Artículos de revistas sobre el tema "Finite-time thermodynamics"

Siga este enlace para ver otros tipos de publicaciones sobre el tema: Finite-time thermodynamics.

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "Finite-time thermodynamics".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.

1

Andresen, Bjarne. "Finite-time thermodynamics and thermodynamic length". Revue Générale de Thermique 35, n.º 418-419 (noviembre de 1996): 647–50. http://dx.doi.org/10.1016/s0035-3159(96)80060-2.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Tsirlin, Anatoly y Larisa Gagarina. "Finite-Time Thermodynamics in Economics". Entropy 22, n.º 8 (13 de agosto de 2020): 891. http://dx.doi.org/10.3390/e22080891.

Texto completo
Resumen
In this paper, we consider optimal trading processes in economic systems. The analysis is based on accounting for irreversibility factors using the wealth function concept. The existence of the welfare function is proved, the concept of capital dissipation is introduced as a measure of the irreversibility of processes in the microeconomic system, and the economic balances are recorded, including capital dissipation. Problems in the form of kinetic equations leading to given conditions of minimal dissipation are considered.
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Tsirlin, Anatoly M., Michail A. Sofiev y Vladimir Kazakov. "Finite-time thermodynamics. Active potentiostatting". Journal of Physics D: Applied Physics 31, n.º 18 (21 de septiembre de 1998): 2264–68. http://dx.doi.org/10.1088/0022-3727/31/18/011.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Feidt, Michel y Monica Costea. "From Finite Time to Finite Physical Dimensions Thermodynamics: The Carnot Engine and Onsager’s Relations Revisited". Journal of Non-Equilibrium Thermodynamics 43, n.º 2 (25 de abril de 2018): 151–61. http://dx.doi.org/10.1515/jnet-2017-0047.

Texto completo
Resumen
AbstractMany works have been devoted to finite time thermodynamics since the Curzon and Ahlborn [1] contribution, which is generally considered as its origin. Nevertheless, previous works in this domain have been revealed [2], [3], and recently, results of the attempt to correlate Finite Time Thermodynamics with Linear Irreversible Thermodynamics according to Onsager’s theory were reported [4].The aim of the present paper is to extend and improve the approach relative to thermodynamic optimization of generic objective functions of a Carnot engine with linear response regime presented in [4]. The case study of the Carnot engine is revisited within the steady state hypothesis, when non-adiabaticity of the system is considered, and heat loss is accounted for by an overall heat leak between the engine heat reservoirs.The optimization is focused on the main objective functions connected to engineering conditions, namely maximum efficiency or power output, except the one relative to entropy that is more fundamental.Results given in reference [4] relative to the maximum power output and minimum entropy production as objective function are reconsidered and clarified, and the change from finite time to finite physical dimension was shown to be done by the heat flow rate at the source.Our modeling has led to new results of the Carnot engine optimization and proved that the primary interest for an engineer is mainly connected to what we called Finite Physical Dimensions Optimal Thermodynamics.
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Tsirlin, Anatoly y Ivan Sukin. "Averaged Optimization and Finite-Time Thermodynamics". Entropy 22, n.º 9 (20 de agosto de 2020): 912. http://dx.doi.org/10.3390/e22090912.

Texto completo
Resumen
The paper considers typical extremum problems that contain mean values of control variables or some functions of these variables. Relationships between such problems and cyclic modes of dynamical systems are explained and optimality conditions for these modes are found. The paper shows how these problems are linked to the field of finite-time thermodynamics.
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Bejan, Adrian. "Engineering advances on finite‐time thermodynamics". American Journal of Physics 62, n.º 1 (enero de 1994): 11–12. http://dx.doi.org/10.1119/1.17730.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Andresen, Bjarne. "Current Trends in Finite‐Time Thermodynamics". Angewandte Chemie International Edition 50, n.º 12 (14 de marzo de 2011): 2690–704. http://dx.doi.org/10.1002/anie.201001411.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

