Artículos de revistas sobre el tema "Finite temperature QCD"

Siga este enlace para ver otros tipos de publicaciones sobre el tema: Finite temperature QCD.

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "Finite temperature QCD".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.

1

Christ, Norman H. "Finite temperature QCD". Nuclear Physics A 544, n.º 1-2 (julio de 1992): 81–93. http://dx.doi.org/10.1016/0375-9474(92)90566-3.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

PANDEY, H. C., H. C. CHANDOLA y H. DEHNEN. "COLOR CONFINEMENT AND FINITE TEMPERATURE QCD PHASE TRANSITION". International Journal of Modern Physics A 19, n.º 02 (20 de enero de 2004): 271–85. http://dx.doi.org/10.1142/s0217751x04017471.

Texto completo
Resumen
We study an effective theory of QCD in which the fundamental variables are dual magnetic potentials coupled to the monopole field. Dual dynamics are then used to explain the properties of QCD vacuum at zero temperature as well as at finite temperatures. At zero temperature, the color confinement is realized through the dynamical breaking of magnetic symmetry, which leads to the magnetic condensation of QCD vacuum. The flux tube structure of SU(2) QCD vacuum is investigated by solving the field equations in the low energy regimes of the theory, which guarantees dual superconducting nature of the QCD vacuum. The QCD phase transition at finite temperature is studied by the functional diagrammatic evaluation of the effective potential on the one-loop level. We then obtained analytical expressions for the vacuum expectation value of the condensed monopoles as well as the masses of glueballs from the temperature dependent effective potential. These nonperturbative parameters are also evaluated numerically and used to determine the critical temperature of the QCD phase transition. Finally, it is shown that near the critical temperature (Tc≃0.195 GeV ), continuous reduction of vacuum expectation value (VEV) of the condensed monopoles caused the disappearance of vector and scalar glueball masses, which brings a second order phase transition in pure SU(2) gauge QCD.
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Lawlor, Dale, Simon Hands, Seyong Kim y Jon-Ivar Skullerud. "Thermal Transitions in Dense Two-Colour QCD". EPJ Web of Conferences 274 (2022): 07012. http://dx.doi.org/10.1051/epjconf/202227407012.

Texto completo
Resumen
The infamous sign problem makes it impossible to probe dense (baryon density μB > 0) QCD at temperatures near or below the deconfinement threshold. As a workaround, one can explore QCD-like theories such as twocolour QCD (QC2D) which don’t suffer from this sign problem but are qualitively similar to real QCD. Previous studies on smaller lattice volumes have investigated deconfinement and colour superfluid to normal matter transitions. In this study we look at a larger lattice volume Ns = 24 in an attempt to disentangle finite volume and finite temperature effects. We also fit to a larger number of diquark sources to better allow for extrapolation to zero diquark source.
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Laermann, E. y O. Philipsen. "LATTICE QCD AT FINITE TEMPERATURE". Annual Review of Nuclear and Particle Science 53, n.º 1 (diciembre de 2003): 163–98. http://dx.doi.org/10.1146/annurev.nucl.53.041002.110609.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Petersson, B. y E. Laermann. "Finite Temperature QCD on Quadrics". Progress of Theoretical Physics Supplement 122 (1996): 85–96. http://dx.doi.org/10.1143/ptps.122.85.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Ejiri, Shinji. "Lattice QCD at finite temperature". Nuclear Physics B - Proceedings Supplements 94, n.º 1-3 (marzo de 2001): 19–26. http://dx.doi.org/10.1016/s0920-5632(01)00922-7.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Petreczky, P. "Lattice QCD at finite temperature". Nuclear Physics A 785, n.º 1-2 (marzo de 2007): 10–17. http://dx.doi.org/10.1016/j.nuclphysa.2006.11.129.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Reinhardt, Hugo, Davide Campagnari y Markus Quandt. "Hamiltonian Approach to QCD at Finite Temperature". Universe 5, n.º 2 (22 de enero de 2019): 40. http://dx.doi.org/10.3390/universe5020040.

Texto completo
Resumen
A novel approach to the Hamiltonian formulation of quantum field theory at finite temperature is presented. The temperature is introduced by compactification of a spatial dimension. The whole finite-temperature theory is encoded in the ground state on the spatial manifold S 1 ( L ) × R 2 where L is the length of the compactified dimension which defines the inverse temperature. The approach is then applied to the Hamiltonian formulation of QCD in Coulomb gauge to study the chiral phase transition at finite temperatures.
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Ayala, Alejandro, C. A. Dominguez y M. Loewe. "Finite Temperature QCD Sum Rules: A Review". Advances in High Energy Physics 2017 (2017): 1–24. http://dx.doi.org/10.1155/2017/9291623.

