Literatura académica sobre el tema "Field effect emission"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Field effect emission".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Field effect emission"
Sapkota, Anish, Amir Haghverdi, Claudia C. E. Avila y Samantha C. Ying. "Irrigation and Greenhouse Gas Emissions: A Review of Field-Based Studies". Soil Systems 4, n.º 2 (13 de abril de 2020): 20. http://dx.doi.org/10.3390/soilsystems4020020.
Texto completoPalma, John y Samson Mil’shtein. "Field effect controlled lateral field emission triode". Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena 29, n.º 2 (marzo de 2011): 02B111. http://dx.doi.org/10.1116/1.3554216.
Texto completoDencső, Márton, Ágota Horel, Igor Bogunovic y Eszter Tóth. "Effects of Environmental Drivers and Agricultural Management on Soil CO2 and N2O Emissions". Agronomy 11, n.º 1 (29 de diciembre de 2020): 54. http://dx.doi.org/10.3390/agronomy11010054.
Texto completoVarela, J., V. Réville, A. S. Brun, P. Zarka y F. Pantellini. "Effect of the exoplanet magnetic field topology on its magnetospheric radio emission". Astronomy & Astrophysics 616 (agosto de 2018): A182. http://dx.doi.org/10.1051/0004-6361/201732091.
Texto completoLitovchenko, V., A. Evtukh, O. Yilmazoglu, K. Mutamba, H. L. Hartnagel y D. Pavlidis. "Gunn effect in field-emission phenomena". Journal of Applied Physics 97, n.º 4 (15 de febrero de 2005): 044911. http://dx.doi.org/10.1063/1.1847724.
Texto completoSrisonphan, Siwapon, Weerawoot Kanokbannakorn y Nithiphat Teerakawanich. "Field emission graphene-oxide-silicon field effect based photodetector". physica status solidi (RRL) - Rapid Research Letters 9, n.º 11 (30 de septiembre de 2015): 656–62. http://dx.doi.org/10.1002/pssr.201510199.
Texto completoZhuang, Gen Huang, Ling Yun Wang y Dao Heng Sun. "The Effect of Temperature on Field Emission Current". Advanced Materials Research 60-61 (enero de 2009): 461–64. http://dx.doi.org/10.4028/www.scientific.net/amr.60-61.461.
Texto completoHuang, Hongxun, Chunhui Zhou, Changshi Xiao, Liang Huang, Yuanqiao Wen, Jianxin Wang y Xin Peng. "Effect of Seasonal Flow Field on Inland Ship Emission Assessment: A Case Study of Ferry". Sustainability 12, n.º 18 (11 de septiembre de 2020): 7484. http://dx.doi.org/10.3390/su12187484.
Texto completoLobanov, V. M. y E. P. Sheshin. "Effect of interference on field electron emission". Technical Physics 56, n.º 2 (febrero de 2011): 282–90. http://dx.doi.org/10.1134/s1063784211020204.
Texto completoPaulini, J., T. Klein y G. Simon. "Thermo-field emission and the Nottingham effect". Journal of Physics D: Applied Physics 26, n.º 8 (14 de agosto de 1993): 1310–15. http://dx.doi.org/10.1088/0022-3727/26/8/024.
Texto completoTesis sobre el tema "Field effect emission"
Sanborn, Graham Patrick. "A thin film triode type carbon nanotube field electron emission cathode". Diss., Georgia Institute of Technology, 2013. http://hdl.handle.net/1853/50302.
Texto completoLudwick, Jonathan. "Physics of High-Power Vacuum Electronic Systems Based on Carbon Nanotube Fiber Field Emitters". University of Cincinnati / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1613745398331048.
Texto completoKong, Xiangliang, Fan Guo, Joe Giacalone, Hui Li y Yao Chen. "The Acceleration of High-energy Protons at Coronal Shocks: The Effect of Large-scale Streamer-like Magnetic Field Structures". IOP PUBLISHING LTD, 2017. http://hdl.handle.net/10150/626416.
Texto completoWest, Ryan Matthew. "Work function fluctuation analysis of polyaniline films". Diss., Georgia Institute of Technology, 2013. http://hdl.handle.net/1853/47586.
Texto completoSeidemann, Johanna. "Iontronic - Étude de dispositifs à effet de champ à base des techniques de grilles liquides ioniques". Thesis, Université Grenoble Alpes (ComUE), 2017. http://www.theses.fr/2017GREAY075/document.