De Vos, Alexis y Bart Desoete. "Equipartition Principles in Finite-Time Thermodynamics". Journal of Non-Equilibrium Thermodynamics 25, n.º 1 (23 de enero de 2000): 1–13. http://dx.doi.org/10.1515/jnetdy.2000.001.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Wu, C., R. L. Kiang, V. J. Lopardo y G. N. Karpouzian. "Finite-Time Thermodynamics and Endoreversible Heat Engines". International Journal of Mechanical Engineering Education 21, n.º 4 (octubre de 1993): 337–46. http://dx.doi.org/10.1177/030641909302100404.

Texto completo
Resumen
An endoreversible heat engine is an internally reversible and externally irreversible cyclic device which exchanges heat and power with its surroundings. Classical engineering thermodynamics is based on the concept of equilibrium. Time is not considered in the energy interactions between the heat engine and its environment. On the other hand, although rate of energy transfer is taught in heat transfer, the course does not cover heat engines. The finite-time thermodynamics is a newly developing field to fill in the gap between thermodynamics and heat transfer. Two types of engines are modelled in this paper—a reciprocating and a steady flow—with results obtained for maximum power output and efficiency at maximum power. It is shown that the latter is the same for both types of engines but that the maximum value of power production is different.
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Delvenne, Jean-Charles y Henrik Sandberg. "Finite-time thermodynamics of port-Hamiltonian systems". Physica D: Nonlinear Phenomena 267 (enero de 2014): 123–32. http://dx.doi.org/10.1016/j.physd.2013.07.017.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
11

Tsirlin, Anatoly M. y Vladimir Kazakov. "Maximal work problem in finite-time thermodynamics". Physical Review E 62, n.º 1 (1 de julio de 2000): 307–16. http://dx.doi.org/10.1103/physreve.62.307.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
12

Brown, Gordon R., Susan Snow, Bjarne Andresen y Peter Salamon. "Finite-time thermodynamics of a porous plug". Physical Review A 34, n.º 5 (1 de noviembre de 1986): 4370–79. http://dx.doi.org/10.1103/physreva.34.4370.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
13

Denton, Jesse C. "Thermal cycles in classical thermodynamics and nonequilibrium thermodynamics in contrast with finite time thermodynamics". Energy Conversion and Management 43, n.º 13 (septiembre de 2002): 1583–617. http://dx.doi.org/10.1016/s0196-8904(02)00074-2.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
14

Chen, Jin-Fu, Ying Li y Hui Dong. "Simulating Finite-Time Isothermal Processes with Superconducting Quantum Circuits". Entropy 23, n.º 3 (16 de marzo de 2021): 353. http://dx.doi.org/10.3390/e23030353.

Texto completo
Resumen
Finite-time isothermal processes are ubiquitous in quantum-heat-engine cycles, yet complicated due to the coexistence of the changing Hamiltonian and the interaction with the thermal bath. Such complexity prevents classical thermodynamic measurements of a performed work. In this paper, the isothermal process is decomposed into piecewise adiabatic and isochoric processes to measure the performed work as the internal energy change in adiabatic processes. The piecewise control scheme allows the direct simulation of the whole process on a universal quantum computer, which provides a new experimental platform to study quantum thermodynamics. We implement the simulation on ibmqx2 to show the 1/τ scaling of the extra work in finite-time isothermal processes.
Los estilos APA, Harvard, Vancouver, ISO, etc.
15

Mironova, Valentina A., Anatolii M. Tsirlin, Vladimir A. Kazakov y R. Stephen Berry. "Finite‐time thermodynamics: Exergy and optimization of time‐constrained processes". Journal of Applied Physics 76, n.º 2 (15 de julio de 1994): 629–36. http://dx.doi.org/10.1063/1.358425.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
16

