Artículos de revistas sobre el tema "Floating Gate Memory"

Siga este enlace para ver otros tipos de publicaciones sobre el tema: Floating Gate Memory.

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "Floating Gate Memory".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.

1

Rajput, Renu y Rakesh Vaid. "Flash memory devices with metal floating gate/metal nanocrystals as the charge storage layer: A status review". Facta universitatis - series: Electronics and Energetics 33, n.º 2 (2020): 155–67. http://dx.doi.org/10.2298/fuee2002155r.

Texto completo
Resumen
Traditional flash memory devices consist of Polysilicon Control Gate (CG) - Oxide-Nitride-Oxide (ONO - Interpoly Dielectric) - Polysilicon Floating Gate (FG) - Silicon Oxide (Tunnel dielectric) - Substrate. The dielectrics have to be scaled down considerably in order to meet the escalating demand for lower write/erase voltages and higher density of cells. But as the floating gate dimensions are scaled down the charge stored in the floating gate leak out more easily via thin tunneling oxide below the floating gate which causes serious reliability issues and the whole amount of stored charge carrying information can be lost. The possible route to eliminate this problem is to use high-k based interpoly dielectric and to replace the polysilicon floating gate with a metal floating gate. At larger physical thickness, these materials have similar capacitance value hence avoiding tunneling effect. Discrete nanocrystal memory has also been proposed to solve this problem. Due to its high operation speed, excellent scalability and higher reliability it has been shown as a promising candidate for future non-volatile memory applications. This review paper focuses on the recent efforts and research activities related to the fabrication and characterization of non-volatile memory device with metal floating gate/metal nanocrystals as the charge storage layer.
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Li, Bei, Jianlin Liu, G. F. Liu y J. A. Yarmoff. "Ge∕Si heteronanocrystal floating gate memory". Applied Physics Letters 91, n.º 13 (24 de septiembre de 2007): 132107. http://dx.doi.org/10.1063/1.2793687.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Al-shawi, Amjad, Maysoon Alias, Paul Sayers y Mohammed Fadhil Mabrook. "Improved Memory Properties of Graphene Oxide-Based Organic Memory Transistors". Micromachines 10, n.º 10 (25 de septiembre de 2019): 643. http://dx.doi.org/10.3390/mi10100643.

Texto completo
Resumen
To investigate the behaviour of the organic memory transistors, graphene oxide (GO) was utilized as the floating gate in 6,13-Bis(triisopropylsilylethynyl)pentacene (TIPS-pentacene)-based organic memory transistors. A cross-linked, off-centre spin-coated and ozone-treated poly(methyl methacrylate) (cPMMA) was used as the insulating layer. High mobility and negligible hysteresis with very clear transistor behaviour were observed for the control transistors. On the other hand, memory transistors exhibited clear large hysteresis which is increased with increasing programming voltage. The shifts in the threshold voltage of the transfer characteristics as well as the hysteresis in the output characteristics were attributed to the charging and discharging of the floating gate. The counter-clockwise direction of hysteresis indicates that the process of charging and discharging the floating gate take place through the semiconductor/insulator interface. A clear shift in the threshold voltage was observed when different voltage pulses were applied to the gate. The non-volatile behaviour of the memory transistors was investigated in terms of charge retention. The memory transistors exhibited a large memory window (~30 V), and high charge density of (9.15 × 1011 cm−2).
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Noor, Fatimah Arofiati, Gilang Mardian Kartiwa y Muhammad Amin Sulthoni. "Studi Elektrostatik Elektroda Runcing dan Aplikasinya pada Perangkat Floating Gate Memory". POSITRON 11, n.º 1 (15 de octubre de 2021): 1. http://dx.doi.org/10.26418/positron.v11i1.44881.

