Siga este enlace para ver otros tipos de publicaciones sobre el tema: Finite groups.

Artículos de revistas sobre el tema "Finite groups"

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "Finite groups".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.

1

A. Jund, Asaad y Haval M. Mohammed Salih. "Result Involution Graphs of Finite Groups". Journal of Zankoy Sulaimani - Part A 23, n.º 1 (20 de junio de 2021): 113–18. http://dx.doi.org/10.17656/jzs.10846.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Zhang, Jinshan, Zhencai Shen y Jiangtao Shi. "Finite groups with few vanishing elements". Glasnik Matematicki 49, n.º 1 (8 de junio de 2014): 83–103. http://dx.doi.org/10.3336/gm.49.1.07.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Kondrat'ev, A. S., A. A. Makhnev y A. I. Starostin. "Finite groups". Journal of Soviet Mathematics 44, n.º 3 (febrero de 1989): 237–318. http://dx.doi.org/10.1007/bf01676868.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Andruskiewitsch, N. y G. A. García. "Extensions of Finite Quantum Groups by Finite Groups". Transformation Groups 14, n.º 1 (18 de noviembre de 2008): 1–27. http://dx.doi.org/10.1007/s00031-008-9039-4.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Conrad, Paul F. y Jorge Martinez. "Locally finite conditions on lattice-ordered groups". Czechoslovak Mathematical Journal 39, n.º 3 (1989): 432–44. http://dx.doi.org/10.21136/cmj.1989.102314.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Chen, Yuanqian, Paul Conrad y Michael Darnel. "Finite-valued subgroups of lattice-ordered groups". Czechoslovak Mathematical Journal 46, n.º 3 (1996): 501–12. http://dx.doi.org/10.21136/cmj.1996.127311.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Kniahina, V. N. y V. S. Monakhov. "Finite groups with semi-subnormal Schmidt subgroups". Algebra and Discrete Mathematics 29, n.º 1 (2020): 66–73. http://dx.doi.org/10.12958/adm1376.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Cao, Jian Ji y Xiu Yun Guo. "Finite NPDM-groups". Acta Mathematica Sinica, English Series 37, n.º 2 (febrero de 2021): 306–14. http://dx.doi.org/10.1007/s10114-021-8047-3.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Burn, R. P., L. C. Grove y C. T. Benson. "Finite Reflection Groups". Mathematical Gazette 70, n.º 451 (marzo de 1986): 77. http://dx.doi.org/10.2307/3615867.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Stonehewer, S. E. "FINITE SOLUBLE GROUPS". Bulletin of the London Mathematical Society 25, n.º 5 (septiembre de 1993): 505–6. http://dx.doi.org/10.1112/blms/25.5.505.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
11

MCIVER, ANNABELLE y PETER M. NEUMANN. "ENUMERATING FINITE GROUPS". Quarterly Journal of Mathematics 38, n.º 4 (1987): 473–88. http://dx.doi.org/10.1093/qmath/38.4.473.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
12

Cherlin, Gregory y Ulrich Felgner. "Homogeneous Finite Groups". Journal of the London Mathematical Society 62, n.º 3 (diciembre de 2000): 784–94. http://dx.doi.org/10.1112/s0024610700001484.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
13

Blackburn, Norman, Marian Deaconescu y Avinoam Mann. "Finite equilibrated groups". Mathematical Proceedings of the Cambridge Philosophical Society 120, n.º 4 (noviembre de 1996): 579–88. http://dx.doi.org/10.1017/s0305004100001560.

Texto completo
Resumen
If H, K are subgroups of a group G, then HK is a subgroup of G if and only if HK = KH. This condition certainly holds if H ≤ NG(K) or K ≤ NG(H). But the majority of groups can also be expressed as HK, where neither H nor K is normal. In this paper we consider groups G for which no subgroup G1 can be expressed as the product of non-normal subgroups of G1. Such a group is said to be equilibrated. Thus G is equilibrated if and only if either H ≤ NG(K) or K ≤ NG(H) whenever H, K and HK are subgroups of G.
Los estilos APA, Harvard, Vancouver, ISO, etc.
14

Heineken, Hermann. "Finite complete groups". Rendiconti del Seminario Matematico e Fisico di Milano 54, n.º 1 (diciembre de 1985): 29–34. http://dx.doi.org/10.1007/bf02924848.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
15

Starostin, A. I. "Finite p-groups". Journal of Mathematical Sciences 88, n.º 4 (febrero de 1998): 559–85. http://dx.doi.org/10.1007/bf02365317.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
16