Deng, Shujin, Aurélia Chenu, Pengpeng Diao, Fang Li, Shi Yu, Ivan Coulamy, Adolfo del Campo y Haibin Wu. "Superadiabatic quantum friction suppression in finite-time thermodynamics". Science Advances 4, n.º 4 (abril de 2018): eaar5909. http://dx.doi.org/10.1126/sciadv.aar5909.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
17

Andresen, Bjarne. "ChemInform Abstract: Current Trends in Finite-Time Thermodynamics". ChemInform 42, n.º 23 (12 de mayo de 2011): no. http://dx.doi.org/10.1002/chin.201123258.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
18

Angulo-Brown, F., E. Yépez y R. Zamorano-Ulloa. "Finite-time thermodynamics approach to the superconducting transition". Physics Letters A 183, n.º 5-6 (diciembre de 1993): 431–36. http://dx.doi.org/10.1016/0375-9601(93)90601-u.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
19

Wei, Zhi Guo, Hai Kun Tao y Yong Li. "Optimization Analysis of Ship Steam Power System with Finite-Time Thermodynamics Theory". Applied Mechanics and Materials 271-272 (diciembre de 2012): 1062–66. http://dx.doi.org/10.4028/www.scientific.net/amm.271-272.1062.

Texto completo
Resumen
A basic model with both property of thermodynamic and heat transfer is obtained by simplifying the prime process of ship Steam Power System (SPS), which is converted into endoreversible Carnot Cycle by the introduction of mean temperature in the cycle process. The design parameters is analyzed and optimized in the view point of finite time thermodynamics (FTT) and entropy generation minimization. Results show that, the temperature ratio (α) and the heat transfer parameter ratio (β) of heat source and heat sink are two important influence factors of cycle system performance, and the increase of α and decrease of β will redound to the reduction of irreversible loss and enhancement of power output.
Los estilos APA, Harvard, Vancouver, ISO, etc.
20

Tsirlin, Anatoly M., Valentina A. Mironova, Sergei A. Amelkin y Vladimir Kazakov. "Finite-time thermodynamics: Conditions of minimal dissipation for thermodynamic process with given rate". Physical Review E 58, n.º 1 (1 de julio de 1998): 215–23. http://dx.doi.org/10.1103/physreve.58.215.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
21

Roach, Ty N. F., Peter Salamon, James Nulton, Bjarne Andresen, Ben Felts, Andreas Haas, Sandi Calhoun, Nathan Robinett y Forest Rohwer. "Application of Finite-Time and Control Thermodynamics to Biological Processes at Multiple Scales". Journal of Non-Equilibrium Thermodynamics 43, n.º 3 (26 de julio de 2018): 193–210. http://dx.doi.org/10.1515/jnet-2018-0008.

Texto completo
Resumen
AbstractAn overall synthesis of biology and non-equilibrium thermodynamics remains a challenge at the interface between the physical and life sciences. Herein, theorems from finite-time and control thermodynamics are applied to biological processes to indicate which biological strategies will succeed over different time scales. In general, living systems maximize power at the expense of efficiency during the early stages of their development while proceeding at slower rates to maximize efficiency over longer time scales. The exact combination of yield and power depends upon the constraints on the system, the degrees of freedom in question, and the time scales of the processes. It is emphasized that biological processes are not driven by entropy production but, rather, by informed exergy flow. The entropy production is the generalized friction that is minimized insofar as the constraints allow. Theorems concerning thermodynamic path length and entropy production show that there is a direct tradeoff between the efficiency of a process and the process rate. To quantify this tradeoff, the concepts of compensated heat and waste heat are introduced. Compensated heat is the exergy dissipated, which is necessary for a process to satisfy constraints. Conversely, waste heat is exergy that is dissipated as heat, but does not provide a compensatory increase in rate or other improvement. We hypothesize that it is waste heat that is minimized through natural selection. This can be seen in the strategies employed at several temporal and spatial scales, including organismal development, ecological succession, and long-term evolution. Better understanding the roles of compensated heat and waste heat in biological processes will provide novel insight into the underlying thermodynamic mechanisms involved in metabolism, ecology, and evolution.
Los estilos APA, Harvard, Vancouver, ISO, etc.
22

