Artículos de revistas sobre el tema "Finite element modelling"

Siga este enlace para ver otros tipos de publicaciones sobre el tema: Finite element modelling.

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "Finite element modelling".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.

1

Kumar, Anil, Anil kumar chhotu, Ghausul Azam Ansari, Md Arman Ali, Abhishek kumar, Rajk ishor y Ashutosh kumar. "Finite Element Modelling of Corroded RC Flexural Elements". International Journal of Engineering Trends and Technology 71, n.º 4 (25 de abril de 2023): 462–73. http://dx.doi.org/10.14445/22315381/ijett-v71i4p239.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Merodo, José Antonio Fernandez y Manuel Pastor. "Finite Element Modelling of Landslides". Revue Française de Génie Civil 6, n.º 6 (enero de 2002): 1193–212. http://dx.doi.org/10.1080/12795119.2002.9692739.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Ridley, P. H. W., G. W. Roberts, M. A. Wongsam y R. W. Chantrell. "Finite element modelling of nanoelements". Journal of Magnetism and Magnetic Materials 193, n.º 1-3 (marzo de 1999): 423–26. http://dx.doi.org/10.1016/s0304-8853(98)00467-3.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Shinwari, M. W., M. J. Deen y P. R. Selvaganapathy. "Finite-Element Modelling of Biotransistors". Nanoscale Research Letters 5, n.º 3 (19 de enero de 2010): 494–500. http://dx.doi.org/10.1007/s11671-009-9522-4.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Carey, Graham F. "Parallelism in finite element modelling". Communications in Applied Numerical Methods 2, n.º 3 (mayo de 1986): 281–87. http://dx.doi.org/10.1002/cnm.1630020309.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Fernández Ruiz, M., G. Argirova y A. Muttoni. "How simple can nonlinear finite element modelling be for structural concrete?" Informes de la Construcción 66, Extra-1 (30 de diciembre de 2014): m013. http://dx.doi.org/10.3989/ic.13.085.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Kukiełka, Leon y Krzysztof Kukiełka. "Modelling and analysis of the technological processes using finite element method". Mechanik, n.º 3 (marzo de 2015): 195/317–195/340. http://dx.doi.org/10.17814/mechanik.2015.3.149.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Kushwaha, R. L. "FINITE ELEMENT MODELLING OF TILLAGE TOOL DESIGN". Transactions of the Canadian Society for Mechanical Engineering 17, n.º 2 (junio de 1993): 257–69. http://dx.doi.org/10.1139/tcsme-1993-0016.

Texto completo
Resumen
A non-linear finite element model was developed for three dimensional soil cutting by tillage tools. A hyperbolic constitutive relation for soil was used in the model. Analysis was carried out to simulate soil cutting with rectangular flat and triangular tillage blades at different rake angles and with curved blades. Interface elements were used to model the adhesion and the friction between soil and blade surface. Soil forces obtained from the finite element model for the straight blades were verified with the results from laboratory tillage tests in the soil bin. The finite element model predicted draft force accurately for both tillage tools. Results indicated that the draft was a function of rake angle, tool shape and the curvature.
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Moskvichev, Egor. "Distribution of material properties in finite element models of inhomogeneous elements of structures". EPJ Web of Conferences 221 (2019): 01034. http://dx.doi.org/10.1051/epjconf/201922101034.

Texto completo
Resumen
This paper discusses an approach to finite element modelling of structure elements considering material inhomogeneity. This approach is based on the functional dependence of mechanical properties on the spatial coordinates of finite elements. It allows modelling gradient transitions between different materials, which avoid stress discontinuities during strength analysis. The finite element models of cold formed angle, welded joint and thermal barrier coating, created by this method, have been presented.
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Chia, Julian Y. H., Kais Hbaieb y Q. X. Wang. "Finite Element Modelling Epoxy/Clay Nanocomposites". Key Engineering Materials 334-335 (marzo de 2007): 785–88. http://dx.doi.org/10.4028/www.scientific.net/kem.334-335.785.

