Literatura académica sobre el tema "Floating offshore wind turbines"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Floating offshore wind turbines".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Floating offshore wind turbines"
Sclavounos, Paul. "Floating Offshore Wind Turbines". Marine Technology Society Journal 42, n.º 2 (1 de junio de 2008): 39–43. http://dx.doi.org/10.4031/002533208786829151.
Texto completoPham, Thanh-Dam, Minh-Chau Dinh, Hak-Man Kim y Thai-Thanh Nguyen. "Simplified Floating Wind Turbine for Real-Time Simulation of Large-Scale Floating Offshore Wind Farms". Energies 14, n.º 15 (28 de julio de 2021): 4571. http://dx.doi.org/10.3390/en14154571.
Texto completoBarooni, Mohammad, Turaj Ashuri, Deniz Velioglu Sogut, Stephen Wood y Shiva Ghaderpour Taleghani. "Floating Offshore Wind Turbines: Current Status and Future Prospects". Energies 16, n.º 1 (20 de diciembre de 2022): 2. http://dx.doi.org/10.3390/en16010002.
Texto completoAhmad, Aabas. "Load Reduction of Floating Wind Turbines Using Tuned Mass Dampers". International Journal for Research in Applied Science and Engineering Technology 9, n.º 9 (30 de septiembre de 2021): 1298–303. http://dx.doi.org/10.22214/ijraset.2021.38178.
Texto completoRoddier, Dominique y Joshua Weinstein. "Floating Wind Turbines". Mechanical Engineering 132, n.º 04 (1 de abril de 2010): 28–32. http://dx.doi.org/10.1115/1.2010-apr-2.
Texto completoLi, Jiawen, Jingyu Bian, Yuxiang Ma y Yichen Jiang. "Impact of Typhoons on Floating Offshore Wind Turbines: A Case Study of Typhoon Mangkhut". Journal of Marine Science and Engineering 9, n.º 5 (17 de mayo de 2021): 543. http://dx.doi.org/10.3390/jmse9050543.
Texto completoPham, Thi Quynh Mai, Sungwoo Im y Joonmo Choung. "Prospects and Economics of Offshore Wind Turbine Systems". Journal of Ocean Engineering and Technology 35, n.º 5 (31 de octubre de 2021): 382–92. http://dx.doi.org/10.26748/ksoe.2021.061.
Texto completoMaimon, Aurel Dan. "Floating offshore wind turbines - technology and potential". Analele Universităţii "Dunărea de Jos" din Galaţi. Fascicula XI, Construcţii navale/ Annals of "Dunărea de Jos" of Galati, Fascicle XI, Shipbuilding 43 (15 de diciembre de 2020): 89–94. http://dx.doi.org/10.35219/annugalshipbuilding.2020.43.11.
Texto completoYang, Wenxian, Wenye Tian, Ole Hvalbye, Zhike Peng, Kexiang Wei y Xinliang Tian. "Experimental Research for Stabilizing Offshore Floating Wind Turbines". Energies 12, n.º 10 (21 de mayo de 2019): 1947. http://dx.doi.org/10.3390/en12101947.
Texto completoRaisanen, Jack H., Stig Sundman y Troy Raisanen. "Unmoored: a free-floating wind turbine invention and autonomous open-ocean wind farm concept". Journal of Physics: Conference Series 2362, n.º 1 (1 de noviembre de 2022): 012032. http://dx.doi.org/10.1088/1742-6596/2362/1/012032.
Texto completoTesis sobre el tema "Floating offshore wind turbines"
Lindeberg, Eivind. "Optimal Control of Floating Offshore Wind Turbines". Thesis, Norwegian University of Science and Technology, Department of Engineering Cybernetics, 2009. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-9933.
