Tesis sobre el tema "Flot de la courbure moyenne"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte los 50 mejores tesis para su investigación sobre el tema "Flot de la courbure moyenne".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Explore tesis sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.
Marachli, Alaa. "Sur la stabilité de certaines surfaces minimales sous le flot de courbure moyenne nulle dans l'espace de Minkowski". Thesis, Paris Est, 2019. http://www.theses.fr/2019PESC0034.
Texto completoThis thesis focuses on the stability of some minimal surfaces under the vanishing mean curvature flow in Minkowski space. This issue amounts to investigate a system which turns out to be hyperbolic as long as the involved surfaces are time-like surfaces.The work presented here includes two parts. The first part in joint work with Hajer Bahouri and Galina Perelman is dedicated to the issue of singularity formation in finite time for surfaces asymptotic to the Simons cone at infinity and the second part is devoted to the study of the stability of the helicoid.In the first part of this thesis, we prove by a constructive approach the existence of a family of surfaces which evolve by the vanishing mean curvature flow in Minkowski space and which as t tends to~0 blow up towards a surface which behaves like the Simons cone at infinity. This issue amounts to investigate the singularity formation for a second order quasilinear wave equation.The aim of the second part is to investigate the stability of the helicoid under normal radial perturbations. Actually, the helicoid is linearly unstable of index 1, and that is why we cannot expect to have stability for arbitrary perturbations. In this part, we establish that this instability is the only obstruction to the global nonlinear stability for the helicoid. More precisely, in the framework of normal radial perturbations, we prove the existence of a codimension one set of small initial data generating global solutions converging to the helicoid at infinity
Dumont, Yves. "Contributions à l'étude théorique de l'écoulement anisotrope de courbes et à l'epsilon régularisation du problème de flot à courbure moyenne". Mulhouse, 1998. http://www.theses.fr/1998MULH0510.
Texto completoDe, gennaro Daniele. "Flots de courbure cristalline et anisotrope, non linéaire et non local". Electronic Thesis or Diss., Université Paris sciences et lettres, 2024. http://www.theses.fr/2024UPSLD020.
Texto completoThis thesis is devoted to the study of geometric flows, with particular focus on the mean curvature flow. It is divided in two thematic parts. The first part, Part I, contains Chapters 2,3 and 4, and concerns convergence results for the minimizing movements scheme, which is a variational procedure extending Euler's implicit scheme to evolutions having a gradient flow-like structure. We implement this scheme for anisotropic or crystalline, nonlocal or inhomogeneous curvature flows, in linear and nonlinear instances, and study its convergence towards weak solutions to the flows. In Chapter 4 we also pair this study with a discrete-to-continuum limit. The second part, Part II, is devoted to the study of asymptotic behaviour of volume-preserving curvature flows both in the discrete- and continuus-in-time instances. The main technical tool employed is a new {L}ojasiewicz-Simon inequality suited to the study of these kind of evolutions
Schapira, Barbara. "Propriétés ergodiques du feuilletage horosphérique d'une variété à courbure négative". Phd thesis, Université d'Orléans, 2003. http://tel.archives-ouvertes.fr/tel-00163420.
Texto completoKirsch, Stéphane. "Courbure moyenne et interfaces". Paris 6, 2007. http://www.theses.fr/2007PA066103.
Texto completoJleli, Mohamed Boussaïri Pacard Franck. "Hypersurfaces à courbure moyenne constante". Créteil : Université de Paris-Val-de-Marne, 2004. http://doxa.scd.univ-paris12.fr:80/theses/th0200395.pdff.
Texto completoAmacha, Inas. "Flot de Yamabe avec courbure scalaire prescrite". Thesis, Brest, 2017. http://www.theses.fr/2017BRES0109/document.
Texto completoThis thesis is devoted to the study of a family of geometric flows associated with the prescribed scalar curvature problem. More precisely, if we denote by (M,g0) a compact riemannian manifold with dimension n≥3, and if F∈C∞ (M) is a given function, the prescribed scalar curvature problem consists of finding a conformal metric g to g0 such that F is its scalar curvature. This problem is equivalent to the resolution of the following PDE : -4 (n-1)/(n-2) ∆u+R0 u=Fu((n+2)/(n-2 )) , u>0 , (E), Where R0 is the scalar curvature of the initial metric g0 and ∆ is the laplacian associated with g0.It is a nonlinear elliptic equation, whose the main difficulty comes from the term u((n+2)/(n-2 )). Apart from the case of the standard sphere Sn all the works that study the equation (E) are based on the variational method. In this thesis, we develop another approach based on the study of a family of geometric flows which allows to solve equation (E).The flows introduced are gradient flows associated with two distinct functional functions depending on the sign of R0.The first part of this thesis is devoted to the case R0<0 and in the second part we treat the case R0>0. In both cases, our aim is to proof the global existence of the flow and study its asymptotic behavior at infinity
Laurain, Paul. "Comportement asymptotique des surfaces à courbure moyenne constante". Phd thesis, Ecole normale supérieure de lyon - ENS LYON, 2010. http://tel.archives-ouvertes.fr/tel-00559640.
Texto completoGrognet, Stéphane. "Le flot à courbure géodésique prescrite sur les surfaces riemaniennes". Lyon, École normale supérieure (sciences), 1994. http://www.theses.fr/1994ENSL0001.
Texto completoDos, Reis Gabriel. "Sur les surfaces dont la courbure moyenne est constante". Paris 7, 2001. http://www.theses.fr/2001PA077187.