Texto completoIonic liquids are non-volatile fluids, consisting of cations and anions, which are ionically conducting and electrically insulating and hold very high capacitances. These liquids have the ability to not only to replace solid electrolytes, but to create strongly increased electric fields (>SI{10}{megavoltpercentimetre}) in the so-called electric double layer (EDL) on the electrolyte/channel interface, which leads to the injection of 2D charge carrier densities up to SI{e15}{cm^{-2}}. The remarkably strong gate effect of ionic liquids is diminished in the presence of trapped states and roughness-induced surface disorder, which points out that atomically flat transition metal dichalcogenides of high crystal quality are some of the semiconductors best suited for EDL-gating.We realised EDL-gated field-effect transistors based on multi-walled ce{WS2} nanotubes with operation performance comparable to that of EDL-gated thin flakes of the same material and superior to the performance of backgated ce{WS2} nanotubes. For instance, we observed mobilities of up to SI{80}{squarecentimetrepervoltpersecond} for both p- and n-type charge carriers and our current on-off ratios exceed SI{e5}{} for both polarities. At high electron doping levels, the nanotubes show metallic behaviour down to low temperatures. The use of an electrolyte as topgate dielectric allows the purely electrostatic formation of a pn-junction. We successfully fabricated a light-emitting transistor taking advantage of this utility.The ability of high charge carrier doping suggests an electrostatically induced metal phase or superconductivity in large gap semiconductors. We successfully induced low temperature metallic conduction into intrinsic diamond with hydrogen-terminated surface via field-effect and we observed a gate effect in doped, metallic silicon.Ionic liquids have many advantageous properties, but their applicability suffers from the instability of their liquid body, gate leakage currents and absorption of impurities. An effective way to bypass most of these problems, while keeping the ability of ultra-high charge carrier injection, is the gelation of ionic liquids. We even went one step further and fabricated modified ion gel films with the cations fixed on one surface and the anions able to move freely through the film. With this tool, we realised a novel low-power field-effect diode
Quentin-Schindler, Marie. "Étude et développement d’une source d’ions équipée d’une cathode à nanotubes de carbone, émettrice d’électrons par effet de champ avec une application aux tubes neutroniques scellés". Electronic Thesis or Diss., Sorbonne université, 2024. http://www.theses.fr/2024SORUS251.
Texto completoThis doctoral project, carried out at Sodern, a subsidiary of ArianeGroup, is dedicated to the optimization of sealed neutron tubes. These devices are used for material analysis, primarily in the oil and mining sectors. They operate on the principle of miniaturized particle accelerators, generating neutrons through the deuterium-tritium fusion reaction.The central issue of this research concerns the ion source of the tubes, currently based on a cold Penning-type cathode. This configuration presents significant limitations, such as inefficient control of the ion-generating plasma discharge. This problem is exacerbated by jitter, which characterizes variability in pulse widths, and a delay in ignition, which is the lag between powering the source and ion extraction. To overcome these obstacles while limiting power input, the introduction of a carbon nanotube (CNT) based electron-emitting cathode, operating by field effect, is considered due to its ability to emit under relatively low potential and without added temperature.The methodology adopted initially includes tests of CNT electron emission to evaluate their practical integration into the ion source. The operational parameters examined include the gaseous environment in the pressure range of the tubes, lifespan, repeatability, temperature, and neutron pulsation. These investigations led to the development of a modified ion source, integrating a CNT source. This integration was first carried out by simulation on CST Studio software, then by the design of a prototype. This prototype was realized and tested in the laboratory to characterize its temporal properties. The results show a significant reduction in ignition delay and jitter, although this has led to irreversible degradation of the CNTs after a few hours of operation. These tests show that a minimum emission current would allow these improvements.In conclusion, this thesis demonstrates the potential of adding an electron source to improve the temporal performance of a Penning-type ion source
Cooper, Joseph Andrew. "Investigation of the effects of process variables on the properties of europium-doped yttrium oxide phosphor". Thesis, Georgia Institute of Technology, 1997. http://hdl.handle.net/1853/20503.
Texto completoAndrew), Patterson Alex A. (Alex. "An analytical framework for field electron emission, incorporating quantum- confinement effects". Thesis, Massachusetts Institute of Technology, 2013. http://hdl.handle.net/1721.1/84863.
Texto completoCataloged from PDF version of thesis.
Includes bibliographical references (pages 141-151).