Texto completo
Resumen
Pada penelitian ini, potensial elektrostatik dari struktur floating gate runcing dalam sel memori split gate dipelajari secara analitik dan numerik. Penelitian ini bertujuan memberikan pendekatan sederhana untuk mempelajari diagram pita energi pada perangkat memori. Diagram energi yang dihasilkan dapat digunakan untuk mempelajari transmitansi elektron dan rapat arus terobosan. Pada studi ini, floating gate runcing dimodelkan sebagai elektroda berbentuk segitiga. Profil potensial elektrostatik elektroda segitiga ini dihitung secara analitik dengan menyelesaikan nilai batas dari persamaan Laplace dalam koordinat polar. Profil potensial dari perhitungan analitik ini lalu dibandingkan dengan profil potensial dari simulasi numerik. Dari hasil perhitungan diperoleh bahwa profil diagram energi yang dihitung secara analitik cukup sesuai dengan yang diperoleh dari simulasi numerik. Adapun terdapat sedikit perbedaan antara profil diagram pita analitik dan numerik dikarenakan elektroda segitiga diasumsikan terbuat dari logam sehingga pembentukan sumur kuantum pada permukaan floating gate diabaikan. Dari hasil permodelan analitik diperoleh bahwa sumur kuantum yang terbentuk pada tegangan sekitar 10 V (sesuai dengan tegangan hapus perangkat memori flash) adalah cukup dangkal, sehingga profil potensial yang terbentuk menjadi sangat mendekati hasil simulasi numerik. Dari hasil perhitungan diperoleh pula bahwa rapat arus terobosan yang dihitung menggunakan model kami memberikan hasil yang sangat dekat dengan hasil perhitungan dari model injektor silinder yang digunakan oleh peneliti dari Silicon Storage Technology (SST) sebagai produsen produk flash memory dengan floating gate berbentuk runcing.
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Lingalugari, Murali, Evan Heller, Barath Parthasarathy, John Chandy y Faquir Jain. "Quantum Dot Floating Gate Nonvolatile Random Access Memory Using Ge Quantum Dot Channel for Faster Erasing". International Journal of High Speed Electronics and Systems 27, n.º 01n02 (marzo de 2018): 1840006. http://dx.doi.org/10.1142/s0129156418400062.

Texto completo
Resumen
This paper presents an approach to enhance floating gate quantum dot nonvolatile random access memory (QDNVRAM) cells in terms of higher-speed and lower-voltage Erase not possible with conventional floating gate nonvolatile memories. It is achieved by directly accessing the floating gate layer with a Ge quantum dot access channel via an additional drain (D2) during the Erase and/or Write operation. Quantum mechanical simulations in GeOx-cladded Ge quantum dot layers functioning as the floating gate as well access channel to facilitate Erase and Write are presented. Experimental data on fabricated long channel nonvolatile random access memory cell with SiOx-cladded Si dots is presented. Quantum simulations show lower voltage operation for GeOx-cladded Ge QD floating gate than SiOx-cladded Si dots. The Erase time is orders of magnitude faster than flash and is comparable to competing NVRAMs.
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Zhang, Pengfei, Dong Li, Mingyuan Chen, Qijun Zong, Jun Shen, Dongyun Wan, Jingtao Zhu y Zengxing Zhang. "Floating-gate controlled programmable non-volatile black phosphorus PNP junction memory". Nanoscale 10, n.º 7 (2018): 3148–52. http://dx.doi.org/10.1039/c7nr08515j.