Texto completoFloating Offshore Wind Power is an emerging and promising technology that is particularly interesting from a Norwegian point of view because of our long and windy coast. There are however still several remaining challenges with this technology and one of them is a possible stability problem due to positive feedback from tilt motion of the turbine tower. The focus of this report is to develope a simulator for a floating offshore wind turbine that includes individual, vibrating blades. Several controllers are developed, aiming to use the blade pitch angle and the generator power to control the turbine speed and output power, while at the same time limit the low-frequent motions of the tower and the high-frequent motions of the turbine blades. The prime effort is placed on developing a solution using Model Predictive Control(MPC). On the issue of blade vibrations no great progress has been made. It is not possible to conclude from the simulation results that the designed controllers are able to reduce the blade vibrations. However, the MPC controller works very well for the entire operating range of the turbine. A "fuzzy"-inspired switching algorithm is developed and this handles the transitions between the different operating ranges of the turbine convincingly. The problem of positive feedback from the tower motion is handled well, and the simulations do not indicate that this issue should jeopardize the viability of floating offshore wind turbines.
Naqvi, Syed Kazim. "Scale Model Experiments on Floating Offshore Wind Turbines". Digital WPI, 2012. https://digitalcommons.wpi.edu/etd-theses/1196.
Texto completoHenderson, Andrew Raphael. "Analysis tools for large floating offshore wind farms". Thesis, University of London, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.341705.
Texto completoPolverini, Silvia. "Analysis and control of floating offshore wind turbines". Master's thesis, Alma Mater Studiorum - Università di Bologna, 2017. http://amslaurea.unibo.it/13883/.
Texto completoAhmadi, Mehran. "Analysis and Study of Floating Offshore Wind Turbines". University of Toledo / OhioLINK, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=toledo1376643304.
Texto completoSönmez, Nurcan. "Investigating Wind Data and Configuration of Wind Turbines for a Turning Floating Platform". Thesis, KTH, Mekanik, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-148957.
Texto completoProskovics, Roberts. "Dynamic response of spar-type offshore floating wind turbines". Thesis, University of Strathclyde, 2015. http://oleg.lib.strath.ac.uk:80/R/?func=dbin-jump-full&object_id=26017.
Texto completoNematbakhsh, Ali. "A Nonlinear Computational Model of Floating Wind Turbines". Digital WPI, 2013. https://digitalcommons.wpi.edu/etd-dissertations/170.
Texto completoHomer, Jeffrey R. "Physics-based control-oriented modelling for floating offshore wind turbines". Thesis, University of British Columbia, 2015. http://hdl.handle.net/2429/54891.
Texto completoApplied Science, Faculty of
Mechanical Engineering, Department of
Graduate
Castillo, Florian Thierry Stephan. "Floating Offshore Wind Turbines : Mooring System Optimization for LCOE Reduction". Thesis, KTH, Skolan för industriell teknik och management (ITM), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-284565.
Texto completoHavsbaserad vindkraft har en stor potential när det gäller elproduktion och intresset för dess utveckling växer enormt för att kunna möjliggöra en enorm expansion av ren förnyelsebar energiproduktion. Samtidigt som havsbaserade vindturbiner stöter på tuffa miljöförhållanden och möter utmaningar vid utbyggnad och underhåll, de jämna och pålitliga vindresurserna till havs är en stor fördel som kan tas tillvara. Ju längre fjärran från kusten desto högre och mer regelbundna vindhastigheterna blir jämfört med vindkraftverk på land, samtidigt som havsgrunden blir djupare och svårare för turbinbyggnad. Flytande havsbaserade vindkraftverk (Floating Offshore Wind Turbines, FOWT) i djupa vatten ger möjlighet att öka tillgängligheten och frigöra en enorm resursbas genom kostnadseffektiva lösningar längre ut till havs. De tillhörande kostnaderna är dock fortfarande relativt höga jämfört med andra