Índice
Literatura académica sobre el tema "Filtrage collaboratif basé sur la confiance"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Filtrage collaboratif basé sur la confiance".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Filtrage collaboratif basé sur la confiance"
Naji, Khadija y Abdelali Ibriz. "Approach for Eliciting Learners' Preferences in Moocs Through Collaborative Filtering". International Journal of Emerging Technologies in Learning (iJET) 17, n.º 14 (26 de julio de 2022): 235–45. http://dx.doi.org/10.3991/ijet.v17i14.29887.
Texto completoTesis sobre el tema "Filtrage collaboratif basé sur la confiance"
Nzekon, Nzeko'o Armel Jacques. "Système de recommandation avec dynamique temporelle basée sur les flots de liens". Electronic Thesis or Diss., Sorbonne université, 2019. http://www.theses.fr/2019SORUS454.
Texto completoRecommending appropriate items to users is crucial in many e-commerce platforms that propose a large number of items to users. Recommender systems are one favorite solution for this task. Most research in this area is based on explicit ratings that users give to items, while most of the time, ratings are not available in sufficient quantities. In these situations, it is important that recommender systems use implicit data which are link stream connecting users to items while maintaining timestamps i.e. users browsing, purchases and streaming history. We exploit this type of implicit data in this thesis. One common approach consists in selecting the N most relevant items to each user, for a given N, which is called top-N recommendation. To do so, recommender systems rely on various kinds of information, like content-based features of items, past interest of users for items and trust between users. However, they often use only one or two such pieces of information simultaneously, which can limit their performance because user's interest for an item can depend on more than two types of side information. To address this limitation, we make three contributions in the field of graph-based recommender systems. The first one is an extension of the Session-based Temporal Graph (STG) introduced by Xiang et al., which is a dynamic graph combining long-term and short-term preferences in order to better capture user preferences over time. STG ignores content-based features of items, and make no difference between the weight of newer edges and older edges. The new proposed graph Time-weight Content-based STG addresses STG limitations by adding a new node type for content-based features of items, and a penalization of older edges. The second contribution is the Link Stream Graph (LSG) for temporal recommendations. This graph is inspired by a formal representation of link stream, and has the particularity to consider time in a continuous way unlike others state-of-the-art graphs, which ignore the temporal dimension like the classical bipartite graph (BIP), or consider time discontinuously like STG where time is divided into slices. The third contribution in this thesis is GraFC2T2, a general graph-based framework for top-N recommendation. This framework integrates basic recommender graphs, and enriches them with content-based features of items, users' preferences temporal dynamics, and trust relationships between them. Implementations of these three contributions on CiteUlike, Delicious, Last.fm, Ponpare, Epinions and Ciao datasets confirm their relevance
Nguyen, An-Te. "COCoFil2 : Un nouveau système de filtrage collaboratif basé sur le modèle des espaces de communautés". Phd thesis, Université Joseph Fourier (Grenoble), 2006. http://tel.archives-ouvertes.fr/tel-00353945.
Texto completoLe premier aspect de la gestion des communautés à étudier est la capacité des utilisateurs à percevoir des communautés. D'une part, la perception des communautés permet d'améliorer la confiance des utilisateurs dans les recommandations générées à partir de ces communautés, et par conséquent de les motiver à fournir des évaluations sur lesquelles appuyer la formation des communautés pour le filtrage collaboratif. D'autre part, cette capacité autorise les utilisateurs à explorer d'autres communautés potentiellement intéressantes.
Le second aspect à prendre en compte est les informations sur lesquelles appuyer la formation des communautés. On voit dans la réalité qu'une personne reçoit souvent toutes sortes de recommandations intéressantes de ses proches, de ses collègues de travail, etc. Nous émettons donc l'hypothèse que la multiplicité des critères pour former des communautés, incluant profession, centres d'intérêt, historique des évaluations, etc., peut être exploitée pour enrichir les recommandations générées pour un utilisateur.
Enfin, les communautés d'un utilisateur évoluent au cours du temps. En raison de la multiplicité des critères, la qualité du positionnement des utilisateurs au sein des communautés est conditionnée par la qualité des valeurs données pour chaque utilisateur à chaque critère. Certains critères demandent beaucoup d'efforts de la part des utilisateurs, et peuvent être coûteux également pour le système, d'où des difficultés à positionner les utilisateurs dans des communautés.
Ainsi, pour la gestion des communautés dans un système de filtrage collaboratif, nous proposons le modèle des espaces de communautés qui présente les caractéristiques suivantes : gestion des communautés explicites, formation multiple des communautés selon divers critères et stratégie de positionnement des utilisateurs au sein des communautés.
L'intégration de notre modèle des espaces de communautés dans un système de filtrage collaboratif permet donc d'améliorer l'exploitation des communautés formées à partir des critères disponibles dans les profils des utilisateurs. Nous présentons la plateforme du filtrage collaboratif COCoFil2 comme la mise en œuvre du modèle proposé ainsi que nos travaux de validation sur un jeu de données réelles.
Truong, Hien Thi Thu. "Un modèle de collaboration basé sur les contrats et la confiance". Phd thesis, Université de Lorraine, 2012. http://tel.archives-ouvertes.fr/tel-00769076.
Texto completoYammine, Kamal. "DIA : un système de recommandation de livres dans un contexte pédagogique". Thèse, 2005. http://hdl.handle.net/1866/16669.
Texto completo