Texto completoOliveira, Iury Rafael Domingos de. "Surfaces à courbure moyenne constante dans les variétés homogènes". Electronic Thesis or Diss., Université de Lorraine, 2020. http://www.theses.fr/2020LORR0057.
Texto completoThe goal of this thesis is to study constant mean curvature surfaces into homogeneous 3-manifolds with 4-dimensional isometry group. In the first part of this thesis, we study constant mean curvature surfaces in the product manifolds \mathbb{S}^2\times\mathbb{R} and \mathbb{H}^2\times\mathbb{R}. As a main result, we establish a local classification for constant mean curvature surfaces with constant intrinsic curvature in these spaces. In this classification, we present a new example of constant mean curvature surfaces with constant intrinsic curvature in \mathbb{H}^2\times\mathbb{R}. As a consequence, we use the sister surface correspondence to classify the constant mean curvature surfaces with constant intrinsic curvature in the others homogeneous 3-manifolds with 4-dimensional isometry group, and then new examples with these conditions arise in \widetilde{\mathrm{PSL}}_{2}(\mathbb{R}). We devote the second part of this thesis to study minimal surfaces in \mathbb{S}^2\times\mathbb{R}. For this, we define a new Gauss map for surfaces in this space using the model of \mathbb{S}^2\times\mathbb{R} isometric to \mathbb{R}^3\setminus\{0\}, endowed with a metric conformally equivalent to the Euclidean metric of \mathbb{R}^3. As a main result, we prove that any two minimal conformal immersions in \mathbb{S}^2\times\mathbb{R} with the same non-constant Gauss map differ by only two types of ambient isometries. Moreover, if the Gauss map is a singular, we show that it is necessarily constant and then the surface is a vertical cylinder over a geodesic of \mathbb{S}^2 in \mathbb{S}^2\times\mathbb{R}. We also study some particular cases, among them we also prove that there is no minimal conformal immersion into \mathbb{S}^2\times\mathbb{R} with anti-holomorphic non-constant Gauss map
Desmonts, Christophe. "Surfaces à courbure moyenne constante via les champs de spineurs". Thesis, Université de Lorraine, 2015. http://www.theses.fr/2015LORR0073/document.
Texto completoIn this thesis we are interested in the role played by the extrinsic curvatures of a hypersurface in the study of its geometry, especially in the case of spin manifolds. First, we focus our attention on the mean curvature and construct a new family of non simply connected minimal surfaces in the Lie group Sol3, by adapting a method used by Daniel and Hauswirth in Nil3 based on the properties of the Gauss map of a surface. Then we give a new spinorial proof of the Alexandrov Theorem extended to all Hr-curvatures in the euclidean space Rn+1 and in the hyperbolic space Hn+1, using a well-chosen test-spinor in the holographic inequalities recently obtained by Hijazi, Montiel and Raulot. These inequalities lead to a new proof of the Heintze-Karcher Inequality as well. Finally we use restrictions of particular ambient spinor fields constructed by Roth to give some extrinsic upper bounds for the first nonnegative eigenvalue of the Dirac operator of surfaces immersed into S2 x S1(r) and into the Berger spheres Sb3 (τ), and we describe the equality cases
Desmonts, Christophe. "Surfaces à courbure moyenne constante via les champs de spineurs". Electronic Thesis or Diss., Université de Lorraine, 2015. http://www.theses.fr/2015LORR0073.
Texto completoIn this thesis we are interested in the role played by the extrinsic curvatures of a hypersurface in the study of its geometry, especially in the case of spin manifolds. First, we focus our attention on the mean curvature and construct a new family of non simply connected minimal surfaces in the Lie group Sol3, by adapting a method used by Daniel and Hauswirth in Nil3 based on the properties of the Gauss map of a surface. Then we give a new spinorial proof of the Alexandrov Theorem extended to all Hr-curvatures in the euclidean space Rn+1 and in the hyperbolic space Hn+1, using a well-chosen test-spinor in the holographic inequalities recently obtained by Hijazi, Montiel and Raulot. These inequalities lead to a new proof of the Heintze-Karcher Inequality as well. Finally we use restrictions of particular ambient spinor fields constructed by Roth to give some extrinsic upper bounds for the first nonnegative eigenvalue of the Dirac operator of surfaces immersed into S2 x S1(r) and into the Berger spheres Sb3 (τ), and we describe the equality cases
Collin, Pascal. "Le problème de Dirichlet pour les surfaces à courbure moyenne prescrite". Paris 7, 1992. http://www.theses.fr/1992PA077233.
Texto completoSemmler, Beate. "Surfaces de courbure moyenne constante dans les espaces euclidien et hyperbolique". Paris 7, 1997. http://www.theses.fr/1997PA077289.
Texto completoRaujouan, Thomas. "Surfaces à courbure moyenne constante dans les espaces euclidien et hyperbolique". Thesis, Tours, 2019. http://www.theses.fr/2019TOUR4011.
Texto completoNon-zero constant mean curvature surfaces are mathematical models for physical interface problems with non-zero pressure difference. They are described by partial differential equations and can be constructed from holomorphic data via a Weierstrass-type representation, called "the DPW method". In this thesis, we use the DPW method and prove two main results. The first one states that perturbations of the DPW data for Delaunay unduloidal ends generate embedded annuli. This can be used to prove the embeddedness of surfaces constructed via the DPW method. The second result is the construction of n-noids in Hyperbolic space: genus 0, embedded, constant mean curvature surfaces with n Delaunay ends
Castillon, Philippe. "Sur les sous-variétés à courbure moyenne constante dans l'espace hyperbolique". Université Joseph Fourier (Grenoble), 1997. http://www.theses.fr/1997GRE10006.
