oral-nasal extrathoracic model". En MULTIPHASE FLOW 2013. Southampton, UK: WIT Press, 2013. http://dx.doi.org/10.2495/mpf130321.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Schippa, L. y S. Pavan. "One-dimensional finite volume simulation of real debris flow events". En DEBRIS FLOW 2010. Southampton, UK: WIT Press, 2010. http://dx.doi.org/10.2495/deb100021.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.

Informes sobre el tema "Flow simulation"

1

Parks, Don, Randall Ingemanson, Eric Salberta, Paul Steen y John Thompson. Advanced Simulator Power Flow Technology/Advanced Radiation Simulation. Fort Belvoir, VA: Defense Technical Information Center, marzo de 1996. http://dx.doi.org/10.21236/ada305391.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Baganoff, Donald. Particle Simulation of Hypersonic Flow. Fort Belvoir, VA: Defense Technical Information Center, abril de 1990. http://dx.doi.org/10.21236/ada222704.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Wang, Y. A Three-Dimensional Inviscid Flow Solver in Chimera Flow Simulation. Fort Belvoir, VA: Defense Technical Information Center, febrero de 1994. http://dx.doi.org/10.21236/ada294176.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Makedonska, Nataliia, Elchin Jararov y Lianjie Huang. Flow Simulation Using Discrete Fracture Network Model. Office of Scientific and Technical Information (OSTI), septiembre de 2018. http://dx.doi.org/10.2172/1469490.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Glowinsky, Roland, Anthony J. Kearsley, Tsorng-Whay Pan y Jacques Periaux. Fictitious Domain Methods for Viscous Flow Simulation. Fort Belvoir, VA: Defense Technical Information Center, mayo de 1995. http://dx.doi.org/10.21236/ada445628.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Parks, Donal, Phil Coleman, Randy Ingermanson, Paul Steen y John Thompson. Advanced Simulator Power Flow Technology/Advanced Radiation Simulation Volume 2: MHD Modeling of POS and Power Flow. Fort Belvoir, VA: Defense Technical Information Center, septiembre de 1999. http://dx.doi.org/10.21236/ada377780.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

T Bagwell. CFD Simulation of Flow Tones from Grazing Flow past a Deep Cavity. Office of Scientific and Technical Information (OSTI), mayo de 2006. http://dx.doi.org/10.2172/883301.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Hoffmann, Klaus A. An Integrated Computational Tool for Hypersonic Flow Simulation. Fort Belvoir, VA: Defense Technical Information Center, enero de 2000. http://dx.doi.org/10.21236/ada422319.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Humphrey, J., F. Sherman y W. To. Numerical simulation of buoyant turbulent flow. Final report. Office of Scientific and Technical Information (OSTI), agosto de 1985. http://dx.doi.org/10.2172/5394390.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Ovrebo, Gregory K. Simulation of Air Flow Through a Test Chamber. Fort Belvoir, VA: Defense Technical Information Center, diciembre de 2007. http://dx.doi.org/10.21236/ada474833.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!

Pasar a la bibliografía