Literatura académica sobre el tema "Finite speed of propagation"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Finite speed of propagation".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Finite speed of propagation"
Mariano, Paolo Maria y Marco Spadini. "Sources of Finite Speed Temperature Propagation". Journal of Non-Equilibrium Thermodynamics 47, n.º 2 (9 de febrero de 2022): 165–78. http://dx.doi.org/10.1515/jnet-2021-0078.
Texto completoFujishima, Y. y J. Habermann. "Finite speed propagation for parabolic quasiminimizers". Nonlinear Analysis 198 (septiembre de 2020): 111891. http://dx.doi.org/10.1016/j.na.2020.111891.
Texto completoRoe, John. "Finite propagation speed and Connes' foliation algebra". Mathematical Proceedings of the Cambridge Philosophical Society 102, n.º 3 (noviembre de 1987): 459–66. http://dx.doi.org/10.1017/s0305004100067517.
Texto completoAndreu, F., V. Caselles, J. M. Mazón y S. Moll. "Some diffusion equations with finite propagation speed". PAMM 7, n.º 1 (diciembre de 2007): 1040101–2. http://dx.doi.org/10.1002/pamm.200700126.
Texto completoHarvey, B. J., J. Methven y M. H. P. Ambaum. "Rossby wave propagation on potential vorticity fronts with finite width". Journal of Fluid Mechanics 794 (6 de abril de 2016): 775–97. http://dx.doi.org/10.1017/jfm.2016.180.
Texto completoAndreu, Fuensanta, Vicent Caselles, José M. Mazón y Salvador Moll. "Finite Propagation Speed for Limited Flux Diffusion Equations". Archive for Rational Mechanics and Analysis 182, n.º 2 (3 de abril de 2006): 269–97. http://dx.doi.org/10.1007/s00205-006-0428-3.
Texto completoConstantin, Adrian. "Finite propagation speed for the Camassa–Holm equation". Journal of Mathematical Physics 46, n.º 2 (febrero de 2005): 023506. http://dx.doi.org/10.1063/1.1845603.
Texto completoMcLaughlin, Joyce R. y Jeong-Rock Yoon. "Finite Propagation Speed of Waves in Anisotropic Viscoelastic Media". SIAM Journal on Applied Mathematics 77, n.º 6 (enero de 2017): 1921–36. http://dx.doi.org/10.1137/16m1099959.
Texto completoBonafede, S., G. R. Cirmi y A. F. Tedeev. "Finite Speed of Propagation for the Porous Media Equation". SIAM Journal on Mathematical Analysis 29, n.º 6 (noviembre de 1998): 1381–98. http://dx.doi.org/10.1137/s0036141096298072.
Texto completoRemling, Christian. "Finite propagation speed and kernel estimates for Schrödinger operators". Proceedings of the American Mathematical Society 135, n.º 10 (1 de octubre de 2007): 3329–41. http://dx.doi.org/10.1090/s0002-9939-07-08857-0.
Texto completoTesis sobre el tema "Finite speed of propagation"
Barua, Suchi. "Modelling and analysis of semiconductor optical amplifiers for high-speed communication systems using finite-difference beam propagation method". Thesis, Curtin University, 2014. http://hdl.handle.net/20.500.11937/1406.
Texto completoYao, Lan. "Experimental and numerical study of dynamic crack propagation in ice under impact loading". Thesis, Lyon, 2016. http://www.theses.fr/2016LYSEI043/document.