Texto completo
Resumen
A full 3D finite element method has been used to understand how nano-clay particles affect the mechanical properties of an epoxy/clay nanocomposite. The epoxy/clay nanocomposite has been modelled as a representative volume element (RVE) containing intercalated clay platelets that internally delaminates at the gallery layer upon satisfying an energy criterion, and an epoxy matrix that is elastic-plastic. A cohesive traction-displacement law is used to model the clay gallery behaviour until failure. For clay volume fractions >1%, clay particle interaction is observed to develop during uniaxial tension, the nanocomposite stiffness becomes non-linearly dependent on the clay volume fraction, and the Mori-Tanaka model overestimates the stiffness. Failure of the clay gallery is not observed and is believed to have no influence on the ultimate tensile strength of the nanocomposite.
Los estilos APA, Harvard, Vancouver, ISO, etc.
11

Jónás, Szabolcs y Miklós Tisza. "Finite Element Modelling of Clinched Joints". Advanced Technologies & Materials 43, n.º 1 (1 de junio de 2018): 1–6. http://dx.doi.org/10.24867/atm-2018-1-001.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
12

Bouziane, Salah, Hamoudi Bouzerd y Mohamed Guenfoud. "Mixed finite element for modelling interfaces". European Journal of Computational Mechanics 18, n.º 2 (enero de 2009): 155–75. http://dx.doi.org/10.3166/ejcm.18.155-175.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
13

Tang, B., H. S. Mitri y M. Bouteldja. "Finite-element modelling of rock anchors". Proceedings of the Institution of Civil Engineers - Ground Improvement 4, n.º 2 (enero de 2000): 65–71. http://dx.doi.org/10.1680/grim.2000.4.2.65.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
14

Kopysov, S. P., A. K. Novikov, V. N. Rychkov, Yu A. Sagdeeva y L. E. Tonkov. "Virtual laboratory for finite element modelling". Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, n.º 4 (diciembre de 2010): 131–45. http://dx.doi.org/10.20537/vm100415.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
15

Sykulski, J. K. y R. L. Stoll. "FINITE ELEMENT MODELLING OF INDUCTIVE SENSORS". COMPEL - The international journal for computation and mathematics in electrical and electronic engineering 11, n.º 1 (enero de 1992): 69–72. http://dx.doi.org/10.1108/eb051754.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
16

Bougharriou, A., K. Saï y W. Bouzid. "Finite element modelling of burnishing process". Materials Technology 25, n.º 1 (marzo de 2010): 56–62. http://dx.doi.org/10.1179/175355509x387110.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
17

AAMO, O. M. y T. I. FOSSEN. "Finite Element Modelling of Moored Vessels". Mathematical and Computer Modelling of Dynamical Systems 7, n.º 1 (1 de marzo de 2001): 47–75. http://dx.doi.org/10.1076/mcmd.7.1.47.3632.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
18

Krichen, A., K. Sai y W. Bouzid. "Finite element modelling of countersinking process". International Journal of Materials and Product Technology 33, n.º 4 (2008): 376. http://dx.doi.org/10.1504/ijmpt.2008.022516.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
19

Pecingina, O. M. "Modelling bucket excavation by finite element". IOP Conference Series: Materials Science and Engineering 95 (3 de noviembre de 2015): 012046. http://dx.doi.org/10.1088/1757-899x/95/1/012046.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
20

Servranckx, D. y A. A. Mufti. "Data structures for finite element modelling". Engineering Computations 3, n.º 1 (enero de 1986): 27–35. http://dx.doi.org/10.1108/eb023638.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
21

Gay, Derek A. "Finite element modelling of steelpan acoustics". Journal of the Acoustical Society of America 123, n.º 5 (mayo de 2008): 3799. http://dx.doi.org/10.1121/1.2935485.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
22

Röhrle, O., J. Davidson y A. Pullan. "Finite element modelling of human mastication". Journal of Biomechanics 39 (enero de 2006): S55. http://dx.doi.org/10.1016/s0021-9290(06)83099-x.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
23

Pavlović, M. N., S. Arnaout y D. Hitchings. "Finite element modelling of sewer linings". Computers & Structures 63, n.º 4 (mayo de 1997): 837–48. http://dx.doi.org/10.1016/s0045-7949(96)00067-3.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
24

Rucki, M. D. y G. R. Miller. "An adaptable finite element modelling kernel". Computers & Structures 69, n.º 3 (noviembre de 1998): 399–409. http://dx.doi.org/10.1016/s0045-7949(98)00104-7.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
25