Gyftopoulos, Elias P. "Infinite time (reversible) versus finite time (irreversible) thermodynamics: a misconceived distinction". Energy 24, n.º 12 (enero de 1999): 1035–39. http://dx.doi.org/10.1016/s0360-5442(99)00056-0.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
23

WU, CHIH y L. CDR THOMAS D. WALKER. "Finite-Time Thermodynamics and its Potential Naval Shipboard Application". Naval Engineers Journal 101, n.º 1 (enero de 1989): 35–39. http://dx.doi.org/10.1111/j.1559-3584.1989.tb00842.x.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
24

Tsirlin, Anatoliy M., Vladimir Kazakov y Dmitrii V. Zubov. "Finite-Time Thermodynamics: Limiting Possibilities of Irreversible Separation Processes†". Journal of Physical Chemistry A 106, n.º 45 (noviembre de 2002): 10926–36. http://dx.doi.org/10.1021/jp025524v.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
25

Esposito, M., R. Kawai, K. Lindenberg y C. Van den Broeck. "Finite-time thermodynamics for a single-level quantum dot". EPL (Europhysics Letters) 89, n.º 2 (1 de enero de 2010): 20003. http://dx.doi.org/10.1209/0295-5075/89/20003.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
26

Lorenz, Ralph. "Finite-time thermodynamics of an instrumented drinking bird toy". American Journal of Physics 74, n.º 8 (agosto de 2006): 677–82. http://dx.doi.org/10.1119/1.2190688.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
27

Aydin, Murat y Hasbi Yavuz. "Application of finite-time thermodynamics to MHD power cycles". Energy 18, n.º 9 (septiembre de 1993): 907–11. http://dx.doi.org/10.1016/0360-5442(93)90003-v.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
28

Naaktgeboren, Christian. "An air-standard finite-time heat addition Otto engine model". International Journal of Mechanical Engineering Education 45, n.º 2 (8 de febrero de 2017): 103–19. http://dx.doi.org/10.1177/0306419016689447.

Texto completo
Resumen
A classical thermodynamic model for spark-ignited internal combustion engine simulation in which the heat addition process that takes a finite amount of time to complete is presented along with an illustrative parameter sensibility case study. The model accounts for all air-standard Otto cycle parameters, as well as crank-connecting rod mechanism, ignition timing, engine operating speed, and cumulative heat release history parameters. The model is particularly suitable for engineering undergraduate education, as it preserves most of the air-standard assumptions, while being able to reproduce real engine traits, such as the decay of maximum pressure, power, and thermal efficiency at higher engine operating speeds. In terms of complexity, the resulting finite-time heat addition Otto cycle sits between the classical air-standard Otto cycle and the more involved air–fuel Otto cycle, that are usually introduced on more advanced mechanical engineering courses, and allows students to perform engine parameter sensibility studies using only classical, single phase, pure substance, undergraduate engineering thermodynamics.
Los estilos APA, Harvard, Vancouver, ISO, etc.
29

Bejan, Adrian y George Tsatsaronis. "Purpose in Thermodynamics". Energies 14, n.º 2 (13 de enero de 2021): 408. http://dx.doi.org/10.3390/en14020408.