Texto completoThe phenomena relating to the fracture behaviour of ice under impact loading are common in civil engineering, for offshore structures, and de-ice processes. To reduce the damage caused by ice impact and to optimize the design of structures or machines, the investigation on the dynamic fracture behaviour of ice under impact loading is needed. This work focuses on the dynamic crack propagation in ice under impact loading. A series of impact experiments is conducted with the Split Hopkinson Pressure Bar. The temperature is controlled by a cooling chamber. The dynamic process of the ice fracture is recorded with a high speed camera and then analysed by image methods. The extended finite element method is complementary to evaluate dynamic fracture toughness at the onset and during the propagation. The dynamic behaviour of ice under impact loading is firstly investigated with cylindrical specimen in order to obtain the dynamic stress-strain relation which will be used in later simulation. We observed multiple cracks in the experiments on the cylindrical specimens but their study is too complicated. To better understand the crack propagation in ice, a rectangular specimen with a pre-crack is employed. By controlling the impact velocity, the specimen fractures with a main crack starting from the pre-crack. The crack propagation history and velocity are evaluated by image analysis based on grey-scale and digital image correlation. The main crack propagation velocity is identified in the range of 450 to 610 m/s which confirms the previous results. It slightly varies during the propagation, first increases and keeps constant and then decreases. The experimentally obtained parameters, such as impact velocity and crack propagation velocity, are used for simulations with the extended finite element method. The dynamic crack initiation toughness and dynamic crack growth toughness are determined when the simulation fits the experiments. The results indicate that the dynamic crack growth toughness is linearly associated with crack propagation velocity and seems temperature independent in the range -15 to -1 degrees
Li, Liangpan. "Local spectral asymptotics and heat kernel bounds for Dirac and Laplace operators". Thesis, Loughborough University, 2016. https://dspace.lboro.ac.uk/2134/23004.
Texto completoBacon, David R. "Finite amplitude propagation in acoustic beams". Thesis, University of Bath, 1986. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.483000.
Texto completoMeyer, Arnd, Frank Rabold y Matthias Scherzer. "Efficient finite element simulation of crack propagation". Universitätsbibliothek Chemnitz, 2006. http://nbn-resolving.de/urn:nbn:de:swb:ch1-200601402.
Texto completoChao, Jenny C. 1976. "The propagation mechanism of high speed turbulent deflagrations /". Thesis, McGill University, 2002. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=33961.
Texto completoOrdovas, Miquel Roland. "Covariant projection finite elements for transient wave propagation". Thesis, Imperial College London, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.342285.
Texto completoRitchie, Stephen John Kerr. "The high speed double torsion test". Thesis, Imperial College London, 1996. http://hdl.handle.net/10044/1/11437.
Texto completoJurgens, Henry Martin. "High-accuracy finite-difference schemes for linear wave propagation". Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp02/NQ27970.pdf.
Texto completoLilla, Antonio de. "Finite difference seismic wave propagation using variable grid sizes". Thesis, Massachusetts Institute of Technology, 1997. http://hdl.handle.net/1721.1/54427.
Texto completoIncludes bibliographical references (leaves 115-118).
by Antonio De Lilla.
M.S.
Libros sobre el tema "Finite speed of propagation"
Pommier, Sylvie, Anthony Gravouil, Alain Combescure y Nicolas Moës. Extended Finite Element Method for Crack Propagation. Hoboken, NJ USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118622650.
Texto completoT, McDaniel S., ed. Ocean acoustic propagation by finite difference methods. Oxford: Pergamon Press, 1988.
Buscar texto completoZingg, D. W. An optimized finite-difference scheme for wave propagation problems. Washington, D. C: AIAA, 1993.
Buscar texto completoE, Turkel y Institute for Computer Applications in Science and Engineering., eds. Accurate finite difference methods for time-harmonic wave propagation. Hampton, Va: Institute for COmputer Applications in Science and Engineering, NASA Langley Research Center, 1994.
Buscar texto completoJurgens, Henry Martin. High-accuracy finite-difference schemes for linear wave propagation. Ottawa: National Library of Canada = Bibliothèque nationale du Canada, 1997.
Buscar texto completoLewicki, David G. Effect of speed (centrifugal load) on gear crack propagation direction. [Cleveland, Ohio]: National Aeronautics and Space Administration, Glenn Research Center, 2001.
Buscar texto completoEpstein, Eric Martin. A comparison of finite-difference schemes for linear wave propagation problems. [Toronto, Ont.]: University of Toronto, Graduate Dept. of Aerospace Science and Engineering, 1995.
Buscar texto completoEpstein, Eric Martin. A comparison of finite-difference schemes for linear wave propagation problems. Ottawa: National Library of Canada, 1994.
Buscar texto completoLeVeque, Randall J. High resolution finite volume methods on arbitrary grids via wave propagation. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1988.
Buscar texto completoH, Hung H., ed. Wave propagation for train-induced vibrations: A finite/infinite element approach. Hackensack, NJ: World Scientific, 2009.