Mohr, G. "Finite element modelling of distribution problems". Applied Mathematics and Computation 105, n.º 1 (octubre de 1999): 69–76. http://dx.doi.org/10.1016/s0096-3003(98)10097-8.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
26

Marotti de Sciarra, Francesco. "Finite element modelling of nonlocal beams". Physica E: Low-dimensional Systems and Nanostructures 59 (mayo de 2014): 144–49. http://dx.doi.org/10.1016/j.physe.2014.01.005.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
27

Aamo, O. M. y T. I. Fossen. "Finite element modelling of mooring lines". Mathematics and Computers in Simulation 53, n.º 4-6 (octubre de 2000): 415–22. http://dx.doi.org/10.1016/s0378-4754(00)00235-4.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
28

Ramakrishnan, N. y V. S. Arunachalam. "Finite element methods for materials modelling". Progress in Materials Science 42, n.º 1-4 (enero de 1997): 253–61. http://dx.doi.org/10.1016/s0079-6425(97)00031-5.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
29

Holzinger, M. "Finite-element modelling of unbounded media". Simulation Practice and Theory 5, n.º 6 (agosto de 1997): p27—p28. http://dx.doi.org/10.1016/s0928-4869(97)84249-8.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
30

Prendergast, Patrick J., Caitríona Lally y Alexander B. Lennon. "Finite element modelling of medical devices". Medical Engineering & Physics 31, n.º 4 (mayo de 2009): 419. http://dx.doi.org/10.1016/j.medengphy.2009.03.002.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
31

Petty, D. M. "Friction models for finite element modelling". Journal of Materials Processing Technology 45, n.º 1-4 (septiembre de 1994): 7–12. http://dx.doi.org/10.1016/0924-0136(94)90310-7.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
32

Mohammed, A. K. y S. T. Gomaa. "Finite element modelling of deep beams". Computers & Structures 48, n.º 1 (julio de 1993): 63–71. http://dx.doi.org/10.1016/0045-7949(93)90458-p.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
33

Henrotte, F., B. Meys, H. Hedia, P. Dular y W. Legros. "Finite element modelling with transformation techniques". IEEE Transactions on Magnetics 35, n.º 3 (mayo de 1999): 1434–37. http://dx.doi.org/10.1109/20.767235.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
34

Armstrong, Cecil G. "Modelling requirements for finite-element analysis". Computer-Aided Design 26, n.º 7 (julio de 1994): 573–78. http://dx.doi.org/10.1016/0010-4485(94)90088-4.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
35

Lin, Hua, Martin Sherburn, Jonathan Crookston, Andrew C. Long, Mike J. Clifford y I. Arthur Jones. "Finite element modelling of fabric compression". Modelling and Simulation in Materials Science and Engineering 16, n.º 3 (26 de marzo de 2008): 035010. http://dx.doi.org/10.1088/0965-0393/16/3/035010.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
36

Lin, Hua, Mike J. Clifford, Andrew C. Long y Martin Sherburn. "Finite element modelling of fabric shear". Modelling and Simulation in Materials Science and Engineering 17, n.º 1 (16 de diciembre de 2008): 015008. http://dx.doi.org/10.1088/0965-0393/17/1/015008.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
37

Girdinio, P., M. Repetto y J. Simkin. "Finite element modelling of charged beams". IEEE Transactions on Magnetics 30, n.º 5 (septiembre de 1994): 2932–35. http://dx.doi.org/10.1109/20.312551.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
38

Leonard, P. J., D. Rodger, T. Karagular y P. C. Coles. "Finite element modelling of magnetic hysteresis". IEEE Transactions on Magnetics 31, n.º 3 (mayo de 1995): 1801–4. http://dx.doi.org/10.1109/20.376386.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
39

Beynon, John H. "Finite–element modelling of thermomechanical processing". Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences 357, n.º 1756 (15 de junio de 1999): 1573–87. http://dx.doi.org/10.1098/rsta.1999.0390.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
40

Seetharamu, K. N., R. Paragasam, Ghulam A. Quadir, Z. A. Zainal, B. Sathya Prasad y T. Sundararajan. "Finite element modelling of solidification phenomena". Sadhana 26, n.º 1-2 (febrero de 2001): 103–20. http://dx.doi.org/10.1007/bf02728481.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
41

Papatriantafillou, Ioannis, Nikolaos Aravas y Gregory N. Haidemenopoulos. "Finite Element Modelling of TRIP Steels". steel research international 75, n.º 11 (noviembre de 2004): 730–36. http://dx.doi.org/10.1002/srin.200405835.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
42

Sizova, Irina, Alexander Sviridov, Martin Günther y Markus Bambach. "Finite Element Modelling of Titanium Aluminides". Computer Methods in Material Science 17, n.º 1 (2017): 51–58. http://dx.doi.org/10.7494/cmms.2017.1.0575.

