Literatura académica sobre el tema "Flavin hydroquinone dependent Enzymes"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Flavin hydroquinone dependent Enzymes".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Flavin hydroquinone dependent Enzymes"
Perry, Lynda L. y Gerben J. Zylstra. "Cloning of a Gene Cluster Involved in the Catabolism of p-Nitrophenol by Arthrobacter sp. Strain JS443 and Characterization of the p-Nitrophenol Monooxygenase". Journal of Bacteriology 189, n.º 21 (24 de agosto de 2007): 7563–72. http://dx.doi.org/10.1128/jb.01849-06.
Texto completoMihasan, Marius, Calin-Bogdan Chiribau, Thorsten Friedrich, Vlad Artenie y Roderich Brandsch. "An NAD(P)H-Nicotine Blue Oxidoreductase Is Part of the Nicotine Regulon and May Protect Arthrobacter nicotinovorans from Oxidative Stress during Nicotine Catabolism". Applied and Environmental Microbiology 73, n.º 8 (9 de febrero de 2007): 2479–85. http://dx.doi.org/10.1128/aem.02668-06.
Texto completoHyster, Todd K. "Radical Biocatalysis: Using Non-Natural Single Electron Transfer Mechanisms to Access New Enzymatic Functions". Synlett 31, n.º 03 (7 de mayo de 2019): 248–54. http://dx.doi.org/10.1055/s-0037-1611818.
Texto completoWojcieszyńska, Danuta, Katarzyna Hupert-Kocurek y Urszula Guzik. "Flavin-Dependent Enzymes in Cancer Prevention". International Journal of Molecular Sciences 13, n.º 12 (7 de diciembre de 2012): 16751–68. http://dx.doi.org/10.3390/ijms131216751.
Texto completoHilvert, Donald y E. T. Kaisert. "Semisynthetic Enzymes: Design of Flavin-Dependent Oxidoreductases". Biotechnology and Genetic Engineering Reviews 5, n.º 1 (septiembre de 1987): 297–318. http://dx.doi.org/10.1080/02648725.1987.10647841.
Texto completoMenon, Binuraj R. K., Jonathan Latham, Mark S. Dunstan, Eileen Brandenburger, Ulrike Klemstein, David Leys, Chinnan Karthikeyan, Michael F. Greaney, Sarah A. Shepherd y Jason Micklefield. "Structure and biocatalytic scope of thermophilic flavin-dependent halogenase and flavin reductase enzymes". Organic & Biomolecular Chemistry 14, n.º 39 (2016): 9354–61. http://dx.doi.org/10.1039/c6ob01861k.
Texto completoMügge, Carolin, Thomas Heine, Alvaro Gomez Baraibar, Willem J. H. van Berkel, Caroline E. Paul y Dirk Tischler. "Flavin-dependent N-hydroxylating enzymes: distribution and application". Applied Microbiology and Biotechnology 104, n.º 15 (5 de junio de 2020): 6481–99. http://dx.doi.org/10.1007/s00253-020-10705-w.
Texto completoMoon, Shin y Choe. "Crystal Structures of Putative Flavin Dependent Monooxygenase from Alicyclobacillus Acidocaldarius". Crystals 9, n.º 11 (23 de octubre de 2019): 548. http://dx.doi.org/10.3390/cryst9110548.
Texto completoShepherd, Sarah A., Chinnan Karthikeyan, Jonathan Latham, Anna-Winona Struck, Mark L. Thompson, Binuraj R. K. Menon, Matthew Q. Styles, Colin Levy, David Leys y Jason Micklefield. "Extending the biocatalytic scope of regiocomplementary flavin-dependent halogenase enzymes". Chemical Science 6, n.º 6 (2015): 3454–60. http://dx.doi.org/10.1039/c5sc00913h.
Texto completoSaleem-Batcha, Raspudin, Frederick Stull, Jacob N. Sanders, Bradley S. Moore, Bruce A. Palfey, K. N. Houk y Robin Teufel. "Enzymatic control of dioxygen binding and functionalization of the flavin cofactor". Proceedings of the National Academy of Sciences 115, n.º 19 (23 de abril de 2018): 4909–14. http://dx.doi.org/10.1073/pnas.1801189115.
Texto completoTesis sobre el tema "Flavin hydroquinone dependent Enzymes"
Röllig, Robert. "Chemical hydride transfer for flavin dependent monooxygenases of two-component systems". Electronic Thesis or Diss., Aix-Marseille, 2021. http://www.theses.fr/2021AIXM0436.