Texto completoFanaai, Hamidreza. "Flot géodésique, mesures invariantes et métriques d'Einstein". Université Joseph Fourier (Grenoble ; 1971-2015), 1997. http://www.theses.fr/1997GRE10278.
Texto completoRichard, Thomas. "Flot de Ricci sans borne supérieure sur la courbure et géométrie de certains espaces métriques". Phd thesis, Université de Grenoble, 2012. http://tel.archives-ouvertes.fr/tel-00768066.
Texto completoMohamad, Haidar. "Sur l'équation de Gross-Pitaevskii uni-dimensionnelle et quelques généralisations du flot par courbure binormale". Thesis, Paris 6, 2014. http://www.theses.fr/2014PA066176.
Texto completoThis work is a contribution to the study of nonlinear Schrödinger equations (NLS) in the one-dimensional space. Such equations arise in many physical fields, including nonlinear optics and Bose-Einstein condensation. The thesis contains three connected themes included in chapters 2, 3 and 4. The first part (chapter 2) constructs multi-soliton solutions of the Gross-Pitaevskii (or defocussing NLS) equation, as an approximate superposition of traveling waves (solitons). This part contains also a detailed description of the interactions between solitons. These results are obtained by exploiting the integrability of the the Gross-Pitaevskii equation and its associated Marchenko system. The second part (chapter 4) clarifies the relations between the classical formulation and the so-called hydrodynamical formulation that only has a meaning when the solution does not vanish anywhere in the spatial domain The last part (chapter 3) of this thesis concerns existence and uniqueness results for a family of quasi-linear partial differential equations that generalize the equation of the binormal curvature flow for a curve in the three-dimensional space. The latter equation is in connection to the focussing cubic NLS by Hasimoto transformation. In our generalization, the velocity of a point on the curve is still directed along the binormal vector (so that in particular the length of the curve is preserved) but the magnitude of the speed is allowed to depend both on the curvilinear parameter and on the position in space. Existence is proven using spatial discretization together with some a priori bounds on the approximate solutions. Uniqueness follows from a comparison theorem
Zolotareva, Tatiana. "Construction de surfaces à courbure moyenne constante et surfaces minimales par des méthodes perturbatives". Thesis, Université Paris-Saclay (ComUE), 2016. http://www.theses.fr/2016SACLX003/document.
Texto completoThe subject of this thesis is the study of minimal and constant mean curvature submanifolds and of the influence of the geometry of the ambient manifold on the solutions of this problem.In the first chapter, following the ideas of F. Almgren, we propose a generalization of the notion of hypersurface with constant mean curvature to all codimensions. In codimension n-k we define constant mean curvature submanifolds as the critical points of the functional of the k - dimensional volume of the boundaries of k+1 - dimensional minimal submanifolds. We prove the existence in compact n-dimensional manifolds of n-k codimensional submanifolds with constant mean curvature for all k
Belarif, Kamel. "Propriétés génériques des mesures invariantes en courbure négative". Thesis, Brest, 2017. http://www.theses.fr/2017BRES0059/document.
Texto completoIn this work, we study the properties satisfied by the probability measures invariant by the geodesic flow {∅t}t∈R on non compact manifolds M with pinched negative sectional curvature. First, we restrict our study to hyperbolic manifolds. In this case, ∅t is topologically mixing in restriction to its non-wandering set. Moreover, if M is convex cocompact, there exists a symbolic representation of the geodesic flow which allows us to prove that the set of ∅t-invariant, weakly-mixing probability measures is a dense Gδ−set in the set M1 of probability measures invariant by the geodesic flow. The question of the topological mixing of the geodesic flow is still open when the curvature of M is non constant. So the methods used on hyperbolic manifolds do not apply on manifolds with variable curvature. To generalize the previous result, we use thermodynamics tools developed recently by F.Paulin, M.Pollicott et B.Schapira. More precisely, the proof of our result relies on our capacity of constructing, for all periodic orbits Op a sequence of mixing and finite Gibbs measures converging to the Dirac measure supported on Op. We will show that such a construction is possible when M is geometrically finite. If it is not, there are no examples of geometrically infinite manifolds with a finite Gibbs measure. We conjecture that it is always possible to construct a finite Gibbs measure on a pinched negatively curved manifold. To support this conjecture, we prove a finiteness criterion for Gibbs measures
Stocker, Arnaud. "Géométrie de certains espaces de courbure négative". Thesis, Aix-Marseille, 2019. http://www.theses.fr/2019AIXM0214.
Texto completoIn this thesis, we investigate the geometry of some examples of nonpositively curved spaces together with their fundamental groups. The first family of examples we study is due to Gromov and Thurston and is obtained by taking ramified covers of hyperbolic manifolds. These spaces can be endowed with a metric of constant negative curvature with conical singularities of angle 2kπ along a codimension 2 submanifold, where k is the branching degree. By studying the geodesic flow, we prove that the volume entropy (or equivalently, the critical exponent of the fundamental group) of these spaces grows as the logarithm of the branching degree. The second family of examples we are interested in are nonpositively curved spaces admitting an open set of negative curvature. It turns out that this local constraint has consequences on the global geometry of its fundamental group since it implies that it is acylindrically hyperbolic, a weak form of negative curvature
Ley, Olivier. "Evolution de fronts avec vitesse non-locale et équations de Hamilton-Jacobi". Habilitation à diriger des recherches, Université François Rabelais - Tours, 2008. http://tel.archives-ouvertes.fr/tel-00362409.