Texto completo
Resumen
The method of QCD sum rules at finite temperature is reviewed, with emphasis on recent results. These include predictions for the survival of charmonium and bottonium states, at and beyond the critical temperature for deconfinement, as later confirmed by lattice QCD simulations. Also included are determinations in the light-quark vector and axial-vector channels, allowing analysing the Weinberg sum rules and predicting the dimuon spectrum in heavy-ion collisions in the region of the rho-meson. Also, in this sector, the determination of the temperature behaviour of the up-down quark mass, together with the pion decay constant, will be described. Finally, an extension of the QCD sum rule method to incorporate finite baryon chemical potential is reviewed.
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

XIANGJUN, CHEN y YASUSHI FUJIMOTO. "FINITE TEMPERATURE QCD AT THREE-LOOP". Modern Physics Letters A 11, n.º 13 (30 de abril de 1996): 1033–36. http://dx.doi.org/10.1142/s0217732396001065.

Texto completo
Resumen
QCD three-loop vacuum graphs are calculated in Feynman gauge. All the temperature-dependent divergences are extracted by using dimensional regularization. Ultraviolet divergences are shown to cancel with each other and the ir divergences remain uncanceled.
Los estilos APA, Harvard, Vancouver, ISO, etc.
11

Petreczky, Péter. "Progress in finite temperature lattice QCD". Journal of Physics G: Nuclear and Particle Physics 35, n.º 4 (18 de marzo de 2008): 044033. http://dx.doi.org/10.1088/0954-3899/35/4/044033.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
12

Borsányi, Szabolcs. "Frontiers of finite temperature lattice QCD". EPJ Web of Conferences 137 (2017): 01006. http://dx.doi.org/10.1051/epjconf/201713701006.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
13

Sakai, Sunao. "Finite Temperature QCD with Wilson Fermions". Progress of Theoretical Physics Supplement 122 (1996): 109–14. http://dx.doi.org/10.1143/ptps.122.109.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
14

Laermann, E. "Finite-temperature QCD on the lattice". Physics of Particles and Nuclei 30, n.º 3 (mayo de 1999): 304. http://dx.doi.org/10.1134/1.953108.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
15

Alexandrou, Constantia, Artan Boriçi, Alessandra Feo, Philippe de Forcrand, Andrea Galli, Fred Jegerlehner y Tetsuya Takaishi. "One-flavour QCD at finite temperature". Nuclear Physics B - Proceedings Supplements 63, n.º 1-3 (abril de 1998): 406–8. http://dx.doi.org/10.1016/s0920-5632(97)00784-6.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
16

Fingberg, J. "Non-relativistic QCD at finite temperature". Nuclear Physics B - Proceedings Supplements 63, n.º 1-3 (abril de 1998): 415–17. http://dx.doi.org/10.1016/s0920-5632(97)00787-1.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
17

de Forcrand, Ph, M. García Pérez, T. Hashimoto, S. Hioki, H. Matsufuru, O. Miyamura, A. Nakamura, I. O. Stamatescu, T. Takaishi y T. Umeda. "Finite temperature QCD on anisotropic lattices". Nuclear Physics B - Proceedings Supplements 73, n.º 1-3 (marzo de 1999): 420–25. http://dx.doi.org/10.1016/s0920-5632(99)85092-0.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
18

Ukawa, Akira. "Progress in finite-temperature lattice QCD". Nuclear Physics A 638, n.º 1-2 (agosto de 1998): 339c—350c. http://dx.doi.org/10.1016/s0375-9474(98)00375-3.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
19

Umeda, T., R. Katayama, H. Matsufuru y O. Miyamura. "Charmonium in finite temperature lattice QCD". Nuclear Physics B - Proceedings Supplements 94, n.º 1-3 (marzo de 2001): 435–38. http://dx.doi.org/10.1016/s0920-5632(01)00997-5.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
20

Gottlieb, Steven. "Finite temperature QCD with dynamical fermions". Nuclear Physics B - Proceedings Supplements 20 (mayo de 1991): 247–57. http://dx.doi.org/10.1016/0920-5632(91)90919-6.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
21