Texto completo
Resumen
By designing and tailoring the structure of the floating gate, a special floating-gate field-effect transistor configuration has been proposed for the design of programmable non-volatile black phosphorus PNP junction memory.
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Lee, Boong-Joo. "Operating characteristics of Floating Gate Organic Memory". Journal of the Korea Academia-Industrial cooperation Society 15, n.º 8 (31 de agosto de 2014): 5213–18. http://dx.doi.org/10.5762/kais.2014.15.8.5213.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Park, Byoungjun, Kyoungah Cho, Sungsu Kim y Sangsig Kim. "Transparent nano-floating gate memory on glass". Nanotechnology 21, n.º 33 (26 de julio de 2010): 335201. http://dx.doi.org/10.1088/0957-4484/21/33/335201.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Cellere, G., P. Pellati, A. Chimenton, J. Wyss, A. Modelli, L. Larcher y A. Paccagnella. "Radiation effects on floating-gate memory cells". IEEE Transactions on Nuclear Science 48, n.º 6 (2001): 2222–28. http://dx.doi.org/10.1109/23.983199.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Lee, Jang-Sik. "Review paper: Nano-floating gate memory devices". Electronic Materials Letters 7, n.º 3 (septiembre de 2011): 175–83. http://dx.doi.org/10.1007/s13391-011-0901-5.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
11

Jang, Sukjae, Euyheon Hwang, Jung Heon Lee, Ho Seok Park y Jeong Ho Cho. "Graphene-Graphene Oxide Floating Gate Transistor Memory". Small 11, n.º 3 (28 de agosto de 2014): 311–18. http://dx.doi.org/10.1002/smll.201401017.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
12

Nagashio, Kosuke. "(Invited, Digital Presentation) 50 Ns Ultrafast Memory Operation in 2D Heterostructured Non-Volatile Memory Device". ECS Meeting Abstracts MA2022-01, n.º 10 (7 de julio de 2022): 785. http://dx.doi.org/10.1149/ma2022-0110785mtgabs.

Texto completo
Resumen
2D heterostructures have been extensively investigated as next-generation non-volatile memory (NVM) devices. In the last decade, drastic performance improvements and further advanced functionalities have been demonstrated. However, this progress is not sufficiently supported by the understanding of their operations, obscuring the material and device structure design policy. Here, detailed operation mechanisms are elucidated by exploiting the floating gate voltage (V FG) trajectory measurements [1,2]. Systematic comparisons of MoTe2, WSe2, and MoS2 channel devices revealed that the tunneling behavior between the channel and FG is controlled by three kinds of current-limiting paths, i.e., tunneling barrier, 2D/metal contact, and pn junction in the channel. Based on the understanding of the memory operation mechanism through the V FG trajectory measurement, we propose the best all 2D NVM device structure with a direct tunneling path between source/drain electrodes and floating gate for ultrafast memory operation. Indeed, a 50 ns program/erase operation is successfully achieved [3]. Moreover, we examined the dielectric breakdown strength (E BD) of h-BN under short voltage pulses for the origin for this ultrafast operation, because a high dielectric breakdown strength allows a large tunneling current. Surprisingly, an E BD = 26.1 MV/cm for h-BN is realized under short voltage pulses, largely exceeding the E BD = ~12 MV/cm from the DC measurement. This suggests that the high E BD of h-BN can be the physical origin of the ultrafast operations. In this talk, I would like to discuss the future perspective of 2D NVM application. [1] T. Sasaki, KN, et al., "Understanding the Memory Window Overestimation of 2D Materials Based Floating Gate Type Memory Devices by Measuring Floating Gate Voltage", Small, 2020, 16, 2004907. [2] T. Sasaki, KN, et al., "Material and Device Structure Designs for 2D Memory Devices Based on the Floating Gate Voltage Trajectory", ACS nano, 2021, 15, 6658. [3] T. Sasaki, KN, et al., "Ultrafast Operation of All 2D-Heterostructured Nonvolatile Memory Devices Provided by the Strong Short-Time Dielectric Breakdown Strength of h-BN", Adv. Funct. Mater. (under revision).
Los estilos APA, Harvard, Vancouver, ISO, etc.
13

Chen, Yi-Yueh, Feng-Ming Lee, Yu-Yu Lin, Chih-Hsiung Lee, Wei-Chen Chen, Che-Kai Shu, Su-Jien Lin, Shou-Yi Chang y Chih-Yuan Lu. "New n-p Junction Floating Gate to Enhance the Operation Performance of a Semiconductor Memory Device". Materials 15, n.º 10 (19 de mayo de 2022): 3640. http://dx.doi.org/10.3390/ma15103640.