Texto completoLe premier chapitre concerne l'évolution de fronts avec une vitesse normale prescrite. Pour étudier ce genre de problème, une première approche, dite par lignes de niveaux, consiste àreprésenter le front comme une ligne de niveau d'une fonction auxiliaire u. Cette approche ramène l'étude du problème d'évolution géométrique à un problème d'EDP puisque u vérifie une équation de Hamilton-Jacobi. Quelques résultats dans le cas de vitesses locales comme la courbure moyenne sont présentés mais la majorité des résultats concerne le cas de vitesses non-locales décrivant la dynamique des dislocations dans un cristal ou modélisant l'asymptotique d'un système de FitzHugh-Nagumo apparaissant en biologie. Une approche différente, basée sur des solutions de viscosité géométriques, est utilisée pour étudier des problèmes de propagation de fronts apparaissant en optimisation de formes. Le but est de trouver un ensemble optimal minimisant une énergie du type capacité à volume ou périmètre constant. L'idée est de déformer le bord d'un ensemble donné avec une vitesse normale adéquate de manière à diminuer au plus son énergie. La mise en oeuvre de cette idée nécessite la construction rigoureuse d'une telle évolution pour tout temps et la preuve de la convergence vers une solution du problème initial. De plus, la décroissance de l'énergie est obtenue le long du flot.
Le deuxième chapitre décrit des résultats d'unicité, d'existence et d'homogénéisation pour des équations de Hamilton-Jacobi-Bellman. La majeure partie du travail effectué concerne des équations provenant de problèmes de contrôle stochastique avec des contrôles non-bornés. Les équations comportent alors des termes quadratiques par rapport au gradient et les solutions étudiées sont elles-mêmes à croissance quadratique. Des liens entre ces solutions et les fonctions valeurs des problèmes de contrôle correspondants sont établis. La seconde partie est consacrée à un théorème d'homogénéisation pour un système d'équations de Hamilton-Jacobi du premier ordre.
Le troisième et dernier chapitre traite d'un sujet un peu à part, à savoir le lien entre les flots de gradient et l'inégalité de Lojasiewicz. La principale originalité de ce travail est de placer l'étude dans un cadre hilbertien pour des fonctions semiconvexes, ce qui sort du cadre de l'inégalité de Lojasiewicz classique. Le principal théorème produit des caractérisations de cette inégalité. Les résultats peuvent être précisés dans le cas des fonctions convexes ; en particulier, un contre-exemple de fonction convexe ne vérifiant pas l'inégalité de Lojasiewicz est construit. Cette dernière inégalité est reliée à la longueur des trajectoires de gradient. Une borne de cette longueur est obtenue pour les fonctions convexes coercives en dimension deux même lorsque cette inégalité n'est pas vérifiée.
Hochard, Raphaël. "Théorèmes d’existence en temps court du flot de Ricci pour des variétés non-complètes, non-éffondrées, à courbure minorée". Thesis, Bordeaux, 2019. http://www.theses.fr/2019BORD0006/document.
Texto completoThe Ricci Flow is a partial differential equation governing the evolution of a Riemannian metric depending on a time parameter t on a differential manifold. It was first introduced and studied by R. Hamilton, and eventually led to the solution of the Geometrization conjecture for closed three-dimensional manifolds by G. Perelman in 2001. The classical short-time existence theory for the Ricci Flow, due to Hamilton and Shi, asserts, in any dimension, the existence of a flow starting from any initial metric when the underlying manifold in compact, or for any complete initial metric with a bound on the norm of the curvature tensor otherwise. In the absence of such a bound, though, the conjecture is that starting from dimension 3 one can find such initial data for which there is no solution. In this thesis, we prove short-time existence theorems under hypotheses weaker than a bound on the norm of the curvature tensor. To do this, we introduce a general construction which, for any Riemannian metric g (not necessarily complete) on a manifold M, allows us to produce a solution to the equation of the flow on an open domain D of the space-time M * [0,T] which contains the initial time slice, with g as an initial datum. We proceed to show that under suitable hypotheses on g, one can control the shape of the domain D, so that in particular, D contains a subset of the form M * [0,t] with t>0 if g is complete. By « suitable hypothesis », we mean one of the following. In any case, we assume a lower bound on the volume of balls of radius at most 1, plus a) in dimension 3, a lower bound on the Ricci tensor, b) in dimension n, a lower bound on the so-called « isotropic curvature I » or c) in dimension n, a bound on the norm of the Ricci tensor, as well as a hypothesis which garanties the metric proximity of every ball of radius at most $1$ with a ball of the same radius in a metric product between a three-dimensional metric space and a $n-3$ dimensional Euclidian factor. Moreover, with these existence results come estimates on the existence time and regularization properties of the flow, quantified in term of the hypotheses on the initial data. The possibility to regularize metrics, locally or globally, with such estimates has consequences in terms of the metric spaces obtained as limits, in the Gromov-Hausdorff topology, of sequences of manifolds uniformly satisfying a), b) or c). Indeed, the classical compactness theorems for the Ricci Flow allow for the extraction of a limit flow for any sequence of initial metrics uniformly satisfying the hypotheses and thus possessing a flow for a controlled amount of time. In the case when these metrics approach a singular space in the Gromov-Hausdorff topology, such a limit solution can be interpreted as a flow regularizing the singular limit space, the existence of which puts constraints on the topology of this space
Forcadel, Nicolas. "Contribution à l'analyse d'équations aux dérivées partielles décrivant le mouvement de fronts avec applicationsà la dynamique des dislocations". Phd thesis, Ecole des Ponts ParisTech, 2007. http://tel.archives-ouvertes.fr/tel-00170767.