Texto completoThe term flavoprotein monooxygenases (FPMO) covers two different types of flavoenzymes: single and two component oxygenases. Two component FPMOs consist of a reductase and an oxygenating enzyme. The functional independence of the oxygenase part of 2,5-diketocamphane 1,2-monooxygenase I (2,5 DKCMO), an FMN dependent type II Baeyer-Villiger monooxygenase, from the reductase counterpart, as well as the mechanism of flavin transfer by free diffusion, was investigated in a reductase-free reaction, using synthetic nicotinamide biomimetics (NCBs) for the reduction of FMN. The balance of flavin reduction and enzymatic (re)oxidation was identified as the bottleneck of the system. Aiming for potentially cost efficient hydride donors for enzymatic redox reactions, nicotinamide coenzyme and nicotinamide biomimetic independent flavin reduction strategies were investigated. The capability of the pH and oxygen robust iridium III complex [Cp*Ir(bpy-OMe)H]+ (Ir* (H+)) to transfer hydrides for flavin reduction for the enzymatic reaction of respectively FMNH2 and FADH2 dependent monooxygenases, 2,5 DKCMO and styrene monooxygenase from Sphingopyxis fribergensis Kp.5.2 (SfStyA) was exploited. The Ir* (H+)/SfStyA approach outperformed the state of the art system by six-fold in terms of turn over number of the metal catalyst. Nevertheless, the robustness of the system remains challenging, and improvements are required to establish the approach as an efficient and versatile platform technology for flavoenzymes
Karunaratne, Kalani Udara. "Probing the methylene and hydride transfers in flavin- dependent thymidylate synthase". Diss., University of Iowa, 2018. https://ir.uiowa.edu/etd/6443.
Texto completoYuan, Hongling. "Mechanistic Studies of Two Selected Flavin-Dependent Enzymes: Choline Oxidase and D-Arginine Dehydrogenase". Digital Archive @ GSU, 2011. http://digitalarchive.gsu.edu/chemistry_diss/56.
Texto completoWehelie, Rahma. "Mycoplasma pyrimidine deoxynucleotide biosynthesis : molecular characterization of a new family flavin-dependent thymidylate synthase /". Uppsala : Dept. of Molecular Biosciences, Swedish University of Agricultural Sciences, 2006. http://epsilon.slu.se/200676.pdf.
Texto completoLee, Brendon. "The Role of F420-dependent Enzymes in Mycobacteria". Phd thesis, Canberra, ACT : The Australian National University, 2017. http://hdl.handle.net/1885/148416.
Texto completoGoldman, Peter John. "The roles of redox active cofactors in catalysis : structural studies of iron sulfur cluster and flavin dependent enzymes". Thesis, Massachusetts Institute of Technology, 2013. http://hdl.handle.net/1721.1/82313.
Texto completoCataloged from PDF version of thesis.
Includes bibliographical references.
Cofactors are highly prevalent in biological systems and have evolved to take on many functions in enzyme catalysis. Two cofactors, flavin adenine dinucleotide (FAD) and [4Fe-4S] clusters, were originally determined to aid in electron transfer and redox chemistry. However, additional activities for these cofactors continue to be discovered. The study of FAD in the context of rebeccamycin and staurosporine biosynthesis has yielded another role for this cofactor in the enzyme StaC. A homolog of this enzyme, RebC, uses its FAD cofactor in the oxidation of 7-carboxy-K252c. StaC also uses 7-carboxy-K252 as a substrate, but its reaction does not result in a redox transformation. Biochemical and X-ray crystallographic methods were employed to determine that, indeed, the role of FAD in the StaC system is not to catalyze redox chemistry. Instead, FAD sterically drives an initial decarboxylation event. Subtle differences in the active sites of RebC and StaC promote this redox neutral decarboxylation, by activating water for a final protonation step. In another system, the characterization of the S-adenosyl-L-methionine (AdoMet) radical superfamily showed the versatility of these cofactors. In this superfamily, which includes over 40,000 unique sequences, [4Fe-4S] clusters are responsible for the initiation of radical chemistry. A recently described subclass of this superfamily, the dehydrogenases, require additional [4Fe-4S] cluster for activity. This requirement led to the hypothesis that these enzymes are catalyzing redox chemistry by directly ligating substrates to auxiliary (Aux) clusters. X-ray structures of 2-deoxy-scyllo-inosamine dehydrogenase (BtrN), required for the biosynthesis of 2-deoxystreptamine, and an anaerobic sulfatase maturating enzyme, anSMEcpe, which installs a required formylglycine posttranslational modification, refute this hypothesis. In these structures, substrate binding is distal from each enzymes' Aux clusters. However, the Aux cluster binding architecture shared between BtrN, anSMEcpe, and another AdoMet radical enzyme, MoaA, involved in molybdenum cofactor biosynthesis, suggests that the structural features will be a staple in the AdoMet radical superfamily, common to - 30% of the AdoMet radical reactions.
by Peter John Goldman.