Texto completo
Resumen
To lower the charge leakage of a floating gate device and improve the operation performance of memory devices toward a smaller structure size and a higher component capability, two new types of floating gates composed of pn-type polysilicon or np-type polysilicon were developed in this study. Their microstructure and elemental compositions were investigated, and the sheet resistance, threshold voltages and erasing voltages were measured. The experimental results and charge simulation indicated that, by forming an n-p junction in the floating gate, the sheet resistance was increased, and the charge leakage was reduced because of the formation of a carrier depletion zone at the junction interface serving as an intrinsic potential barrier. Additionally, the threshold voltage and erasing voltage of the np-type floating gate were elevated, suggesting that the performance of the floating gate in the operation of memory devices can be effectively improved without the application of new materials or changes to the physical structure.
Los estilos APA, Harvard, Vancouver, ISO, etc.
14

Sasaki, Taro, Keiji Ueno, Takashi Taniguchi, Kenji Watanabe, Tomonori Nishimura y Kosuke Nagashio. "Understanding the Memory Window Overestimation of 2D Materials Based Floating Gate Type Memory Devices by Measuring Floating Gate Voltage". Small 16, n.º 47 (noviembre de 2020): 2004907. http://dx.doi.org/10.1002/smll.202004907.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
15

Pei, Yan Li, Tatsuro Hiraki, Toshiya Kojima, Takafumi Fukushima, Mitsumasa Koyanagi y Tetsu Tanaka. "Energy Band Engineering of Metal Nanodots for High Performance Nonvolatile Memory Application". Key Engineering Materials 470 (febrero de 2011): 140–45. http://dx.doi.org/10.4028/www.scientific.net/kem.470.140.

Texto completo
Resumen
In this work, high density and small size metal nanodots (MND) with different work-functions were fabricated as a floating gate of nonvolatile memory (NVM) devices by self-assembled nanodot deposition (SAND). The energy band engineering of NVM was demonstrated through controlling MND work-function. For single MND layer floating gate NVM, the retention time was improved by choosing high work-function MND. Furthermore, we proposed a new type NVM with a double stacked MND floating gate. Here, the high work-function MND are placed on the top layer and the low work-function MND are placed on the bottom layer. A large memory window and long retention time were obtained. However, the thermal electron excitation is dominant for the electron discharge process during retention. How to reduce the defects in MND layer is important for further improving of memory characteristics.
Los estilos APA, Harvard, Vancouver, ISO, etc.
16

Jang, Sukjae, Euyheon Hwang y Jeong Ho Cho. "Graphene nano-floating gate transistor memory on plastic". Nanoscale 6, n.º 24 (2014): 15286–92. http://dx.doi.org/10.1039/c4nr04117h.

Texto completo
Resumen
A transparent flexible graphene nano-floating gate transistor memory (NFGTM) device was developed by combining a single-layered graphene active channel with gold nanoparticle (AuNP) charge trap elements.
Los estilos APA, Harvard, Vancouver, ISO, etc.
17

Chen, C. D., Y. Nakamura y J. S. Tsai. "Aluminum single-electron nonvolatile floating gate memory cell". Applied Physics Letters 71, n.º 14 (6 de octubre de 1997): 2038–40. http://dx.doi.org/10.1063/1.119780.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
18

Snyder, E. S., P. J. McWhorter, T. A. Dellin y J. D. Sweetman. "Radiation response of floating gate EEPROM memory cells". IEEE Transactions on Nuclear Science 36, n.º 6 (1989): 2131–39. http://dx.doi.org/10.1109/23.45415.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
19

Hasaneen, El-Sayed, E. Heller, R. Bansal, W. Huang y F. Jain. "Modeling of nonvolatile floating gate quantum dot memory". Solid-State Electronics 48, n.º 10-11 (octubre de 2004): 2055–59. http://dx.doi.org/10.1016/j.sse.2004.05.073.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
20