Dominguez, C. A. y M. Loewe. "QCD sum rules at finite temperature". Zeitschrift für Physik C Particles and Fields 51, n.º 1 (marzo de 1991): 69–72. http://dx.doi.org/10.1007/bf01579560.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
22

Ukawa, Akira. "Finite-temperature QCD on the lattice". Nuclear Physics B - Proceedings Supplements 53, n.º 1-3 (febrero de 1997): 106–19. http://dx.doi.org/10.1016/s0920-5632(96)00604-4.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
23

Schramm, S. y M. C. Chu. "Quark correlations in finite-temperature QCD". Physical Review D 48, n.º 5 (1 de septiembre de 1993): 2279–83. http://dx.doi.org/10.1103/physrevd.48.2279.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
24

Petersson, Bengt. "Finite temperature QCD: Lattice '92 review". Nuclear Physics B - Proceedings Supplements 30 (marzo de 1993): 66–80. http://dx.doi.org/10.1016/0920-5632(93)90178-9.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
25

Ogilvie, Michael. "Interfacial phenomena in finite temperature QCD". Nuclear Physics B - Proceedings Supplements 34 (abril de 1994): 275–78. http://dx.doi.org/10.1016/0920-5632(94)90365-4.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
26

Kanaya, Kazuyuki. "Finite temperature QCD on the lattice". Nuclear Physics B - Proceedings Supplements 47, n.º 1-3 (marzo de 1996): 144–59. http://dx.doi.org/10.1016/0920-5632(96)00040-0.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
27

Kalashnikov, O. K. "QCD infrared pole at finite temperature". Physics Letters B 279, n.º 3-4 (abril de 1992): 367–72. http://dx.doi.org/10.1016/0370-2693(92)90406-t.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
28

PETRECZKY, PÉTER. "QCD AT NONZERO TEMPERATURE: BULK PROPERTIES AND HEAVY QUARKS". Modern Physics Letters A 25, n.º 37 (7 de diciembre de 2010): 3081–92. http://dx.doi.org/10.1142/s0217732310034523.

Texto completo
Resumen
We review recent progress in lattice QCD at nonzero temperature with emphasis on the calculations of equation of state and the properties of heavy quark–anti-quark pairs at high temperatures. We also briefly discuss the deconfinement and chiral symmetry restoring aspects of the QCD transition at finite temperature.
Los estilos APA, Harvard, Vancouver, ISO, etc.
29

Issifu, Adamu y Francisco A. Brito. "The (De)confinement Transition in Tachyonic Matter at Finite Temperature". Advances in High Energy Physics 2019 (27 de febrero de 2019): 1–9. http://dx.doi.org/10.1155/2019/9450367.

Texto completo
Resumen
We present a QCD motivated model that mimics QCD theory. We examine the characteristics of the gauge field coupled with the color dielectric function (G) in the presence of temperature (T). The aim is to achieve confinement at low temperatures T<Tc, (Tc is the critical temperature), similar to what occurs among quarks and gluons in hadrons at low energies. Also, we investigate scalar glueballs and QCD string tension and effect of temperature on them. To achieve this, we use the phenomenon of color dielectric function in gauge fields in a slowly varying tachyon medium. This method is suitable for analytically computing the resulting potential, glueball masses, and the string tension associated with the confinement at a finite temperature. We demonstrate that the color dielectric function changes Maxwell’s equation as a function of the tachyon fields and induces the electric field in a way that brings about confinement during the tachyon condensation below the critical temperature.
Los estilos APA, Harvard, Vancouver, ISO, etc.
30

GAMBOA, J., J. LÓPEZ-SARRIÓN, M. LOEWE y F. MÉNDEZ. "CENTRAL CHARGES AND EFFECTIVE ACTION AT FINITE TEMPERATURE AND DENSITY". Modern Physics Letters A 19, n.º 03 (30 de enero de 2004): 223–38. http://dx.doi.org/10.1142/s0217732304012952.

Texto completo
Resumen
The current algebra for gauge theories like QCD at finite temperature and density is studied. We start considering, the massless Thirring model at finite temperature and density, finding an explicit expression for the current algebra. The central charge only depends on the coupling constant and there are not new effects due to temperature and density. From this calculation, we argue how to compute the central charge for QCD4 and we argue why the central charge in four dimensions could be modified by finite temperature and density.
Los estilos APA, Harvard, Vancouver, ISO, etc.
31

WANG, MING-MIN, YU JIANG, BIN WANG, WEI-MIN SUN y HONG-SHI ZONG. "CALCULATION OF BULK VISCOSITY OF QCD AT ZERO TEMPERATURE AND FINITE CHEMICAL POTENTIAL". Modern Physics Letters A 26, n.º 24 (10 de agosto de 2011): 1797–806. http://dx.doi.org/10.1142/s0217732311036164.