Myl’nikov, A. L. "Finite tangled groups". Siberian Mathematical Journal 48, n.º 2 (marzo de 2007): 295–99. http://dx.doi.org/10.1007/s11202-007-0030-4.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
17

Myasnikov, Alexei y Denis Osin. "Algorithmically finite groups". Journal of Pure and Applied Algebra 215, n.º 11 (noviembre de 2011): 2789–96. http://dx.doi.org/10.1016/j.jpaa.2011.03.019.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
18

Huang, Hua-Lin, Yuping Yang y Yinhuo Zhang. "On nondiagonal finite quasi-quantum groups over finite abelian groups". Selecta Mathematica 24, n.º 5 (7 de junio de 2018): 4197–221. http://dx.doi.org/10.1007/s00029-018-0420-4.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
19

Reid, J. D. "On Finite Groups and Finite Fields". American Mathematical Monthly 98, n.º 6 (junio de 1991): 549. http://dx.doi.org/10.2307/2324878.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
20

WILSON, JOHN S. "FINITE AXIOMATIZATION OF FINITE SOLUBLE GROUPS". Journal of the London Mathematical Society 74, n.º 03 (diciembre de 2006): 566–82. http://dx.doi.org/10.1112/s0024610706023106.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
21

Lubotzky, Alexander y Avinoam Mann. "Residually finite groups of finite rank". Mathematical Proceedings of the Cambridge Philosophical Society 106, n.º 3 (noviembre de 1989): 385–88. http://dx.doi.org/10.1017/s0305004100068110.

Texto completo
Resumen
The recent constructions, by Rips and Olshanskii, of infinite groups with all proper subgroups of prime order, and similar ‘monsters’, show that even under the imposition of apparently very strong finiteness conditions, the structure of infinite groups can be rather weird. Thus it seems reasonable to impose the type of condition that enables us to apply the theory of finite groups. Two such conditions are local finiteness and residual finiteness, and here we are interested in the latter. Specifically, we consider residually finite groups of finite rank, where a group is said to have rank r, if all finitely generated subgroups of it can be generated by r elements. Recall that a group is said to be virtually of some property, if it has a subgroup of finite index with this property. We prove the following result:Theorem 1. A residually finite group of finite rank is virtually locally soluble.
Los estilos APA, Harvard, Vancouver, ISO, etc.
22

Reid, J. D. "On Finite Groups and Finite Fields". American Mathematical Monthly 98, n.º 6 (junio de 1991): 549–51. http://dx.doi.org/10.1080/00029890.1991.11995756.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
23

Wei, X., A. Kh Zhurtov, D. V. Lytkina y V. D. Mazurov. "Finite groups close to Frobenius groups". Sibirskii matematicheskii zhurnal 60, n.º 5 (30 de agosto de 2019): 1035–40. http://dx.doi.org/10.33048/smzh.2019.60.504.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
24

Sozutov, A. I. "Groups Saturated with Finite Frobenius Groups". Mathematical Notes 109, n.º 1-2 (enero de 2021): 270–79. http://dx.doi.org/10.1134/s0001434621010314.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
25

Wei, X., A. Kh Zhurtov, D. V. Lytkina y V. D. Mazurov. "Finite Groups Close to Frobenius Groups". Siberian Mathematical Journal 60, n.º 5 (septiembre de 2019): 805–9. http://dx.doi.org/10.1134/s0037446619050045.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
26

Lubotzky, Alexander y Avinoam Mann. "Powerful p-groups. I. Finite groups". Journal of Algebra 105, n.º 2 (febrero de 1987): 484–505. http://dx.doi.org/10.1016/0021-8693(87)90211-0.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
27

Lytkina, D. V. "Groups saturated by finite simple groups". Algebra and Logic 48, n.º 5 (septiembre de 2009): 357–70. http://dx.doi.org/10.1007/s10469-009-9063-z.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
28

Pettet, Martin R. "Locally finite groups as automorphism groups". Archiv der Mathematik 48, n.º 1 (enero de 1987): 1–9. http://dx.doi.org/10.1007/bf01196346.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
29

Hussain, Muhammad Tanveer y Shamsher Ullah. "On nearly SΦ-normal subgroups of finite groups". Algebra and Discrete Mathematics 36, n.º 2 (2023): 151–65. http://dx.doi.org/10.12958/adm2007.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
30

Li, Changwen. "On weakly s-normal subgroups of finite groups". Algebra and Discrete Mathematics 36, n.º 2 (2023): 179–87. http://dx.doi.org/10.12958/adm1673.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
31

Trofimuk, Alexander. "FINITE GROUPS WITH GIVEN SYSTEMS OF PROPERMUTABLE SUBGROUPS". Eurasian Mathematical Journal 15, n.º 1 (2024): 91–97. http://dx.doi.org/10.32523/2077-9879-2024-15-1-91-97.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
32

Zimmerman, Jay. "Finite Groups Which are Automorphism Groups of Infinite Groups Only". Canadian Mathematical Bulletin 28, n.º 1 (1 de marzo de 1985): 84–90. http://dx.doi.org/10.4153/cmb-1985-008-4.