energikällor. Dessa kostnader kan minskas genom vidareutvecklingen av tekniska genombrott och förbättrade designprocesser. Examensarbetet härmed är en del av H2020 EU-projektet COREWIND, som syftar till att minska FOWT-kostnaderna genom optimering av förtöjningssystemstekniken och genom införandet av dynamiska förtöjningslösningar. I synnerhet, det huvudsakliga målet för denna studie är att utveckla ett optimeringsverktyg för design av kostnadseffektiva och pålitliga ankarsystem för flytande havsbaserade vindkraftverk. Studiens omfattning inkluderar utvecklingen av en optimeringsstrategi som involverar Isight – en mjukvara från Dassault Systems som använts för analysen. Arbetet involverar också OrcaFlex, en programvara för finite element analys som utvecklats av Orcina, tillämpad i dynamiska analysmetoder. En Python-baserad kod skapades för att förverkliga kopplingen mellan de två programvaruverktygen. OrcaFlex-simuleringsmodeller byggdes för två testfall, validering av dessa modeller utfördes baserat på resultat erhållna med hjälp av FAST. Slutligen presenteras och analyseras resultat som erhållits för en fallstudie med en flottör och en särskild position för COREWIND-projektet. Fallstudien involverar utvecklingen av ett förtöjningssystem med det härmed validerade optimeringsverktyget; och testar dess integritet i kritiska belastningsförhållanden. Arbetet har visat hur ett optimeringsverktyg kan konstrueras och tillämpas för att förbättra designprocessen och minska kostnaderna.
Libros sobre el tema "Floating offshore wind turbines"
Robertson, Amy N. Loads analysis of several offshore floating wind turbine concepts. Golden, CO: National Renewable Energy Laboratory, U.S. Dept. of Energy, Office of Energy Efficienty and Renewable Energy, 2011.
Buscar texto completoNational Renewable Energy Laboratory (U.S.), ed. Challenges in simulation of aerodynamics, hydrodynamics, and mooring-line dynamics of floating offshore wind turbines. Golden, CO: National Renewable Energy Laboratory, U.S. Dept. of Energy, Office of Energy Efficiency and Renewable Energy, 2011.
Buscar texto completoMasciola, Marco. Investigation of a FAST-OrcaFlex coupling module for integrating turbine and mooring dynamics of offshore floating wind turbines: Preprint. Golden, CO: National Renewable Energy Laboratory, U.S. Dept. of Energy, Office of Energy Efficiency and Renewable Energy, 2011.
Buscar texto completoNational Renewable Energy Laboratory (U.S.), ed. Offshore code comparison collaboration, continuation phase II: Results of a floating semisubmersible wind system : preprint. Golden, CO: National Renewable Energy Laboratory, 2012.
Buscar texto completoNational Renewable Energy Laboratory (U.S.), ed. Model development and loads analysis of an offshore wind turbine on a tension leg platform with a comparison to other floating turbine concepts: April 2009. Golden, Colo: National Renewable Energy Laboratory, U.S. Dept. of Energy, Office of Energy Efficiency & Renewable Energy, 2010.
Buscar texto completoCastro-Santos, Laura y Vicente Diaz-Casas, eds. Floating Offshore Wind Farms. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-27972-5.
Texto completoCruz, Joao y Mairead Atcheson, eds. Floating Offshore Wind Energy. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-29398-1.
Texto completoFerrer, Esteban y Adeline Montlaur, eds. CFD for Wind and Tidal Offshore Turbines. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-16202-7.
Texto completoOffshore wind: A comprehensive guide to successful offshore wind farm installation. Waltham. MA: Elsevier/Academic Press, 2012.
Buscar texto completoLesny, Kerstin. Foundations for offshore wind turbines: Tools for planning and design. Essen: VGE Verlag GmbH, 2010.
Buscar texto completoCapítulos de libros sobre el tema "Floating offshore wind turbines"
Karimirad, Madjid. "Floating Offshore Wind Turbines". En Offshore Energy Structures, 53–76. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-12175-8_4.
Texto completoSantos, Fernando P., Ângelo P. Teixeira y Carlos Guedes Soares. "Operation and Maintenance of Floating Offshore Wind Turbines". En Floating Offshore Wind Farms, 181–93. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-27972-5_10.