Texto completoLa première partie de ce mémoire est consacrée aux propriétés qualitatives de la dynamique d'une ligne de dislocation (existence, unicité, comportement asymptotique...). Cette étude repose en grande partie sur la théorie des solutions de viscosité. On propose également plusieurs schémas numériques pour cette dynamique et on montre leur convergence ainsi que des estimations d'erreurs entre la solution et son approximation numérique.
Dans une seconde partie nous faisons le lien entre la dynamique d'un nombre fini de dislocations et la dynamique de densité de dislocations en montrant des résultats d'homogénéisation. Nous étudions également, de manière théorique et numérique, un modèle pour la dynamique de densité de dislocations.
Forcadel, Nicolas. "Contribution à l'analyse d'équations aux dérivées partielles décrivant le mouvement de fronts avec applications à la dynamique des dislocations". Marne-la-vallée, ENPC, 2007. http://www.theses.fr/2007ENPC0711.
Texto completoAbergel, David. "Caractérisation bioinformatique des régions interORF chez la levure : analyse des biais de représentation, de la courbure moyenne prédite et de la conservation au sein du phylum des Hémi-Ascomycètes". Paris 11, 2004. http://www.theses.fr/2004PA112280.
Texto completoInterORF regions can be defined as located between two successive ORFs. This work aims at characterizing them, using several bioinformatic genome-scale approaches. The main organism studied is the S. Cerevisiae yeast, since many aspects related to interORF regions are already kown. Analyses have been carried out according to three ways:1. A statistical study of the di- and trinucleotides representation biases, which shows that these biases occur only for several word and that they can be associated with the taxonomy of the concerned species. 2. A study of the predicted average curvature (local and global) of the double-helix axis, close to the ATG, the STOP and the transcription boundaries : the curvature computed with a high granularity is quite the same as the one computed on random sequences, respecting the same linguistics as the studied regions. 3. A study of the conservation in the interORF and coding regions, within the phylum of the Hemi-Ascomycetous (10 species): they are highly conserved, especially for « essential » and highly expressed ORF. In order to resolve the problems generated by this work, I developed two tools :1. GenomX, an integrated software designed to be useful for all kinds of users, making easier the usual tasks in bioinformatics,particularly for genome-scale studies. 2. WInGS, a genomic data warehouse on yeast. An internal control of the information coherence is performed together with an integration of several databases, dealing with redundant and divergent data
Zang, Yiming. "Les surfaces de Ricci et les surfaces minimales dans les groupes de Lie métriques". Electronic Thesis or Diss., Université de Lorraine, 2022. https://docnum.univ-lorraine.fr/ulprive/DDOC_T_2022_0115_ZANG.pdf.
Texto completoIn this thesis, we will study some topics related to minimal surfaces in three-dimensional homogeneous manifolds. The first part is devoted to the study of non-positively curved Ricci surfaces with catenodial ends. The idea comes from a famous theorem of Huber. In the first place, we give a definition of catenoidal end for non-positively curved Ricci surfaces with finite total curvature. Secondly, we develop a tool which can be regarded as an analogue of the Weierstrass data. By using this tool, we get some classification results and some non-existence results for non-positively curved Ricci surfaces of genus zero with catenoidal ends. In the end of Chapter 2, we also prove an existence result for non-positively curved Ricci surfaces of arbitrary positive genus with finite many catenoidal ends.In the second part of this thesis, we concern about minimal surfaces in a three-dimensional metric Lie group widetilde{E(2)}, which is the universal covering of the group of rigid motions of Euclidean plane endowed with a left-invariant Riemannian metric. Firstly, a result of Patrangenaru describes the left-invariant metrics as a two-parameter family of metrics. Then we take advantage of a Weierstrass-type representation due to Meeks, Mira, Pérez and Ros to construct a one-parameter family of helicoidal minimal surfaces in widetilde{E(2)} as well as a one-parameter family of minimal annuli which are properly embedded in widetilde{E(2)}. In the end, by a discussion of the limit case of the second family of surfaces, we obtain a new proof of a half-space theorem for minimal surfaces in widetilde{E(2)}
Côte, Delphine. "Vortex et données non bornées pour les équations de Ginzburg-Landau paraboliques". Thesis, Paris 6, 2015. http://www.theses.fr/2015PA066002.
Texto completoWe are interested in this thesis in evolution equations related to the Ginzburg-Landau functionals, of parabolic nature. Our goal is to describe the temporal behavior of limiting solutions as a small penalisation parameter tends to 0.In the first chapter, we retrace in a synthetic way the remarkable study by Bethuel, Orlandi and Smets on the parabolic Ginzburg-Landau equation in dimension 2 : the evolution of point vortices is governed by the gradient flow of the Kirchoff-Onsager functionnal modified by a drift term ; it is smooth away from the merging and splitting times ; these phenomenon are subject to conservation of the local degree and energy dissipation.In the second chapter, we consider the Cauchy problem for systems of semi-linear parabolic equations. Motivated by the example of the vortices, we construct, for defocusing nonlinearities, global solutions to the associated integral equation with intial data unbounded in space (allowed to grow like exp(x^2)). In the case of focusing nonlinearities, we show a phenomenon of instantaneous blow-up.In the third chapter, we go back to the parabolic Ginzburg-Landau equation. We replace the energy bound of Bethuel, Orlandi et Smets by a local-in-space bound on the energy. This allows to consider general configurations of vortices without the help of « vanishing vortices ». We extend their analysis, and show various results of decomposition of the renormalized energy, and that the concentrated energy moves according to the mean curvature flow
Daniel, Benoît. "Sur les surfaces de Bryant et les disques minimaux délimités par trois droites". Paris 7, 2003. http://www.theses.fr/2003PA077150.