Ph.D.
Kubitza, Christian [Verfasser], Axel [Akademischer Betreuer] Scheidig y Bernd [Gutachter] Clement. "Structural Characterization of Flavin-dependent Monooxygenases from Zonocerus variegatus and the Human Mitochondrial Amidoxime Reducing Component (mARC) – Enzymes involved in Biotransformation / Christian Kubitza ; Gutachter: Bernd Clement ; Betreuer: Axel Scheidig". Kiel : Universitätsbibliothek Kiel, 2018. http://d-nb.info/1237685664/34.
Texto completoLibros sobre el tema "Flavin hydroquinone dependent Enzymes"
Tamanoi, Fuyuhiko y Pimchai Chaiyen. Flavin-Dependent Enzymes. Elsevier Science & Technology, 2020.
Buscar texto completoTamanoi, Fuyuhiko y Pimchai Chaiyen. Flavin-Dependent Enzymes. Elsevier Science & Technology Books, 2020.
Buscar texto completoFlavin-Dependent Enzymes: Mechanisms, Structures and Applications. Elsevier, 2020. http://dx.doi.org/10.1016/s1874-6047(20)x0002-3.
Texto completoCapítulos de libros sobre el tema "Flavin hydroquinone dependent Enzymes"
Fagan, Rebecca L. y Bruce A. Palfey. "Flavin-Dependent Enzymes". En Comprehensive Natural Products II, 37–113. Elsevier, 2010. http://dx.doi.org/10.1016/b978-008045382-8.00135-0.
Texto completoPimviriyakul, Panu y Pimchai Chaiyen. "Flavin-dependent dehalogenases". En Flavin-Dependent Enzymes: Mechanisms, Structures and Applications, 365–97. Elsevier, 2020. http://dx.doi.org/10.1016/bs.enz.2020.05.010.
Texto completoPimviriyakul, Panu y Pimchai Chaiyen. "Overview of flavin-dependent enzymes". En Flavin-Dependent Enzymes: Mechanisms, Structures and Applications, 1–36. Elsevier, 2020. http://dx.doi.org/10.1016/bs.enz.2020.06.006.
Texto completoSaaret, Annica, Arune Balaikaite y David Leys. "Biochemistry of prenylated-FMN enzymes". En Flavin-Dependent Enzymes: Mechanisms, Structures and Applications, 517–49. Elsevier, 2020. http://dx.doi.org/10.1016/bs.enz.2020.05.013.
Texto completoPhintha, Aisaraphon, Kridsadakorn Prakinee y Pimchai Chaiyen. "Structures, mechanisms and applications of flavin-dependent halogenases". En Flavin-Dependent Enzymes: Mechanisms, Structures and Applications, 327–64. Elsevier, 2020. http://dx.doi.org/10.1016/bs.enz.2020.05.009.
Texto completo"Copyright". En Flavin-Dependent Enzymes: Mechanisms, Structures and Applications, iv. Elsevier, 2020. http://dx.doi.org/10.1016/s1874-6047(20)30035-4.
Texto completo"Contributors". En Flavin-Dependent Enzymes: Mechanisms, Structures and Applications, xi—xiv. Elsevier, 2020. http://dx.doi.org/10.1016/s1874-6047(20)30037-8.
Texto completoChaiyen, Pimchai y Fuyuhiko Tamanoi. "Preface". En Flavin-Dependent Enzymes: Mechanisms, Structures and Applications, xv—xvi. Elsevier, 2020. http://dx.doi.org/10.1016/s1874-6047(20)30038-x.
Texto completoHall, Mélanie. "Flavoenzymes for biocatalysis". En Flavin-Dependent Enzymes: Mechanisms, Structures and Applications, 37–62. Elsevier, 2020. http://dx.doi.org/10.1016/bs.enz.2020.05.001.
Texto completoMartin, Caterina, Claudia Binda, Marco W. Fraaije y Andrea Mattevi. "The multipurpose family of flavoprotein oxidases". En Flavin-Dependent Enzymes: Mechanisms, Structures and Applications, 63–86. Elsevier, 2020. http://dx.doi.org/10.1016/bs.enz.2020.05.002.
Texto completo