Texto completoJiang, Zhiyu, Xiangqian Zhu y Weifei Hu. "Modeling and Analysis of Offshore Floating Wind Turbines". En Advanced Wind Turbine Technology, 247–80. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-78166-2_9.
Texto completoUtsunomiya, T., I. Sato, T. Shiraishi, E. Inui y S. Ishida. "Floating Offshore Wind Turbine, Nagasaki, Japan". En Large Floating Structures, 129–55. Singapore: Springer Singapore, 2014. http://dx.doi.org/10.1007/978-981-287-137-4_6.
Texto completoLeimeister, Mareike. "Floating Offshore Wind Turbine Systems". En Reliability-Based Optimization of Floating Wind Turbine Support Structures, 45–68. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-96889-2_3.
Texto completoPeiffer, Antoine y Dominique Roddier. "Floating Wind Turbines: The New Wave in Offshore Wind Power". En Alternative Energy and Shale Gas Encyclopedia, 69–79. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2016. http://dx.doi.org/10.1002/9781119066354.ch6.
Texto completoBachynski, Erin E. "Fixed and Floating Offshore Wind Turbine Support Structures". En Offshore Wind Energy Technology, 103–42. Chichester, UK: John Wiley & Sons, Ltd, 2018. http://dx.doi.org/10.1002/9781119097808.ch4.
Texto completoUtsunomiya, Tomoaki, Iku Sato y Takashi Shiraishi. "Floating Offshore Wind Turbines in Goto Islands, Nagasaki, Japan". En Lecture Notes in Civil Engineering, 103–13. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-5144-4_6.
Texto completoUtsunomiya, Tomoaki, Iku Sato y Takashi Shiraishi. "Floating Offshore Wind Turbines in Goto Islands, Nagasaki, Japan". En Lecture Notes in Civil Engineering, 359–72. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-8743-2_20.
Texto completoChen, Jianbing, Yupeng Song y Jie Li. "Structural Global Reliability Analysis of Floating Offshore Wind Turbines". En Handbook of Smart Energy Systems, 1–24. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-72322-4_91-1.
Texto completoActas de conferencias sobre el tema "Floating offshore wind turbines"
Bosch, C. "Machine Learning for Wind Turbine Fault Prediction through the Combination of Datasets from Same Type Turbines". En Floating Offshore Energy Devices. Materials Research Forum LLC, 2022. http://dx.doi.org/10.21741/9781644901731-7.
Texto completoDao, P. B. "Cointegration Modelling for Health and Condition Monitoring of Wind Turbines - An Overview". En Floating Offshore Energy Devices. Materials Research Forum LLC, 2022. http://dx.doi.org/10.21741/9781644901731-2.
Texto completoJodha, Shweta, Vibha Dinesh Sharma y Arundhathi Arul. "Review on Floating Offshore Wind Turbines". En Offshore Technology Conference Asia. OTC, 2022. http://dx.doi.org/10.4043/31391-ms.
Texto completoPeña-Sanchez, Y. "Frequency-Domain Identification of Radiation Forces for Floating Wind Turbines by Moment-Matching". En Floating Offshore Energy Devices. Materials Research Forum LLC, 2022. http://dx.doi.org/10.21741/9781644901731-9.
Texto completoBoutrot, Jonathan y Aude Leblanc. "Certification Scheme for Offshore Floating Wind Turbines". En ASME 2018 1st International Offshore Wind Technical Conference. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/iowtc2018-1011.
Texto completoThys, Maxime, Alessandro Fontanella, Federico Taruffi, Marco Belloli y Petter Andreas Berthelsen. "Hybrid Model Tests for Floating Offshore Wind Turbines". En ASME 2019 2nd International Offshore Wind Technical Conference. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/iowtc2019-7575.