Texto completo
Resumen
AbstractThe object of this paper is to exhibit an infinite set of finite semisimple groups H, each of which is the automorphism group of some infinite group, but of no finite group. We begin the construction by choosing a finite simple group S whose outer automorphism group and Schur multiplier possess certain specified properties. The group H is a certain subgroup of Aut S which contains S. For example, most of the PSL's over a non-prime finite field are candidates for S, and in this case, H is generated by all of the inner, diagonal and graph automorphisms of S.
Los estilos APA, Harvard, Vancouver, ISO, etc.
33

Bandman, Tatiana, Gert-Martin Greuel, Fritz Grunewald, Boris Kunyavskii, Gerhard Pfister y Eugene Plotkin. "Identities for finite solvable groups and equations in finite simple groups". Compositio Mathematica 142, n.º 03 (mayo de 2006): 734–64. http://dx.doi.org/10.1112/s0010437x0500179x.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
34

Kozhukhov, S. F. "FINITE AUTOMORPHISM GROUPS OF TORSION-FREE ABELIAN GROUPS OF FINITE RANK". Mathematics of the USSR-Izvestiya 32, n.º 3 (30 de junio de 1989): 501–21. http://dx.doi.org/10.1070/im1989v032n03abeh000778.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
35

Durakov, B. E. y A. I. Sozutov. "On Periodic Groups Saturated with Finite Frobenius Groups". Bulletin of Irkutsk State University. Series Mathematics 35 (2021): 73–86. http://dx.doi.org/10.26516/1997-7670.2021.35.73.

Texto completo
Resumen
A group is called weakly conjugate biprimitively finite if each its element of prime order generates a finite subgroup with any of its conjugate elements. A binary finite group is a periodic group in which any two elements generate a finite subgroup. If $\mathfrak{X}$ is some set of finite groups, then the group $G$ saturated with groups from the set $\mathfrak{X}$ if any finite subgroup of $G$ is contained in a subgroup of $G$, isomorphic to some group from $\mathfrak{X}$. A group $G = F \leftthreetimes H$ is a Frobenius group with kernel $F$ and a complement $H$ if $H \cap H^f = 1$ for all $f \in F^{\#}$ and each element from $G \setminus F$ belongs to a one conjugated to $H$ subgroup of $G$. In the paper we prove that a saturated with finite Frobenius groups periodic weakly conjugate biprimitive finite group with a nontrivial locally finite radical is a Frobenius group. A number of properties of such groups and their quotient groups by a locally finite radical are found. A similar result was obtained for binary finite groups with the indicated conditions. Examples of periodic non locally finite groups with the properties above are given, and a number of questions on combinatorial group theory are raised.
Los estilos APA, Harvard, Vancouver, ISO, etc.
36

Borovik, Alexandre y Ulla Karhumäki. "Locally finite groups of finite centralizer dimension". Journal of Group Theory 22, n.º 4 (1 de julio de 2019): 729–40. http://dx.doi.org/10.1515/jgth-2018-0109.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
37

Zimmermann, Bruno. "Finite groups of outer automorphisms of free groups". Glasgow Mathematical Journal 38, n.º 3 (septiembre de 1996): 275–82. http://dx.doi.org/10.1017/s0017089500031700.

Texto completo
Resumen
Let Fr denote the free group of rank r and Out Fr: = AutFr/Inn Fr the outer automorphism group of Fr (automorphisms modulo inner automorphisms). In [10] we determined the maximal order 2rr! (for r > 2) for finite subgroups of Out Fr as well as the finite subgroup of that order which, for r > 3, is unique up to conjugation. In the present paper we determine all maximal finite subgroups (that is not contained in a larger finite subgroup) of Out F3, up to conjugation (Theorem 2 in Section 3). Here the considered case r = 3 serves as a model case: our method can be applied for other small values of r (in principle for any value of r) but the computations become considerably longer and are more apt for a computer then; the method can also be applied to determine the maximal finite subgroups of the automorphism group Aut Fr of Fr. Note that the canonical projection Aut Fr ⃗ Out Fr is injective on finite subgroups of Aut Fr; however, not all finite subgroups of Out Fr lift to finite subgroups of Aut Fr.
Los estilos APA, Harvard, Vancouver, ISO, etc.
38

Cheung, K. y M. Mosca. "Decomposing finite Abelian groups". Quantum Information and Computation 1, n.º 3 (octubre de 2001): 26–32. http://dx.doi.org/10.26421/qic1.3-2.