Martins, Rodrigo, P. Barquinha, L. Pereira, N. Correia, G. Gonçalves, I. Ferreira y E. Fortunato. "Selective floating gate non-volatile paper memory transistor". physica status solidi (RRL) - Rapid Research Letters 3, n.º 9 (9 de octubre de 2009): 308–10. http://dx.doi.org/10.1002/pssr.200903268.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
21

Wang, Shuopei, Congli He, Jian Tang, Xiaobo Lu, Cheng Shen, Hua Yu, Luojun Du et al. "New Floating Gate Memory with Excellent Retention Characteristics". Advanced Electronic Materials 5, n.º 4 (18 de enero de 2019): 1800726. http://dx.doi.org/10.1002/aelm.201800726.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
22

Sun, Sheng y Shengdong Zhang. "Nanoparticle floating-gate transistor memory based on solution-processed ambipolar organic semiconductor". E3S Web of Conferences 185 (2020): 04071. http://dx.doi.org/10.1051/e3sconf/202018504071.

Texto completo
Resumen
Organic thin-film transistor memory based on nano-floating-gate nonvolatile memory was demonstrated by a simple method. The gold nanoparticle that fabricated by thermally evaporated acted as the floating gate. Spin coated PMMA film acted as the tunneling layer. A solution-processed ambipolar semiconductor acted as the active layer. Because of the existence of both hole and electron carriers in bipolar semiconductor materials, it is more conducive to the editing and erasing of memories under positive and negative pressure. The memory based on metal nanoparticles and organic bipolar semiconductor shows good read-write function.
Los estilos APA, Harvard, Vancouver, ISO, etc.
23

Dolicanin, Edin. "Gamma ray effects on flash memory cell arrays". Nuclear Technology and Radiation Protection 27, n.º 3 (2012): 284–89. http://dx.doi.org/10.2298/ntrp1203284d.

Texto completo
Resumen
Information stored in flash memories is physically represented by the absence or presence of charge on electrically isolated floating gates. Interaction of gamma rays with the insulators surrounding the floating gate produces effects that degrade the properties of memory cells, possibly leading to the corruption of the stored content. The cumulative nature of these effects is expressed through the total ionizing dose deposited by the gamma rays in the insulators surrounding the floating gate. Relying on both theory and experiment, we examine how the properties of cells in commercially available flash memories affect their sensitivity to gamma rays. Memory samples from several manufacturers, currently available on the market, can be compared with respect to data retention under gamma ray exposure.
Los estilos APA, Harvard, Vancouver, ISO, etc.
24

Gan, Lu-Rong, Ya-Rong Wang, Lin Chen, Hao Zhu y Qing-Qing Sun. "A Floating Gate Memory with U-Shape Recessed Channel for Neuromorphic Computing and MCU Applications". Micromachines 10, n.º 9 (23 de agosto de 2019): 558. http://dx.doi.org/10.3390/mi10090558.

Texto completo
Resumen
We have simulated a U-shape recessed channel floating gate memory by Sentaurus TCAD tools. Since the floating gate (FG) is vertically placed between source (S) and drain (D), and control gate (CG) and HfO2 high-k dielectric extend above source and drain, the integrated density can be well improved, while the erasing and programming speed of the device are respectively decreased to 75 ns and 50 ns. In addition, comprehensive synaptic abilities including long-term potentiation (LTP) and long-term depression (LTD) are demonstrated in our U-shape recessed channel FG memory, highly resembling the biological synapses. These simulation results show that our device has the potential to be well used as embedded memory in neuromorphic computing and MCU (Micro Controller Unit) applications.
Los estilos APA, Harvard, Vancouver, ISO, etc.
25

Jang, Sukjae, Euyheon Hwang, Jung Heon Lee, Ho Seok Park y Jeong Ho Cho. "Memory: Graphene-Graphene Oxide Floating Gate Transistor Memory (Small 3/2015)". Small 11, n.º 3 (enero de 2015): 261. http://dx.doi.org/10.1002/smll.201570014.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
26

ZHANG, YUEGANG. "CARBON NANOTUBE BASED NONVOLATILE MEMORY DEVICES". International Journal of High Speed Electronics and Systems 16, n.º 04 (diciembre de 2006): 959–75. http://dx.doi.org/10.1142/s0129156406004107.