Texto completo
Resumen
This is a review of the concepts of purpose, direction, and objective in the discipline of thermodynamics, which is a pillar of physics, natural sciences, life science, and engineering science. Reviewed is the relentless evolution of this discipline toward accounting for evolutionary design with direction, and for establishing the concept of purpose in methodologies of modeling, analysis, teaching, and design optimization. Evolution is change after change toward flow access, with direction in time, and purpose. Evolution does not have an ‘end’. In thermodynamics, purpose is already the defining feature of methods that have emerged to guide and facilitate the generation, distribution, and use of motive power, heating, and cooling: thermodynamic optimization, exergy-based methods (i.e., exergetic, exergoeconomic, and exergoenvironmental analysis), entropy generation minimization, extended exergy, environomics, thermoecology, finite time thermodynamics, pinch analysis, animal design, geophysical flow design, and constructal law. What distinguishes these approaches are the purpose and the performance evaluation used in each method.
Los estilos APA, Harvard, Vancouver, ISO, etc.
30

Rogolino, Patrizia y Vito Antonio Cimmelli. "Thermoelectric Efficiency of Silicon–Germanium Alloys in Finite-Time Thermodynamics". Entropy 22, n.º 10 (2 de octubre de 2020): 1116. http://dx.doi.org/10.3390/e22101116.

Texto completo
Resumen
We analyze the efficiency in terms of a thermoelectric system of a one-dimensional Silicon–Germanium alloy. The dependency of thermal conductivity on the stoichiometry is pointed out, and the best fit of the experimental data is determined by a nonlinear regression method (NLRM). The thermoelectric efficiency of that system as function of the composition and of the effective temperature gradient is calculated as well. For three different temperatures (T=300 K, T=400 K, T=500 K), we determine the values of composition and thermal conductivity corresponding to the optimal thermoelectric energy conversion. The relationship of our approach with Finite-Time Thermodynamics is pointed out.
Los estilos APA, Harvard, Vancouver, ISO, etc.
31

Dann, Roie, Ronnie Kosloff y Peter Salamon. "Quantum Finite-Time Thermodynamics: Insight from a Single Qubit Engine". Entropy 22, n.º 11 (4 de noviembre de 2020): 1255. http://dx.doi.org/10.3390/e22111255.

Texto completo
Resumen
Incorporating time into thermodynamics allows for addressing the tradeoff between efficiency and power. A qubit engine serves as a toy model in order to study this tradeoff from first principles, based on the quantum theory of open systems. We study the quantum origin of irreversibility, originating from heat transport, quantum friction, and thermalization in the presence of external driving. We construct various finite-time engine cycles that are based on the Otto and Carnot templates. Our analysis highlights the role of coherence and the quantum origin of entropy production.
Los estilos APA, Harvard, Vancouver, ISO, etc.
32

Ngouateu Wouagfack, Paiguy Armand y Réné Tchinda. "Finite-time thermodynamics optimization of absorption refrigeration systems: A review". Renewable and Sustainable Energy Reviews 21 (mayo de 2013): 524–36. http://dx.doi.org/10.1016/j.rser.2012.12.015.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
33

Zaeva, M. A., A. M. Tsirlin y O. V. Didina. "Finite Time Thermodynamics: Realizability Domain of Heat to Work Converters". Journal of Non-Equilibrium Thermodynamics 44, n.º 2 (26 de abril de 2019): 181–91. http://dx.doi.org/10.1515/jnet-2018-0007.

Texto completo
Resumen
Abstract From the point of view of finite time thermodynamics, the performance boundaries of thermal machines are considered, taking into account the irreversibility of the heat exchange processes of the working fluid with hot and cold sources. It is shown how the kinetics of heat exchange affects the shape of the optimal cycle of a heat engine and its performance, with a focus on the energy conversion efficiency in the maximum power mode. This energy conversion efficiency can depend only on the ratio of the heat transfer coefficients to the sources or not depend on them at all. A class of kinetic functions corresponding to “natural” requirements is introduced and it is shown that for any kinetics from this class the optimal cycle consists of two isotherms and two adiabats, not only for the maximum power problem, but also for the problem of maximum energy conversion efficiency at a given power. Examples are given for calculating the parameters of the optimal cycle for the case when the heat transfer coefficient to the cold source is arbitrarily large and for kinetics in the form of a Fourier law.
Los estilos APA, Harvard, Vancouver, ISO, etc.
34