Buscar texto completoCapítulos de libros sobre el tema "Finite speed of propagation"
Andreu, Fuensanta, Vicent Caselles y José M. Mazón. "Diffusion Equations with Finite Speed of Propagation". En Functional Analysis and Evolution Equations, 17–34. Basel: Birkhäuser Basel, 2007. http://dx.doi.org/10.1007/978-3-7643-7794-6_2.
Texto completoCowling, Michael G. y Alessio Martini. "Sub-Finsler Geometry and Finite Propagation Speed". En Trends in Harmonic Analysis, 147–205. Milano: Springer Milan, 2013. http://dx.doi.org/10.1007/978-88-470-2853-1_8.
Texto completoHutt, Axel. "Finite Propagation Speeds in Spatially Extended Systems". En Understanding Complex Systems, 151–76. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-02329-3_5.
Texto completoMarinov, P. y P. Kiriazov. "On the propagation of temperature with finite wave speed in two-composite linear thermoelastic materials". En Progress and Trends in Rheology II, 114–17. Heidelberg: Steinkopff, 1988. http://dx.doi.org/10.1007/978-3-642-49337-9_29.
Texto completoWeik, Martin H. "propagation speed". En Computer Science and Communications Dictionary, 1357. Boston, MA: Springer US, 2000. http://dx.doi.org/10.1007/1-4020-0613-6_14949.
Texto completoBancal, Jean-Daniel. "Finite-Speed Hidden Influences". En Springer Theses, 89–96. Cham: Springer International Publishing, 2013. http://dx.doi.org/10.1007/978-3-319-01183-7_9.
Texto completoRass, Linda y John Radcliffe. "The asymptotic speed of propagation". En Mathematical Surveys and Monographs, 99–133. Providence, Rhode Island: American Mathematical Society, 2003. http://dx.doi.org/10.1090/surv/102/05.
Texto completoGdoutos, E. E. "Crack Speed During Dynamic Crack Propagation". En Problems of Fracture Mechanics and Fatigue, 365–67. Dordrecht: Springer Netherlands, 2003. http://dx.doi.org/10.1007/978-94-017-2774-7_79.
Texto completoGdoutos, E. E. "Speed and Acceleration of Crack Propagation". En Problems of Fracture Mechanics and Fatigue, 377–82. Dordrecht: Springer Netherlands, 2003. http://dx.doi.org/10.1007/978-94-017-2774-7_82.
Texto completoAchar, Ramachandra y Michel Nakhla. "Minimum Realization of Reduced-Order High-Speed Interconnect Macromodels". En Signal Propagation on Interconnects, 23–44. Boston, MA: Springer US, 1998. http://dx.doi.org/10.1007/978-1-4757-6512-0_3.
Texto completoActas de conferencias sobre el tema "Finite speed of propagation"
Shnaid, Isaac. "Governing Equations for Heat Conduction With Finite Speed of Heat Propagation". En ASME 2002 International Mechanical Engineering Congress and Exposition. ASMEDC, 2002. http://dx.doi.org/10.1115/imece2002-33855.
Texto completoVafaeian, Behzad, Yuchin Wu, Michael R. Doschak, Marwan El-Rich, Tarek El-Bialy y Samer Adeeb. "Finite Element Simulation of Ultrasound Propagation in Trabecular Bone". En ASME 2013 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/imece2013-64035.
Texto completoHobæk, H. "Experiment on Finite Amplitude Sound Propagation in a Fluid with a Strong Sound Speed Gradient". En INNOVATIONS IN NONLINEAR ACOUSTICS: ISNA17 - 17th International Symposium on Nonlinear Acoustics including the International Sonic Boom Forum. AIP, 2006. http://dx.doi.org/10.1063/1.2210424.
Texto completoHermansson, Bjorn y David Yevick. "Accurate field propagation procedures". En OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1990. http://dx.doi.org/10.1364/oam.1990.tua6.
Texto completoNg, Eu-gene, Tahany I. El-Wardany, Mihaela Dumitrescu y Mohamed A. Elbestawi. "3D Finite Element Analysis for the High Speed Machining of Hardened Steel". En ASME 2002 International Mechanical Engineering Congress and Exposition. ASMEDC, 2002. http://dx.doi.org/10.1115/imece2002-33633.