Texto completo
Resumen
Hot forging is an important process for shaping and property control of lightweight titanium aluminide parts. Dynamic recrystallization and phase transformations play an essential role for the resulting grain size and accordingly the mechanical properties. Due to the fact that titanium aluminides require forging under isothermal conditions, reliable process modeling is needed to predict the microstructure evolution, to optimize the process time and to avoid excessive die loads. In the present study an isothermal forging process of a compressor blade made of TNB-V4 (Ti–44.5Al–6.25Nb–0.8Mo–0.1B, at. %) is modeled using the Finite Element (FE) – Software Q-Form. A microstructure model describing the microstructure evolution during forging is presented. To calibrate the model, the high-temperature deformation behavior was investigated using isothermal compression tests. The tests were carried out at temperatures from 1150°C to 1300°C, applying strain rates ranging from 0.001s-1 to 0.5s-1, up to a true strain of 0.9. The experimentally determined flow stress data were described with model equations determined form the course of the strain hardening rate in Kocks-Mecking plots. An isothermal forging process of a compressor blade was carried out and used to validate the results from the FE simulations.
Los estilos APA, Harvard, Vancouver, ISO, etc.
43

Cheng, Xianchao y Lin Zhang. "Finite-element modelling of multilayer X-ray optics". Journal of Synchrotron Radiation 24, n.º 3 (11 de abril de 2017): 717–24. http://dx.doi.org/10.1107/s1600577517004738.

Texto completo
Resumen
Multilayer optical elements for hard X-rays are an attractive alternative to crystals whenever high photon flux and moderate energy resolution are required. Prediction of the temperature, strain and stress distribution in the multilayer optics is essential in designing the cooling scheme and optimizing geometrical parameters for multilayer optics. The finite-element analysis (FEA) model of the multilayer optics is a well established tool for doing so. Multilayers used in X-ray optics typically consist of hundreds of periods of two types of materials. The thickness of one period is a few nanometers. Most multilayers are coated on silicon substrates of typical size 60 mm × 60 mm × 100–300 mm. The high aspect ratio between the size of the optics and the thickness of the multilayer (107) can lead to a huge number of elements for the finite-element model. For instance, meshing by the size of the layers will require more than 1016 elements, which is an impossible task for present-day computers. Conversely, meshing by the size of the substrate will produce a too high element shape ratio (element geometry width/height > 106), which causes low solution accuracy; and the number of elements is still very large (106). In this work, by use of ANSYS layer-functioned elements, a thermal-structural FEA model has been implemented for multilayer X-ray optics. The possible number of layers that can be computed by presently available computers is increased considerably.
Los estilos APA, Harvard, Vancouver, ISO, etc.
44

Brůha, Jan y Drahomír Rychecký. "Modelling of Rotating Twisted Blades as 1D Continuum". Applied Mechanics and Materials 821 (enero de 2016): 183–90. http://dx.doi.org/10.4028/www.scientific.net/amm.821.183.

Texto completo
Resumen
Presented paper deals with modelling of a twisted blade with rhombic shroud as one-dimensional continuum by means of Rayleigh beam finite elements with varying cross-sectional parameters along the finite elements. The blade is clamped into a rotating rigid disk and the shroud is considered to be a rigid body. Since the finite element models based on the Rayleigh beam theory tend to slightly overestimate natural frequencies and underestimate deflections in comparison with finite element models including shear deformation effects, parameter tuning of the blade is performed.
Los estilos APA, Harvard, Vancouver, ISO, etc.
45