Johal, Ramandeep S. "Global linear-irreversible principle for optimization in finite-time thermodynamics". EPL (Europhysics Letters) 121, n.º 5 (1 de marzo de 2018): 50009. http://dx.doi.org/10.1209/0295-5075/121/50009.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
35

Schön, J. Christian. "Finite-Time Thermodynamics and the Optimal Control of Chemical Syntheses". Zeitschrift für anorganische und allgemeine Chemie 635, n.º 12 (octubre de 2009): 1794–806. http://dx.doi.org/10.1002/zaac.200900207.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
36

Geva, Eitan y Ronnie Kosloff. "On the classical limit of quantum thermodynamics in finite time". Journal of Chemical Physics 97, n.º 6 (15 de septiembre de 1992): 4398–412. http://dx.doi.org/10.1063/1.463909.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
37

Bejan, Adrian. "Entropy generation minimization: The new thermodynamics of finite‐size devices and finite‐time processes". Journal of Applied Physics 79, n.º 3 (febrero de 1996): 1191–218. http://dx.doi.org/10.1063/1.362674.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
38

Andreichikov, M. A., M. S. Lukashov y Yu A. Simonov. "Nonperturbative quark–gluon thermodynamics at finite density". International Journal of Modern Physics A 33, n.º 08 (20 de marzo de 2018): 1850043. http://dx.doi.org/10.1142/s0217751x18500434.

Texto completo
Resumen
Thermodynamics of the quark–gluon plasma at finite density is studied in the framework of the Field Correlator Method, where thermodynamical effects of Polyakov loops and color magnetic confinement are taken into account. Having found good agreement with numerical lattice data for zero density, we calculate pressure [Formula: see text], for [Formula: see text] MeV and [Formula: see text] MeV. For the first time, the explicit integral form is found in this region, demonstrating analytic structure in the complex [Formula: see text] plane. The resulting multiple complex branch points are found at the Roberge–Weiss values of [Formula: see text], with [Formula: see text] defined by the values of Polyakov lines and color magnetic confinement.
Los estilos APA, Harvard, Vancouver, ISO, etc.
39

Durmayaz, A. "Optimization of thermal systems based on finite-time thermodynamics and thermoeconomics". Progress in Energy and Combustion Science 30, n.º 2 (2004): 175–217. http://dx.doi.org/10.1016/j.pecs.2003.10.003.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
40

Yaqi, Li, He Yaling y Wang Weiwei. "Optimization of solar-powered Stirling heat engine with finite-time thermodynamics". Renewable Energy 36, n.º 1 (enero de 2011): 421–27. http://dx.doi.org/10.1016/j.renene.2010.06.037.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
41

YASUNAGA, Takeshi, Natsuki KOYAMA, Takafumi NOGUCHI, Takafumi MORISAKI y Yasuyuki IKEGAMI. "Basis of Heat Exchanger Performance on Finite-time Thermodynamics in OTEC". Proceedings of the National Symposium on Power and Energy Systems 2018.23 (2018): E121. http://dx.doi.org/10.1299/jsmepes.2018.23.e121.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
42

Momeni, Farhang, Mohammad Reza Morad y Ashkan Mahmoudi. "On the thermal efficiency of power cycles in finite time thermodynamics". European Journal of Physics 37, n.º 5 (30 de junio de 2016): 055101. http://dx.doi.org/10.1088/0143-0807/37/5/055101.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
43

Sekulic, D. P. "A fallacious argument in the finite time thermodynamics concept of endoreversibility". Journal of Applied Physics 83, n.º 9 (mayo de 1998): 4561–65. http://dx.doi.org/10.1063/1.367237.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
44