Texto completoLi, Songzi. "W-entropy formulas on super ricci flows and matrix dirichlet processes". Toulouse 3, 2015. http://www.theses.fr/2015TOU30365.
Texto completoThis PhD thesis consists of five parts, which are closely related. In part 1, we prove the Harnack inequality and the logarithmic Sobolev inequalities for the heat semigroup of the Witten Laplacian on the K-super Ricci flows and the (K, m)-super Ricci flows. In part 2, we introduce the W-entropy for the heat equation of the weighted Laplacian on the K-super Ricci flows and the (K, m)-super Ricci flows, and prove its variational formula and monotonicity property. In part 3, we introduce the Langevin deformation of geometric flows on the Wasserstein space over ompact Riemannian manifolds, which interpolate the geodesic flow and the gradient flows on the Wasserstein space. The W-entropy formula has been proved. In part 4, we study the Dyson Brownian motion on the octonion algebra, and give two specific models on which the invariant measure and the algebraic multiplicity can be determined. In part 5, we introduce the matrix Dirichlet distribution as their invariant measure
Brassel, Morgan. "Instabilités de forme en croissance cristalline". Phd thesis, Grenoble 1, 2008. http://www.theses.fr/2008GRE10146.
Texto completoIntegrated circuits in electronic chips are etched on thin films of semi-conductors. Shape instabilities may appear during the manufacturing of these films by hetero-epitaxy. This work is devoted to the numerical study of one such instability, known as the Grinfeld instability. From a modeling point of view, instabilities of films free surfaces fall in the class of free boundary problems and moving interfaces. We study the particular case of motion by mean curvature and its approximation by the phase field method via the Allen-Cahn equation. We propose a finite element discretization of this equation, that allows us to consider several extensions: conservation of the volume, forcing terms, anisotropy. A numerical study of a variationnal model for the Grinfeld instability is presented, that combines epitaxial growth with elastic interactions in the bulk. This model couples the Allen-Cahn equation to the system of linearized elasticity. The effect of elastic deformations in the substrate can be accounted for in this model. We also propose a phase field model to study step bunching instabilities on vicinal surfaces of crystals. Our numerical computations are based on an algorithm similar to simulated annealing. This analogy induced us to use phase field approximations to compute global minima in optimization problems
Brassel, Morgan. "Instabilités de forme en croissance cristalline". Phd thesis, Université Joseph Fourier (Grenoble), 2008. http://tel.archives-ouvertes.fr/tel-00379392.
Texto completoDu point de vue de la modélisation, les problèmes rencontrés en croissance cristalline sont essentiellement des problèmes de mouvement d'interfaces. Nous abordons le cas particulier du mouvement par courbure moyenne, ainsi que son approximation par la méthode de champ de phase via l'équation d'Allen-Cahn. La discrétisation par éléments finis que nous proposons permet de couvrir de nombreuses variantes de l'équation : conservation du volume, termes de forçage, anisotropie.
Nous menons ensuite l'étude numérique d'un modèle variationnel de l'instabilité de Grinfeld. Celui-ci combine croissance cristalline et interactions élastiques, en couplant une équation d'Allen-Cahn à un système d'élasticité linéarisée pour le film. Une extension du modèle permet de prendre en compte le comportement élastique du substrat.
Nous proposons, par ailleurs, un modèle de champ de phase pour l'étude de l'instabilité liée à la mise en paquet de marches en surface du film. L'étude numérique de ce modèle s'appuie sur un algorithme inspiré des techniques de recuit simulé. Celui-ci permet d'envisager la méthode de champ de phase comme un outil d'optimisation globale.
Laslier, Benoît. "Dynamique stochastique d'interface discrète et modèles de dimères". Phd thesis, Université Claude Bernard - Lyon I, 2014. http://tel.archives-ouvertes.fr/tel-01044463.
Texto completoAdam, Alexander. "Opérateurs de transfert et moyennes horocycliques sur les variétés fermées". Thesis, Sorbonne université, 2018. http://www.theses.fr/2018SORUS330.
Texto completoThis doctoral thesis deepens the study of hyperbolic dynamics on connected, closed Riemannian manifolds M and associated transfer operators. We investigate two problems: The first problem concerns real analytic perturbations of linear toral Anosov diffeomorphisms: Does a non-trivial resonance appear for generic perturbations of a linear toral Anosov diffeomorphism? The second problem is to make a statement about the time average of horocycle flows with underlying contact Anosov flow: Does the time average of horocycle flows in variable negative curvature converge to the ergodic mean in polynomial time? The associated transfer operators act boundedly on certain anisotropic Banach spaces by composition of the inverse dynamical system followed by a multiplication with specific weight functions. In our analysis of the beforementioned problems these transfer operators are of central interest. We need to investigate their deeper spectrum to progress on our two problems. By the "deeper spectrum" we mean here the part of the spectrum which lies in between the peripheral and the essential spectrum of these transfer operators
Pook, Julian. "Kähler and almost-Kähler geometric flows". Doctoral thesis, Universite Libre de Bruxelles, 2014. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/209324.