Yushchenko, K. A., E. A. Velikoivanenko, N. O. Chervyakov, G. F. Rozynka y N. I. Pivtorak. "Finite-element modelling of stress-strain state in weldability tests (PVR-TEST)". Paton Welding Journal 2016, n.º 12 (28 de diciembre de 2016): 9–12. http://dx.doi.org/10.15407/tpwj2016.12.02.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
46

Rezaeealam, Behrooz. "Finite-element/boundary-element transient modelling of hysteresis motors". Journal of Magnetism and Magnetic Materials 519 (febrero de 2021): 167474. http://dx.doi.org/10.1016/j.jmmm.2020.167474.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
47

Lengiewicz, Jakub y Stanisław Stupkiewicz. "Continuum framework for finite element modelling of finite wear". Computer Methods in Applied Mechanics and Engineering 205-208 (enero de 2012): 178–88. http://dx.doi.org/10.1016/j.cma.2010.12.020.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
48

Spoormaker, J. L., I. D. Skrypnyk y T. O. Vasylkevych. "Finite-element modelling of creep-induced buckling of HDPE elements". Materials Science 35, n.º 2 (marzo de 1999): 193–204. http://dx.doi.org/10.1007/bf02359979.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
49

LAGHROUCHE, OMAR y PETER BETTESS. "SHORT WAVE MODELLING USING SPECIAL FINITE ELEMENTS". Journal of Computational Acoustics 08, n.º 01 (marzo de 2000): 189–210. http://dx.doi.org/10.1142/s0218396x00000121.

Texto completo
Resumen
The solutions to the Helmholtz equation in the plane are approximated by systems of plane waves. The aim is to develop finite elements capable of containing many wavelengths and therefore simulating problems with large wave numbers without refining the mesh to satisfy the traditional requirement of about ten nodal points per wavelength. At each node of the meshed domain, the wave potential is written as a combination of plane waves propagating in many possible directions. The resulting element matrices contain oscillatory functions and are evaluated using high order Gauss-Legendre integration. These finite elements are used to solve wave problems such as a diffracted potential from a cylinder. Many wavelengths are contained in a single finite element and the number of parameters in the problem is greatly reduced.
Los estilos APA, Harvard, Vancouver, ISO, etc.
50

Kalanta, Stanislovas. "FINITE ELEMENTS FOR MODELLING BEAMS AFFECTED BY A DISTRIBUTED LOAD". JOURNAL OF CIVIL ENGINEERING AND MANAGEMENT 5, n.º 2 (30 de abril de 1999): 91–99. http://dx.doi.org/10.3846/13921525.1999.10531442.

Texto completo
Resumen
Usually a finite element with cubic deflection approximation function is applied when evaluating the stress and strain field of bar structures. But such an element only approximately evaluates the actual strain field of the bar affected by a distributed load. The improved finite elements (Fig 1, 2) with fourth and fifth-order deflection approximation functions (1), (6) and (13) are presented in the actual manuscript. The fifth-order deflection approximation function is used for modelling the beams affected by a linearly distributed load (11). The plain bending of the finite element is modelled by 5 and 6 freedom degrees. The additional 5th and 6th freedom degrees are the deflection and deviation of the middle node of element (Fig 2). The element stiffness matrices (Table 1, 2) and node force vectors are presented. The created finite elements exactly modells the stress and strain field of bars, which are affected by distributed load, and also allow to compute directly the middle section displacements of bars. It creates conditions for diminishing the volume of problems and obtaining information, which is necessary to be analysed later. The reduced finite elements (Fig 4) are created by the elimination of the internal freedom degrees. Their number of freedom degrees is decreased up to the number of freedom degrees of a usually applied finite element. But the reduced finite elements have all afore-mentioned qualities. Formulas (20) and (21) are derived expressing the middle node displacements by the final node displacements. These formulas allow to compute the middle section displacements of the bar already after the solution of equation system. The proposed reduced elements can be introduced and applied in engineering practice very easily, because their stiffness matrix coincide with the stiffness matrix of a usual bar finite element. The created elements with internal freedom degrees are very important for the problems of structures optimization with displacement constraints, because the constraint of bar middle section displacement can form just in case, when this displacement is one of the problem's unknown. Also it is very important to decrease the number of unknowns of optimization problem.
Los estilos APA, Harvard, Vancouver, ISO, etc.
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!

Pasar a la bibliografía