Texto completoFonzo, Andrea, Pietro Salvini, Massimo Di Biagio y Gianluca Mannucci. "Full History Burst Test Through Finite Element Analysis". En 2002 4th International Pipeline Conference. ASMEDC, 2002. http://dx.doi.org/10.1115/ipc2002-27120.
Texto completoSun, C. T. y C. Han. "Dynamic Mode I Fracture Toughness Test of Composites Using a Kolsky Bar". En ASME 2001 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2001. http://dx.doi.org/10.1115/imece2001/amd-25404.
Texto completoBuchanan, W. J. "Application of 3D finite-difference time-domain (FDTD) method to predict radiation from a PCB with high speed pulse propagation". En 9th International Conference on Electromagnetic Compatibility. IEE, 1994. http://dx.doi.org/10.1049/cp:19940711.
Texto completoShim, Do-Jun, Gery Wilkowski, David Rudland, Brian Rothwell y James Merritt. "Numerical Simulation of Dynamic Ductile Fracture Propagation Using Cohesive Zone Modeling". En 2008 7th International Pipeline Conference. ASMEDC, 2008. http://dx.doi.org/10.1115/ipc2008-64049.
Texto completoZhu, Zheng H. y Shaker A. Meguid. "Dynamic Stability Analysis of Aerial Refueling Hose/Drogue System by Finite Element Method". En ASME 2008 International Mechanical Engineering Congress and Exposition. ASMEDC, 2008. http://dx.doi.org/10.1115/imece2008-67103.
Texto completoInformes sobre el tema "Finite speed of propagation"
Henyey, Frank S. Acoustic Propagation Through Sound Speed Heterogeneity. Fort Belvoir, VA: Defense Technical Information Center, septiembre de 2009. http://dx.doi.org/10.21236/ada531751.
Texto completoMoran, Mark, Steve Ketcham y Roy Greenfield. Three Dimensional Finite-Difference Seismic Signal Propagation. Fort Belvoir, VA: Defense Technical Information Center, agosto de 1999. http://dx.doi.org/10.21236/ada393626.
Texto completoJha, Ratneshwar. Wavelet Spectral Finite Elements for Wave Propagation in Composite Plates. Fort Belvoir, VA: Defense Technical Information Center, febrero de 2012. http://dx.doi.org/10.21236/ada565193.
Texto completoLeVeque, Randall J. High Resolution Finite Volume Methods on Arbitrary Grids via Wave Propagation. Fort Belvoir, VA: Defense Technical Information Center, octubre de 1987. http://dx.doi.org/10.21236/ada211691.
Texto completoTeng, Yu-chiung. Finite-Element Modeling of the Blockage and Scattering of LG Propagation. Fort Belvoir, VA: Defense Technical Information Center, noviembre de 1993. http://dx.doi.org/10.21236/ada277430.
Texto completoPetersson, N. y B. Sjogreen. Serpentine: Finite Difference Methods for Wave Propagation in Second Order Formulation. Office of Scientific and Technical Information (OSTI), marzo de 2012. http://dx.doi.org/10.2172/1046802.
Texto completoGao, Kai. Generalized and High-Order Multiscale Finite-Element Methods for Seismic Wave Propagation. Office of Scientific and Technical Information (OSTI), noviembre de 2018. http://dx.doi.org/10.2172/1481964.
Texto completoWilson, D. K. y Lanbo Liu. Finite-Difference, Time-Domain Simulation of Sound Propagation in a Dynamic Atmosphere. Fort Belvoir, VA: Defense Technical Information Center, mayo de 2004. http://dx.doi.org/10.21236/ada423222.
Texto completoPaxton, Alan H. Propagation of 3-D Beams Using a Finite-Difference Algorithm: Practical Considerations. Fort Belvoir, VA: Defense Technical Information Center, mayo de 2011. http://dx.doi.org/10.21236/ada544032.
Texto completoKees, C. E. Speed of Propagation for Some Models of Two-Phase Flow in Porous Media. Fort Belvoir, VA: Defense Technical Information Center, enero de 2004. http://dx.doi.org/10.21236/ada445637.
Texto completo