Texto completoLe flot de Calabi $partial_t omega = -i delbar del S(omega) =- i delbar del Lambda_omega
ho(omega) $ tente de déformer une forme initiale kählerienne vers une forme kählerienne $omega_c$ de courbure scalaire constante caractérisée par $S(omega_c) = Lambda_{omega_c}
ho(omega_c) = underline{S}$ dans la même classe de cohomologie. La généralisation étudiée est le flot de Calabi twisté qui remplace la forme de Kähler--Ricci $ho$ par $ho + alpha(t)$, où le emph{twist} $alpha(t)$ est une famille de $2$-formes qui converge vers $alpha_infty$. Le but de ce flot est de trouver des métriques kähleriennes $omega_{tc}$ de courbure scalaire twistées constantes caractérisées par $Lambda_{omega_{tc}} (ho(omega_{tc}) +alpha_infty) = underline{S} + underline{alpha}_infty$. L'existence et la convergence de ce flot sont établies sur des surfaces de Riemann à condition que le twist soit défini négatif et reste dans une classe de cohomologie fixe.
Si $E$ est un fibré véctoriel holomorphe sur une varieté kählerienne $(X,omega)$, une métrique de Hermite--Einstein $h_{he}$ est caractérisée par la condition $Lambda_omega i F_{he} = lambda id_E$. Le flot hermitien de Yang--Mills donné par $h^{-1}partial_t h =- [Lambda_omega iF_{h} - lambda id_E]$ tente de déformer une métrique hermitienne initiale vers une métrique Hermite--Einstein. La version classique du flot fixe la forme kählerienne $omega$. Le cas où $omega$ varie dans sa classe de cohomologie et converge vers $omega_infty$ est considéré dans la thèse. Il est démontré que le flot existe pour tout $t$ sur des surfaces de Riemann et converge vers une métrique Hermite--Einstein (par rapport à $omega_infty$) si le fibré $E$ est stable.
Les généralisations du flot de Calabi et du flot hermitien de Yang--Mills ne sont pas arbitraires, mais apparaissent naturellement comme une approximation du flot de Calabi sur des fibrés adiabatiques. Si $Z,X$ sont des variétés complexes compactes, $pi colon Z \
Doctorat en Sciences
info:eu-repo/semantics/nonPublished
Cartier, Sébastien. "Surfaces des espaces homogènes de dimension 3". Phd thesis, Université Paris-Est, 2011. http://tel.archives-ouvertes.fr/tel-00672332.
Texto completoLaadhari, Aymen. "Modélisation numérique de la dynamique des globules rouges par la méthode des fonctions de niveau". Phd thesis, Université de Grenoble, 2011. http://tel.archives-ouvertes.fr/tel-00598251.
Texto completoRoth, Julien. "Rigidité des hypersurfaces en géométrie riemannienne et spinorielle : Aspect extrinsèque et intrinsèque". Phd thesis, Université Henri Poincaré - Nancy I, 2006. http://tel.archives-ouvertes.fr/tel-00120756.
Texto completoLey, Olivier. "Equations quasilinéaires paraboliques dégénérées et équations de Hamilton-Jacobi : équations géométriques et mouvements de fronts". Tours, 2001. http://www.theses.fr/2001TOUR4027.
Texto completoIn the first part, we study quasilinear degenerate parabolic equations set in [RNx(0, T)] like the mean curvature eqution for graphs. We use the level-set approach to interpret the time-evolution of the unbounded solutions as a propagating front in [RN+1]. We prove that uniqueness is equivalent to the non-fattening of the front. Existence of discontinuous viscosity solutions is obtained from a L∞ local bound given by the level-set approach. A spectacular application is the existence of a unique continuous viscosity solution for any convex initial data. Working directly on the equation, we get existence and uniqueness results in the one-dimensional case. By imposing some polynomial-type growth restriction on the initial data in [RN], we prove the well-posedness of a large class of equations among functions with the same growth. The second part concerns time-dependent Hamilton-Jacobi equations. First, for equations set in the whole space [RN], we establish lower gradient bounds for the solutions. We exploit them to obtain regularity properties of the propagating fronts associated by the level-set approach. These bounds ensure the non-fattening but we show they are not sufficient to imply sharper regularity even for semiconcave functions. Secondly, we consider these equations in a smooth bounded set with Neumann boundary conditions. Using the corresponding control problem with reflection, we show that the discontinuous uniqueness result which holds for such equations set in [RN] is not true in this case
Ge, Yuxin. "Sur quelques équations aux dérivées partielles nonlinéaires provenant de la géométrie". Cachan, Ecole normale supérieure, 1997. http://www.theses.fr/1997DENS0029.
Texto completoLaslier, Benoît. "Dynamique stochastique d’interface discrète et modèles de dimères". Thesis, Lyon 1, 2014. http://www.theses.fr/2014LYO10110/document.
Texto completoWe studied the Glauber dynamics on tilings of finite regions of the plane by lozenges or 2 × 1 dominoes. These tilings are naturally associated with surfaces of R^3, which can be seen as interfaces in statistical physics models. In particular, lozenge tilings correspond to three dimensional Ising model at zero temperature. More precisely, tilings of a finite regions are in bijection with Ising configurations with some boundary conditions (depending on the tiled domain). These boundary conditions impose the coexistence of the + and - phases, together with the position of the boundary of the interface. In the thermodynamic limit where L, the characteristic length of the system, tends toward infinity, these interface follow a law of large number and converge to a deterministic limit shape depending only on the boundary condition. When the limit shape is planar and for lozenge tilings, Caputo, Martinelli and Toninelli [CMT12] showed that the mixing time of the dynamics is of order (L^{2+o(1)}) (diffusive scaling). We generalized this result to domino tilings, always in the case of a planar limit shape. We also proved a lower bound Tmix ≥ cL^2 which improve on the result of [CMT12] by a log factor. When the limit shape is not planar, it can either be analytic or have some “frozen” domains where it is degenerated in a sense. When it does not have such frozen region, and for lozenge tilings, we showed that the Glauber dynamics becomes “macroscopically close” to equilibrium in a time L^{2+o(1)}
Derlet, Ann. "Eigenvalues of the p-Laplacian in population dynamics and nodal solutions of a prescribed mean curvature problem". Doctoral thesis, Universite Libre de Bruxelles, 2011. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/209932.