Texto completo
Resumen
The technology progress and increasing high density demand have driven the nonvolatile memory devices into nanometer scale region. There is an urgent need of new materials to address the high programming voltage and current leakage problems in the current flash memory devices. As one of the most important nanomaterials with excellent mechanical and electronic properties, carbon nanotube has been explored for various nonvolatile memory applications. While earlier proposals of "bucky shuttle" memories and nanoelectromechanical memories remain as concepts due to fabrication difficulty, recent studies have experimentally demonstrated various prototypes of nonvolatile memory cells based on nanotube field-effect-transistor and discrete charge storage bits, which include nano-floating gate memory cells using metal nanocrystals, oxide-nitride-oxide memory stack, and more simpler trap-in-oxide memory devices. Despite of the very limited research results, distinct advantages of high charging efficiency at low operation voltage has been demonstrated. Single-electron charging effect has been observed in the nanotube memory device with quantum dot floating gates. The good memory performance even with primitive memory cells is attributed to the excellent electrostatic coupling of the unique one-dimensional nanotube channel with the floating gate and the control gate, which gives extraordinary charge sensibility and high current injection efficiency. Further improvement is expected on the retention time at room temperature and programming speed if the most advanced fabrication technology were used to make the nanotube based memory cells.
Los estilos APA, Harvard, Vancouver, ISO, etc.
27

Gong, Liang, Rui Ming Li, Qi Xiong y Shao Hua Zhou. "The Equivalent Circuit Model of Floating-Gate Single-Electron Memorizer". Applied Mechanics and Materials 416-417 (septiembre de 2013): 1721–25. http://dx.doi.org/10.4028/www.scientific.net/amm.416-417.1721.

Texto completo
Resumen
Based on the introduction of floating-gate silicon quantum dot single-electron memorizers structure and working principle, this paper builds corresponding lumping current and capacitance model to calculate the current with memory in the circumstance of linearity, saturation and sub-threshold. Taking advantage of the single-electron devices Threshold Voltage Shift educes different storage condition of nanostorage with different threshold voltage. The simulation shows, this model can precisely simulate memorys read and write state.
Los estilos APA, Harvard, Vancouver, ISO, etc.
28

Hu, Hongsheng, Zhongyuan Ma, Xinyue Yu, Tong Chen, Chengfeng Zhou, Wei Li, Kunji Chen, Jun Xu y Ling Xu. "Controlling the Carrier Injection Efficiency in 3D Nanocrystalline Silicon Floating Gate Memory by Novel Design of Control Layer". Nanomaterials 13, n.º 6 (7 de marzo de 2023): 962. http://dx.doi.org/10.3390/nano13060962.

Texto completo
Resumen
Three-dimensional NAND flash memory with high carrier injection efficiency has been of great interest to computing in memory for its stronger capability to deal with big data than that of conventional von Neumann architecture. Here, we first report the carrier injection efficiency of 3D NAND flash memory based on a nanocrystalline silicon floating gate, which can be controlled by a novel design of the control layer. The carrier injection efficiency in nanocrystalline Si can be monitored by the capacitance–voltage (C–V) hysteresis direction of an nc-Si floating-gate MOS structure. When the control layer thickness of the nanocrystalline silicon floating gate is 25 nm, the C–V hysteresis always maintains the counterclockwise direction under different step sizes of scanning bias. In contrast, the direction of the C–V hysteresis can be changed from counterclockwise to clockwise when the thickness of the control barrier is reduced to 22 nm. The clockwise direction of the C–V curve is due to the carrier injection from the top electrode into the defect state of the SiNx control layer. Our discovery illustrates that the thicker SiNx control layer can block the transfer of carriers from the top electrode to the SiNx, thereby improving the carrier injection efficiency from the Si substrate to the nc-Si layer. The relationship between the carrier injection and the C–V hysteresis direction is further revealed by using the energy band model, thus explaining the transition mechanism of the C–V hysteresis direction. Our report is conducive to optimizing the performance of 3D NAND flash memory based on an nc-Si floating gate, which will be better used in the field of in-memory computing.
Los estilos APA, Harvard, Vancouver, ISO, etc.
29