Texto completoSebastian, Thomas y Matthew Lackner. "Offshore Floating Wind Turbines - An Aerodynamic Perspective". En 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2011. http://dx.doi.org/10.2514/6.2011-720.
Texto completoChen, Xiaohong y Qing Yu. "Design Requirements for Floating Offshore Wind Turbines". En ASME 2013 32nd International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/omae2013-11365.
Texto completoHopstad, Anne Lene Haukanes, Kimon Argyriadis, Andreas Manjock, Jarett Goldsmith y Knut O. Ronold. "DNV GL Standard for Floating Wind Turbines". En ASME 2018 1st International Offshore Wind Technical Conference. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/iowtc2018-1035.
Texto completoJeon, Minu, Seunghoon Lee y Soogab Lee. "Wake Influence on Dynamic Characteristics of Offshore Floating Wind Turbines". En 33rd Wind Energy Symposium. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2015. http://dx.doi.org/10.2514/6.2015-1203.
Texto completoInformes sobre el tema "Floating offshore wind turbines"
Jonkman, Jason, Alan D. Wright, Gregory Hayman y Amy N. Robertson. Full-System Linearization for Floating Offshore Wind Turbines in OpenFAST: Preprint. Office of Scientific and Technical Information (OSTI), diciembre de 2018. http://dx.doi.org/10.2172/1489323.
Texto completoGriffith, D. Todd, Matthew F. Barone, Joshua Paquette, Brian Christopher Owens, Diana L. Bull, Carlos Simao-Ferriera, Andrew Goupee y Matt Fowler. Design Studies for Deep-Water Floating Offshore Vertical Axis Wind Turbines. Office of Scientific and Technical Information (OSTI), junio de 2018. http://dx.doi.org/10.2172/1459118.
Texto completoEnnis, Brandon Lee y D. Todd Griffith. System Levelized Cost of Energy Analysis for Floating Offshore Vertical-Axis Wind Turbines. Office of Scientific and Technical Information (OSTI), agosto de 2018. http://dx.doi.org/10.2172/1466530.
Texto completoWang, Wei, Michael Brown, Matteo Ciantia y Yaseen Sharif. DEM simulation of cyclic tests on an offshore screw pile for floating wind. University of Dundee, diciembre de 2021. http://dx.doi.org/10.20933/100001231.
Texto completoBranlard, Emmanuel, Matthew Hall, Andrew Platt, Amy Robertson, Greg Hayman y Jason Jonkman. Implementation of Substructure Flexibility and Member-Level Load Capabilities for Floating Offshore Wind Turbines in OpenFAST. Office of Scientific and Technical Information (OSTI), agosto de 2020. http://dx.doi.org/10.2172/1665796.
Texto completoRoald, L., J. Jonkman y A. Robertson. Effect of Second-Order Hydrodynamics on a Floating Offshore Wind Turbine. Office of Scientific and Technical Information (OSTI), mayo de 2014. http://dx.doi.org/10.2172/1132170.
Texto completoJonkman, J. M. Dynamics Modeling and Loads Analysis of an Offshore Floating Wind Turbine. Office of Scientific and Technical Information (OSTI), diciembre de 2007. http://dx.doi.org/10.2172/921803.
Texto completoGevorgian, Vahan. Grid Simulator for Testing a Wind Turbine on Offshore Floating Platform. Office of Scientific and Technical Information (OSTI), febrero de 2012. http://dx.doi.org/10.2172/1036049.
Texto completoBull, Diana L., Matthew Fowler y Andrew Goupee. A Comparison of Platform Options for Deep-water Floating Offshore Vertical Axis Wind Turbines: An Initial Study. Office of Scientific and Technical Information (OSTI), agosto de 2014. http://dx.doi.org/10.2172/1150233.
Texto completoKim, MooHyun. Development of mooring-anchor program in public domain for coupling with floater program for FOWTs (Floating Offshore Wind Turbines). Office of Scientific and Technical Information (OSTI), agosto de 2014. http://dx.doi.org/10.2172/1178273.
Texto completo