Literatura académica sobre el tema "Fine-structure Preservation"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Fine-structure Preservation".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Fine-structure Preservation"
Fortunato, Franco, Thilo Hackert, Markus W. Büchler y Guido Kroemer. "Retrospective electron microscopy: Preservation of fine structure by freezing and aldehyde fixation". Molecular & Cellular Oncology 3, n.º 6 (27 de octubre de 2016): e1251382. http://dx.doi.org/10.1080/23723556.2016.1251382.
Texto completoRostaing, Philippe, Robby M. Weimer, Erik M. Jorgensen, Antoine Triller y Jean-Louis Bessereau. "Preservation of Immunoreactivity and Fine Structure of AdultC. elegansTissues Using High-pressure Freezing". Journal of Histochemistry & Cytochemistry 52, n.º 1 (enero de 2004): 1–12. http://dx.doi.org/10.1177/002215540405200101.
Texto completoCox, Donald P. "A New Universal Acrylic Embedding Resin for Both Light and Electron Microcopy". Microscopy Today 2, n.º 4 (julio de 1994): 21–22. http://dx.doi.org/10.1017/s1551929500065585.
Texto completoRogers, Greg S. y John Frett. "682 PB 198 NICOTIANA FIXATION FOR IMMUNO-LOCALIZATION OF IPTASE". HortScience 29, n.º 5 (mayo de 1994): 530e—530. http://dx.doi.org/10.21273/hortsci.29.5.530e.
Texto completoFischer, T., C. Schmid, M. Kompis, G. Mantokoudis, M. Caversaccio y W. Wimmer. "Effects of temporal fine structure preservation on spatial hearing in bilateral cochlear implant users". Journal of the Acoustical Society of America 150, n.º 2 (agosto de 2021): 673–86. http://dx.doi.org/10.1121/10.0005732.
Texto completoTolstoy, A. "FINE-GRAINED HIGH-STRENGTH CONCRETE". Construction Materials and Products 3, n.º 1 (8 de julio de 2020): 39–43. http://dx.doi.org/10.34031/2618-7183-2020-3-1-39-43.
Texto completoMastronarde, David, James Kremer, Eileen O’Toole, Mary Morphew, Mark Ladinsky y Richard McIntosh. "Resources for the Study of Cellular Structure by High Voltage Electron Tomography, Serial Thin Sectioning, Specific Labeling, and Image Analysis". Microscopy and Microanalysis 3, S2 (agosto de 1997): 273–74. http://dx.doi.org/10.1017/s1431927600008254.
Texto completoYamaguchi, M., Y. Namiki, H. Okada, K. Uematsu, A. Tame, T. Maruyama y Y. Kozuka. "Improved preservation of fine structure of deep-sea microorganisms by freeze-substitution after glutaraldehyde fixation". Journal of Electron Microscopy 60, n.º 4 (13 de mayo de 2011): 283–87. http://dx.doi.org/10.1093/jmicro/dfr032.
Texto completoPancaningtyas, Sulistyani. "The evaluation of java fine flavor cocoa propagation through somatic embryogenesis technique for germplasm preservation". E3S Web of Conferences 306 (2021): 01056. http://dx.doi.org/10.1051/e3sconf/202130601056.
Texto completoWu, Xi, Mingyuan Xie, Wei Wu y Jiliu Zhou. "Nonlocal Mean Image Denoising Using Anisotropic Structure Tensor". Advances in Optical Technologies 2013 (12 de febrero de 2013): 1–6. http://dx.doi.org/10.1155/2013/794728.
Texto completoTesis sobre el tema "Fine-structure Preservation"
Longuefosse, Arthur. "Apprentissage profond pour la conversion d’IRM vers TDM en imagerie thoracique". Electronic Thesis or Diss., Bordeaux, 2024. http://www.theses.fr/2024BORD0489.
Texto completoThoracic imaging faces significant challenges, with each imaging modality presenting its own limitations. CT, the gold standard for lung imaging, delivers high spatial resolution but relies on ionizing radiation, posing risks for patients requiring frequent scans. Conversely, lung MRI, offers a radiation-free alternative but is hindered by technical issues such as low contrast and artifacts, limiting its broader clinical use. Recently, UTE-MRI shows promise in addressing some of these limitations, but still lacks the high resolution and image quality of CT, particularly for detailed structural assessment. The primary objective of this thesis is to develop and validate deep learning-based models for synthesizing CT-like images from UTE-MRI. Specifically, we aim to assess the image quality, anatomical accuracy, and clinical applicability of these synthetic CT images in comparison to the original UTE-MRI and real CT scans in thoracic imaging. Initially, we explored the fundamentals of medical image synthesis, establishing the groundwork for MR to CT translation. We implemented a 2D GAN model based on the pix2pixHD framework, optimizing it using SPADE normalization and refining preprocessing techniques such as resampling and registration. Clinical evaluation with expert radiologists showed promising results in comparing synthetic images to real CT scans. Synthesis was further enhanced by introducing perceptual loss, which improved structural details and visual quality, and incorporated 2.5D strategies to balance between 2D and 3D synthesis. Additionally, we emphasized a rigorous validation process using task-specific metrics, challenging traditional intensity-based and global metrics by focusing on the accurate reconstruction of anatomical structures. In the final stage, we developed a robust and scalable 3D synthesis framework by adapting nnU-Net for CT generation, along with an anatomical feature-prioritized loss function, enabling superior reconstruction of critical structures such as airways and vessels. Our work highlights the potential of deep learning-based models for generating high-quality synthetic CT images from UTE-MRI, offering a significant improvement in non-invasive lung imaging. These advances could greatly enhance the clinical applicability of UTE-MRI, providing a safer alternative to CT for the follow-up of chronic lung diseases. Furthermore, a patent is currently in preparation for the adoption of our method, paving the way for potential clinical use
Capítulos de libros sobre el tema "Fine-structure Preservation"
Griffiths, Gareth. "Fine-Structure Preservation". En Fine Structure Immunocytochemistry, 9–25. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-642-77095-1_2.
Texto completoGriffiths, Gareth. "Fixation for Fine Structure Preservation and Immunocytochemistry". En Fine Structure Immunocytochemistry, 26–89. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-642-77095-1_3.
Texto completoIsraels, Sara J. y Jon M. Gerrard. "lmmunocytochemical and electron microscopic studies of platelets". En Platelets, 279–98. Oxford University PressOxford, 1996. http://dx.doi.org/10.1093/oso/9780199635382.003.0014.
Texto completoActas de conferencias sobre el tema "Fine-structure Preservation"
Zhang, Jiying, Xi Xiao, Long-Kai Huang, Yu Rong y Yatao Bian. "Fine-Tuning Graph Neural Networks via Graph Topology Induced Optimal Transport". En Thirty-First International Joint Conference on Artificial Intelligence {IJCAI-22}. California: International Joint Conferences on Artificial Intelligence Organization, 2022. http://dx.doi.org/10.24963/ijcai.2022/518.
Texto completoZheng, Yifan, Wenjun Ke, Qi Liu, Yuting Yang, Ruizhuo Zhao, Dacheng Feng, Jianwei Zhang y Zhi Fang. "Making LLMs as Fine-Grained Relation Extraction Data Augmentor". En Thirty-Third International Joint Conference on Artificial Intelligence {IJCAI-24}. California: International Joint Conferences on Artificial Intelligence Organization, 2024. http://dx.doi.org/10.24963/ijcai.2024/736.
Texto completo