Tsirlin, A. M., E. E. Leskov y V. Kazakov. "Finite Time Thermodynamics: Limiting Performance of Diffusion Engines and Membrane Systems". Journal of Physical Chemistry A 109, n.º 44 (noviembre de 2005): 9997–10003. http://dx.doi.org/10.1021/jp053637j.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
45

Yasunaga, Takeshi y Yasuyuki Ikegami. "Application of Finite-time Thermodynamics for Evaluation Method of Heat Engines". Energy Procedia 129 (septiembre de 2017): 995–1001. http://dx.doi.org/10.1016/j.egypro.2017.09.224.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
46

Szwarc, Henri. "Finite time thermodynamics of a Schottky anomaly: the minimal glass transition?" Journal of Non-Crystalline Solids 131-133 (junio de 1991): 252–54. http://dx.doi.org/10.1016/0022-3093(91)90312-t.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
47

Muschik, Wolfgang y Karl Heinz Hoffmann. "Modeling, Simulation, and Reconstruction of 2-Reservoir Heat-to-Power Processes in Finite-Time Thermodynamics". Entropy 22, n.º 9 (7 de septiembre de 2020): 997. http://dx.doi.org/10.3390/e22090997.

Texto completo
Resumen
The connection between endoreversible models of Finite-Time Thermodynamics and the corresponding real running irreversible processes is investigated by introducing two concepts which complement each other: Simulation and Reconstruction. In that context, the importance of particular machine diagrams for Simulation and (reconstruction) parameter diagrams for Reconstruction is emphasized. Additionally, the treatment of internal irreversibilities through the use of contact quantities like the contact temperature is introduced into the Finite-Time Thermodynamics description of thermal processes.
Los estilos APA, Harvard, Vancouver, ISO, etc.
48

Kar, Alokananda, Shouvik Sadhukhan y Surajit Chattopadhyay. "Energy conditions for inhomogeneous EOS and its thermodynamics analysis with the resolution on finite time future singularity problems". International Journal of Geometric Methods in Modern Physics 18, n.º 08 (24 de mayo de 2021): 2150131. http://dx.doi.org/10.1142/s0219887821501310.

Texto completo
Resumen
In this paper, we study two different cases of inhomogeneous EOS of the form [Formula: see text]. We derive the energy density of dark fluid and dark matter component for both the cases. Further, we calculate the evolution of energy density, gravitational constant and cosmological constant. We also explore the finite time singularity and thermodynamic stability conditions for the two cases of EOS. Finally, we discuss the thermodynamics of inhomogeneous EOS with the derivation of internal energy, Temperature and entropy and also show that all the stability conditions are satisfied for the two cases of EOS.
Los estilos APA, Harvard, Vancouver, ISO, etc.
49

Chen, L. G., H. J. Feng y F. R. Sun. "Optimal piston speed ratio analyses for irreversible Carnot refrigerator and heat pump using finite time thermodynamics, finite speed thermodynamics and direct method". Journal of the Energy Institute 84, n.º 2 (1 de mayo de 2011): 105–12. http://dx.doi.org/10.1179/014426011x12968328625595.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
50

Sieniutycz, Stanislaw y Anatoly Tsirlin. "Finding limiting possibilities of thermodynamic systems by optimization". Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 375, n.º 2088 (6 de marzo de 2017): 20160219. http://dx.doi.org/10.1098/rsta.2016.0219.

Texto completo
Resumen
We consider typical problems of the field called the finite time thermodynamics (also called the optimization thermodynamics). We also outline selected formal methods applied to solve these problems and discuss some results obtained. It is shown that by introducing constraints imposed on the intensity of fluxes and on the magnitude of coefficients in kinetic equations, it is possible not only to investigate limiting possibilities of thermodynamic systems within the considered class of irreversible processes, but also to state and solve problems whose formulation has no meaning in the class of reversible processes. This article is part of the themed issue ‘Horizons of cybernetical physics’.
Los estilos APA, Harvard, Vancouver, ISO, etc.
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!

Pasar a la bibliografía