Texto completo
Resumen
In this paper, based on Kubo's formula and the QCD low energy theorem, we propose a direct formula for calculating the bulk viscosity of QCD at finite chemical potential μ and zero temperature. According to this formula, the bulk viscosity at finite μ is totally determined by the dressed quark propagator at finite μ. We then use a dynamical, confining Dyson–Schwinger equation model of QCD to calculate the bulk viscosity at finite μ. It is found that no sharp peak behavior of the bulk viscosity at finite μ is observed, which is quite different from that of the bulk viscosity at finite temperature.
Los estilos APA, Harvard, Vancouver, ISO, etc.
32

Billó, M., M. Caselle, A. d'Adda y S. Panzeri. "Finite Temperature Lattice QCD in the Large N Limit". International Journal of Modern Physics A 12, n.º 10 (20 de abril de 1997): 1783–845. http://dx.doi.org/10.1142/s0217751x97001158.

Texto completo
Resumen
Our aim is to give a self-contained review of recent advances in the analytic description of the deconfinement transition and determination of the deconfinement temperature in lattice QCD at large N. We also include some new results, as for instance in the comparison of the analytic results with Monte Carlo simulations. We first review the general set-up of finite temperature lattice gauge theories, using asymmetric lattices, and develop a consistent perturbative expansion in the coupling βs of the spacelike plaquettes. We study in detail the effective models for the Polyakov loop obtained, in the zeroth order approximation in βs, both from the Wilson action (symmetric lattice) and from the heat kernel action (completely asymmetric lattice). The distinctive feature of the heat kernel model is its relation with two-dimensional QCD on a cylinder; the Wilson model, on the other hand, can be exactly reduced to a twisted one-plaquette model via a procedure of the Eguchi–Kawai type. In the weak coupling regime both models can be related to exactly solvable Kazakov–Migdal matrix models. The instability of the weak coupling solution is due in both cases to a condensation of instantons; in the heat kernel case, this is directly related to the Douglas–Kazakov transition of QCD2. A detailed analysis of these results provides rather accurate predictions of the deconfinement temperature. In spite of the zeroth order approximation they are in good agreement with the Monte Carlo simulations in 2 + 1 dimensions, while in 3 + 1 dimensions they only agree with the Monte Carlo results away from the continuum limit.
Los estilos APA, Harvard, Vancouver, ISO, etc.
33

Nieto, Agustin. "Perturbative QCD at High Temperature". International Journal of Modern Physics A 12, n.º 08 (30 de marzo de 1997): 1431–64. http://dx.doi.org/10.1142/s0217751x97001043.

Texto completo
Resumen
Recent developments of perturbation theory at finite temperature based on effective field theory methods are reviewed. These methods allow the contributions from the different scales to be separated and the perturbative series to be reorganized. The construction of the effective field theory is shown in detail for ϕ4 theory and QCD. It is applied to the evaluation of the free energy of QCD at order g5 and the calculation of the g6 term is outlined. Implications for the application of perturbative QCD to the quark–gluon plasma are also discussed.
Los estilos APA, Harvard, Vancouver, ISO, etc.
34

Kashiwa, Kouji. "Imaginary Chemical Potential, NJL-Type Model and Confinement–Deconfinement Transition". Symmetry 11, n.º 4 (18 de abril de 2019): 562. http://dx.doi.org/10.3390/sym11040562.

Texto completo
Resumen
In this review, we present of an overview of several interesting properties of QCD at finite imaginary chemical potential and those applications to exploring the QCD phase diagram. The most important properties of QCD at a finite imaginary chemical potential are the Roberge–Weiss periodicity and the transition. We summarize how these properties play a crucial role in understanding QCD properties at finite temperature and density. This review covers several topics in the investigation of the QCD phase diagram based on the imaginary chemical potential.
Los estilos APA, Harvard, Vancouver, ISO, etc.
35

LOMBARDO, M. P. "Lattice QCD at Finite Temperature and Density". Modern Physics Letters A 22, n.º 07n10 (28 de marzo de 2007): 457–71. http://dx.doi.org/10.1142/s0217732307023055.