Texto completo
Resumen
This paper describes a quantum algorithm for efficiently decomposing finite Abelian groups into a product of cyclic groups. Such a decomposition is needed in order to apply the Abelian hidden subgroup algorithm. Such a decomposition (assuming the Generalized Riemann Hypothesis) also leads to an efficient algorithm for computing class numbers (known to be at least as difficult as factoring).
Los estilos APA, Harvard, Vancouver, ISO, etc.
39

Leavitt, J. L., G. J. Sherman y M. E. Walker. "Rewriteability in Finite Groups". American Mathematical Monthly 99, n.º 5 (mayo de 1992): 446. http://dx.doi.org/10.2307/2325089.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
40

Witbooi, Peter. "Finite images of groups". Quaestiones Mathematicae 23, n.º 3 (septiembre de 2000): 279–85. http://dx.doi.org/10.2989/16073600009485977.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
41

Gil, Antoni y José R. Martínez. "Mutations in finite groups". Bulletin of the Belgian Mathematical Society - Simon Stevin 1, n.º 4 (1994): 491–506. http://dx.doi.org/10.36045/bbms/1103408606.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
42

Huang, J., B. Hu y A. N. Skiba. "Finite generalized soluble groups". Algebra i logika 58, n.º 2 (9 de julio de 2019): 252–70. http://dx.doi.org/10.33048/alglog.2019.58.207.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
43

Chuang, Joseph, Markus Linckelmann, Gunter Malle y Jeremy Rickard. "Representations of Finite Groups". Oberwolfach Reports 9, n.º 1 (2012): 963–1019. http://dx.doi.org/10.4171/owr/2012/16.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
44

Chuang, Joseph, Meinolf Geck, Markus Linckelmann y Gabriel Navarro. "Representations of Finite Groups". Oberwolfach Reports 12, n.º 2 (2015): 971–1027. http://dx.doi.org/10.4171/owr/2015/18.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
45

Chuang, Joseph, Meinolf Geck, Radha Kessar y Gabriel Navarro. "Representations of Finite Groups". Oberwolfach Reports 16, n.º 1 (26 de febrero de 2020): 841–95. http://dx.doi.org/10.4171/owr/2019/14.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
46

Sun, Zhi-Wei. "Finite coverings of groups". Fundamenta Mathematicae 134, n.º 1 (1990): 37–53. http://dx.doi.org/10.4064/fm-134-1-37-53.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
47

Chupordia, V. A. "On finite-finitary groups". Researches in Mathematics 15 (15 de febrero de 2021): 154. http://dx.doi.org/10.15421/240723.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
48

Broto, Carles y Jesper Møller. "Chevalleyp–local finite groups". Algebraic & Geometric Topology 7, n.º 4 (18 de diciembre de 2007): 1809–919. http://dx.doi.org/10.2140/agt.2007.7.1809.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
49

Deaconescu, Marian y Gary L. Walls. "Finite Groups with Poles". Algebra Colloquium 13, n.º 03 (septiembre de 2006): 507–12. http://dx.doi.org/10.1142/s1005386706000459.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
50

Attar, M. Shabani. "Semicomplete Finite p-Groups". Algebra Colloquium 18, spec01 (diciembre de 2011): 937–44. http://dx.doi.org/10.1142/s1005386711000812.

Texto completo
Resumen
Let G be a group and G' be its commutator subgroup. An automorphism α of G is called an IA-automorphism if x-1α (x) ∈ G' for each x ∈ G. The set of all IA-automorphisms of G is denoted by IA (G). A group G is called semicomplete if and only if IA (G)= Inn (G), where Inn (G) is the inner automorphism group of G. In this paper we characterize semicomplete finite p-groups of class 2, give some necessary conditions for finite p-groups to be semicomplete, and characterize semicomplete non-abelian groups of orders p4 and p5.
Los estilos APA, Harvard, Vancouver, ISO, etc.
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!

Pasar a la bibliografía