Chen, Hongye, Ye Zhou y Su‐Ting Han. "Recent advances in metal nanoparticle‐based floating gate memory". Nano Select 2, n.º 7 (29 de enero de 2021): 1245–65. http://dx.doi.org/10.1002/nano.202000268.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
30

Jiyan Y. Dai y Pui-Fai Lee. "Recent Patents in Semiconductor Nanocluster Floating Gate Flash Memory". Recent Patents on Nanotechnology 1, n.º 2 (1 de junio de 2007): 91–97. http://dx.doi.org/10.2174/187221007780859636.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
31

Kim, H. S., B. J. Lee y P. K. Shin. "Floating Gate Organic Memory Device with Tunneling Layer's Thickness". Journal of the Korean Vacuum Society 21, n.º 6 (30 de noviembre de 2012): 354–61. http://dx.doi.org/10.5757/jkvs.2012.21.6.354.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
32

Li, Bei y Jianlin Liu. "Nonvolatile Memory With Ge/Si Heteronanocrystals as Floating Gate". IEEE Transactions on Nanotechnology 10, n.º 2 (marzo de 2011): 284–90. http://dx.doi.org/10.1109/tnano.2009.2039488.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
33

Chan, K. C., P. F. Lee y J. Y. Dai. "Mesoscopic phenomena in Au nanocrystal floating gate memory structure". Applied Physics Letters 95, n.º 11 (14 de septiembre de 2009): 113109. http://dx.doi.org/10.1063/1.3229885.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
34

Chen, F. Y., Y. K. Fang, M. J. Sun y Jiann‐Ruey Chen. "A nonvolatile ferroelectric memory device with a floating gate". Applied Physics Letters 69, n.º 21 (18 de noviembre de 1996): 3275–76. http://dx.doi.org/10.1063/1.118034.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
35

Bleiker, C. y H. Melchior. "A four-state EEPROM using floating-gate memory cells". IEEE Journal of Solid-State Circuits 22, n.º 3 (junio de 1987): 460–63. http://dx.doi.org/10.1109/jssc.1987.1052751.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
36

Yin, Cheng-Kuan, Ji-Chel Bea, Youn-Gi Hong, Takafumi Fukushima, Masanobu Miyao, Kenji Natori y Mitsumasa Koyanagi. "New Magnetic Flash Memory with FePt Magnetic Floating Gate". Japanese Journal of Applied Physics 45, n.º 4B (25 de abril de 2006): 3217–21. http://dx.doi.org/10.1143/jjap.45.3217.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
37

Wang, Wei, Jiawei Shi y Dongge Ma. "Organic Thin-Film Transistor Memory With Nanoparticle Floating Gate". IEEE Transactions on Electron Devices 56, n.º 5 (mayo de 2009): 1036–39. http://dx.doi.org/10.1109/ted.2009.2016031.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
38

Wang, Wei, Dongge Ma y Qiang Gao. "Organic thin-film transistor memory with Ag floating-gate". Microelectronic Engineering 91 (marzo de 2012): 9–13. http://dx.doi.org/10.1016/j.mee.2011.11.006.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
39

Carley, L. R. "Trimming analog circuits using floating-gate analog MOS memory". IEEE Journal of Solid-State Circuits 24, n.º 6 (1989): 1569–75. http://dx.doi.org/10.1109/4.44992.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
40