Texto completoLa première partie (chapitres 1-2-3) traite d'un problème trouvant son origine en biologie mathématique, à savoir l'étude de la survie à long terme d'une population dont l'évolution est gouvernée par une équation parabolique non-linéaire. Dans le modèle considéré, le mécanisme de diffusion est contrôlé par le p-Laplacien, la non-linéarité est de type logistique et fait intervenir un poids m pouvant changer de signe, et les conditions aux limites sont de flux nul. Le poids m correspond à une répartition des ressources devant permettre la survie de la population. Dans le chapitre 1, nous déterminons entre autres un critère de survie à long terme faisant intervenir la valeur propre principale du p-Laplacien avec poids m. Cette valeur propre apparait, plus précisément, comme la valeur limite d'un paramètre en-dessous de laquelle toute solution positive de l'équation converge vers zéro lorsque t tend vers l'infini. Ceci nous conduit naturellement au problème de minimiser la valeur propre en question lorsque m varie dans une classe adéquate de poids. Dans le chapitre 2, nous prouvons l'existence de minimiseurs et montrons que ces derniers satisfont une propriété de type “bang-bang”. Plusieurs propriétés de montonie sont aussi étudiées dans des situations géométriques particulières, et une caractérisation complète est donnée en dimension 1. Le chapitre 3 est consacré à l'élaboration de simulations numériques, où l'algorithme utilisé combine un méthode de plus grande pente avec une représentation de certains ensembles comme ensembles de niveaux.
La deuxième sujet de cette thèse (chapitre 4) est un problème elliptique faisant intervenir l'opérateur de courbure moyenne. Nous nous intéressons à l'existence et à la multiplicité de solutions nodales de ce problème. Nous montrons que, si un certain paramètre de l'équation est suffisamment grand, il existe une solution nodale qui change de signe exactement deux fois. Nous établissons également l'existence d'un nombre arbitrairement grand de solutions nodales. Enfin, dans le cas particulier où le domaine est une boule, un résultat de brisure de symétrie est obtenu, résultat qui induit l'existence d'au moins deux solutions à deux domaines nodaux.
Doctorat en Sciences
info:eu-repo/semantics/nonPublished
Delingette, Hervé. "Modélisation, déformation et reconnaissance d'objets tridimensionnels à l'aide de maillages simplexes". Phd thesis, Ecole Centrale Paris, 1994. http://tel.archives-ouvertes.fr/tel-00632191.
Texto completoCloez, Bertrand. "Comportement asymptotique de processus avec sauts et applications pour des modèles avec branchement". Phd thesis, Université Paris-Est, 2013. http://tel.archives-ouvertes.fr/tel-00862913.
Texto completoLemaire, Pierre. "Contributions à l'analyse de visages en 3D : approche régions, approche holistique et étude de dégradations". Phd thesis, Ecole Centrale de Lyon, 2013. http://tel.archives-ouvertes.fr/tel-01002114.
Texto completoCheikh, Ali Hussein. "Analyse asymptotique des équations de Hardy-Sobolev dans des espaces singuliers". Electronic Thesis or Diss., Université de Lorraine, 2019. http://www.theses.fr/2019LORR0174.
Texto completoIn this manuscript, divided into 3 parts, we study the existence of extremal for Hardy-Sobolev inequalities. Part 1: We obtain the (non-)existence of singulars solutions for the perturbative Hardy-Schrödinger equation on a non-smooth domain with the singular point 0 on the boundary of the domain. In particular, we introduce a geometric quantity G which generalizes the mean curvature for ”Large dimensions” and the new notion of the mass in ”Small dimensions”. Our main result is that, in the case of a subcritical perturbation, an interaction appears between the perturbation and G at 0 (resp. m) for large dimensions (resp. small dimensions). In addition, the negativity of the curvature G (resp. the positivity of the mass m) for the large dimensions (resp. small dimensions) is sufficient when the perturbation has no effect. Part 2: In this part, we perform a blow-up analysis of solutions for the Hardy-Sobolev equation of minimizing type. First, we obtain an optimal control of the family of solutions. After, we get specific informations about the blowup point using a Pohozaev identity. Part 3: We consider the best constant in a critical Sobolev inequality of second order. We show non-rigidity for the optimizers above a certain threshold, namely, we prove that the best constant is achieved by a nonconstant solution of the associated fourth order elliptic problem under Neumann boundary conditions. Our arguments rely on asymptotic estimates of the Rayleigh quotient. We also show rigidity below another threshold
Bretin, Elie. "Mouvements par courbure moyenne et méthode de champs de phase". Phd thesis, 2009. http://tel.archives-ouvertes.fr/tel-00995323.
Texto completoJuillet, Nicolas. "Transport optimal et analyse géométrique dans le groupe de Heisenberg". Phd thesis, 2008. http://tel.archives-ouvertes.fr/tel-00345301.
Texto completo