Texto completo
Resumen
A general introduction into the subject aimed at a general theoretical physics audience. We introduce the sign problem posed by finite density lattice QCD, and we discuss the main methods proposed to circumvent it, with emphasis on the imaginary chemical potential approach. The interrelation between Taylor expansion and analytic continuation from imaginary chemical potential is discussed in detail. The main applications to the calculation of the critical line, and to the thermodynamics of the hot and normal phase are reviewed.
Los estilos APA, Harvard, Vancouver, ISO, etc.
36

Niégawa, Akira. "Perturbative QCD at Finite Temperature and Density". Progress of Theoretical Physics Supplement 129 (1997): 105–18. http://dx.doi.org/10.1143/ptps.129.105.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
37

Ejiri, Shinji. "Lattice QCD at Finite Temperature and Density". Progress of Theoretical Physics Supplement 186 (1 de octubre de 2010): 510–15. http://dx.doi.org/10.1143/ptps.186.510.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
38

Philipsen, O. "Lattice QCD at finite temperature and density". European Physical Journal Special Topics 152, n.º 1 (diciembre de 2007): 29–60. http://dx.doi.org/10.1140/epjst/e2007-00376-3.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
39

Noronha-Hostler, J., R. Bellwied, J. Günther, P. Parotto, A. Pasztor, I. Portillo Vazquez y C. Ratti. "Strangeness at finite temperature from Lattice QCD". Journal of Physics: Conference Series 779 (enero de 2017): 012050. http://dx.doi.org/10.1088/1742-6596/779/1/012050.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
40

Kim, Y. "AdS/QCD at finite density and temperature". Physics of Atomic Nuclei 75, n.º 7 (julio de 2012): 870–72. http://dx.doi.org/10.1134/s1063778812060208.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
41

Chen, Xianjun y Yasushi Fujimoto. "ERRATA: FINITE TEMPERATURE QCD AT THREE-LOOP". Modern Physics Letters A 11, n.º 18 (14 de junio de 1996): 1529. http://dx.doi.org/10.1142/s0217732396003155.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
42

Azcoiti, Vicente y Angelo Galante. "Baryonic thermal fluctuations in finite temperature QCD". Physics Letters B 444, n.º 3-4 (diciembre de 1998): 421–26. http://dx.doi.org/10.1016/s0370-2693(98)01432-4.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
43

Miranda, Alex S., C. A. Ballon Bayona, Henrique Boschi-Filho y Nelson R. F. Braga. "Glueballs at finite temperature from AdS/QCD". Nuclear Physics B - Proceedings Supplements 199, n.º 1 (febrero de 2010): 107–12. http://dx.doi.org/10.1016/j.nuclphysbps.2010.02.013.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
44

Chu, M. C. y S. Schramm. "Instanton content of finite temperature QCD matter". Physical Review D 51, n.º 8 (15 de abril de 1995): 4580–86. http://dx.doi.org/10.1103/physrevd.51.4580.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
45

Markum, H., R. Pullirsch, K. Rabitsch y T. Wettig. "Quantum chaos in QCD at finite temperature". Nuclear Physics B - Proceedings Supplements 63, n.º 1-3 (abril de 1998): 832–34. http://dx.doi.org/10.1016/s0920-5632(97)00914-6.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
46

Karsch, F. "Lattice QCD at Finite Temperature and Density". Nuclear Physics B - Proceedings Supplements 83-84, n.º 1-3 (marzo de 2000): 14–23. http://dx.doi.org/10.1016/s0920-5632(00)00195-x.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
47

Karsch, Frithjof. "Lattice QCD at finite temperature and density". Nuclear Physics B - Proceedings Supplements 83-84 (abril de 2000): 14–23. http://dx.doi.org/10.1016/s0920-5632(00)91591-3.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
48

Mishra, A., H. Mishra, S. P. Misra y S. N. Nayak. "QCD at finite temperature—a variational approach". Zeitschrift für Physik C Particles and Fields 57, n.º 2 (junio de 1993): 233–40. http://dx.doi.org/10.1007/bf01565054.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
49

Dominguez, C. A. "Colour deconfinement in QCD at finite temperature". Nuclear Physics B - Proceedings Supplements 15 (junio de 1990): 225–27. http://dx.doi.org/10.1016/0920-5632(90)90020-u.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
50

Gocksch, Andreas. "Quark screening lengths in finite temperature QCD". Nuclear Physics B - Proceedings Supplements 20 (mayo de 1991): 284–87. http://dx.doi.org/10.1016/0920-5632(91)90926-6.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!

Pasar a la bibliografía