Yamauchi, Yoshimitsu, Yoshinari Kamakura y Toshimasa Matsuoka. "Scalable Virtual-Ground Multilevel-Cell Floating-Gate Flash Memory". IEEE Transactions on Electron Devices 60, n.º 8 (agosto de 2013): 2518–24. http://dx.doi.org/10.1109/ted.2013.2270565.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
41

Bagatin, Marta y Simone Gerardin. "Soft errors in floating gate memory cells: A review". Microelectronics Reliability 55, n.º 1 (enero de 2015): 24–30. http://dx.doi.org/10.1016/j.microrel.2014.10.016.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
42

Zhu, Yan, Dengtao Zhao, Ruigang Li y Jianlin Liu. "Threshold voltage shift of heteronanocrystal floating gate flash memory". Journal of Applied Physics 97, n.º 3 (febrero de 2005): 034309. http://dx.doi.org/10.1063/1.1847700.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
43

Kuruoğlu, Furkan, Murat Çalışkan, Merih Serin y Ayşe Erol. "Well-ordered nanoparticle arrays for floating gate memory applications". Nanotechnology 31, n.º 21 (9 de marzo de 2020): 215203. http://dx.doi.org/10.1088/1361-6528/ab7043.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
44

Cellere, G., L. Larcher, A. Paccagnella, A. Visconti y M. Bonanomi. "Radiation induced leakage current in floating gate memory cells". IEEE Transactions on Nuclear Science 52, n.º 6 (diciembre de 2005): 2144–52. http://dx.doi.org/10.1109/tns.2005.860725.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
45

Fujita, O. y Y. Amemiya. "A floating-gate analog memory device for neural networks". IEEE Transactions on Electron Devices 40, n.º 11 (1993): 2029–35. http://dx.doi.org/10.1109/16.239745.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
46

Makwana, J. J. y D. K. Schroder. "Nonvolatile floating-gate memory programming enhancement using well bias". IEEE Transactions on Electron Devices 53, n.º 2 (febrero de 2006): 258–62. http://dx.doi.org/10.1109/ted.2005.861723.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
47

Lisoni, Judit G., Laurent Breuil, Pieter Blomme, Johan Meersschaut, Andreas Bergmaier, Günther Dollinger, Geert Van den bosch y Jan Van Houdt. "Material selection for hybrid floating gate NAND memory applications". physica status solidi (a) 213, n.º 2 (28 de enero de 2016): 237–44. http://dx.doi.org/10.1002/pssa.201532829.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
48

QIN, Shi-xian, Chao MA, Jun-jie XING, Bo-wen LI y Guo-cheng ZHANG. "Transparent organic memory based on quantum dots floating gate". Chinese Journal of Liquid Crystals and Displays 38, n.º 7 (2023): 919–25. http://dx.doi.org/10.37188/cjlcd.2023-0041.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
49

Yoon, Jong-Hwan. "Memory properties of Al-based nanoparticle floating gate for nonvolatile memory applications". Journal of the Korean Physical Society 61, n.º 5 (septiembre de 2012): 799–802. http://dx.doi.org/10.3938/jkps.61.799.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
50

Jin, Risheng, Jin Wang, Keli Shi, Beibei Qiu, Lanchao Ma, Shihua Huang y Zhengquan Li. "Multilevel storage and photoinduced-reset memory by an inorganic perovskite quantum-dot/polystyrene floating-gate organic transistor". RSC Advances 10, n.º 70 (2020): 43225–32. http://dx.doi.org/10.1039/d0ra08021g.

Texto completo
Resumen
A novel floating-gate organic transistor memory with photoinduced-reset and multilevel storage function is demonstrated. The device has a large memory window (≈90 V), ultrahigh memory on/off ratio (over 107) and long retention time (over 10 years).
Los estilos APA, Harvard, Vancouver, ISO, etc.
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!

Pasar a la bibliografía