As field electron emitters shrink to nanoscale dimensions, the effects of quantum confinement of the electron supply and electric field enhancement at the emitter tip play a significant role in determining the emitted current density (ECD). Consequently, the Fowler-Nordheim (FN) equation, which primarily applies to field emission from the planar surface of a bulk metal may not be valid for nanoscale emitters. While much effort has focused on studying emitter tip electrostatics, not much attention has been paid to the consequences of a quantum-confined electron supply. This work builds an analytical framework from which ECD equations for quantum-confined emitters of various geometries and materials can be generated and the effects of quantum confinement of the electron supply on the ECD can be studied. ECD equations were derived for metal emitters from the elementary model and for silicon emitters via a more physically-complete version of the elementary model. In the absence of field enhancement at the emitter tip, decreasing an emitter's dimensions is found to decrease the total ECD. When the effects of field enhancement are incorporated, the ECD increases with decreasing transverse emitter dimensions until a critical dimension dpeak, below which the reduced electron supply becomes the limiting factor for emission and the ECD decreases. Based on the forms of the ECD equations, alternate analytical methods to Fowler-Nordheim plots are introduced for parameter extraction from experimental field emission data. Analysis shows that the FN equation and standard analysis procedures over-predict the ECD from quantum-confined emitters. As a result, the ECD equations and methods introduced in this thesis are intended to replace the Fowler-Nordheim equation and related analysis procedures when treating field emission from suitably small field electron emitters.
by Alex A. Patterson.
S.M.
Mo, Yudong. "The Effects of Residual Gases on the Field Emission Properties of ZnO, GaN, ZnS Nanostructures, and the Effects of Light on the Resistivity of Graphene". Thesis, University of North Texas, 2014. https://digital.library.unt.edu/ark:/67531/metadc500202/.
Texto completoNarayanan, Sruthi Annapoorny. "Effect of magnetic seed fields on Lyman Alpha emission from distant quasars". Thesis, Massachusetts Institute of Technology, 2016. http://hdl.handle.net/1721.1/105651.
Texto completoCataloged from PDF version of thesis.
Includes bibliographical references (pages 55-57).
There are indications that weak magnetic fields originating in the early Universe and magnified via magnetohydrodynamic (MHD) processes could cause perturbations in the thermodynamic state of the gas in the intergalactic medium which affect the Lyman-Alpha spectrum we observe. In this work we investigate to what extent the properties of the Lyman-Alpha forest are sensitive to the presence of large-scale cosmological magnetic fields as a function of the seed field intensity. To do so, we develop and use a series of numerical tools to analyze previously constructed cosmological MHD simulations that include state-of-the-art implementation of the relevant physical processes for galaxy formation. The inclusion of these physical mechanisms is crucial to get the level of magnetic field amplification currently observed in the structures that populate our Universe. With these tools we isolate characteristics, namely the Flux Probability Density Function and the Power Spectrum, of the Lyman-Alpha forest that are sensitive to the magnetic field strength. We then examine the implications of our results.
by Sruthi Annapoorny Narayanan.
S.B.
Libros sobre el tema "Field effect emission"
Prasad, Ghatak Kamakhya, ed. Fowler-Nordheim field emission: Effects in semiconductor nanostructures. Heidelberg: Springer, 2012.
Buscar texto completoM, Katkov V. y Strakhovenko V. M, eds. Electromagnetic processes at high energies in oriented single crystals. Singapore: World Scientific, 1998.
Buscar texto completoAssociation, Western Interprovincial Scientific Studies. Western Canada study of animal health effects associated with exposure to emissions from oil and natural gas field facilities: A study of 33,000 cattle in British Columbia, Alberta, and Saskatchewan. Calgary, Alta: WISSA, 2006.
Buscar texto completoButusov, Oleg y Valeriy Meshalkin. Fundamentals of informatization and mathematical modeling of ecological systems. ru: INFRA-M Academic Publishing LLC., 2023. http://dx.doi.org/10.12737/1477254.
Texto completo(Editor), Nebojsa Nakicenovic y Robert Swart (Editor), eds. Special Report on Emissions Scenarios: A Special Report of Working Group III of the Intergovernmental Panel on Climate Change. Cambridge University Press, 2000.
Buscar texto completoSolymar, L., D. Walsh y R. R. A. Syms. The free electron theory of metals. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198829942.003.0006.
Texto completoGhatak, Kamakhya Prasad y Sitangshu Bhattacharya. Fowler-Nordheim Field Emission: Effects in Semiconductor Nanostructures. Springer Berlin / Heidelberg, 2014.
Buscar texto completoGhatak, Kamakhya Prasad y Sitangshu Bhattacharya. Fowler-Nordheim Field Emission: Effects in Semiconductor Nanostructures. Springer, 2012.
Buscar texto completoKolmičkovs, Antons. Electric Field Effect on Combustion of Pelletized Biomass in Swirling Flow. RTU Press, 2022. http://dx.doi.org/10.7250/9789934227257.
Texto completoNitrous oxide emissions from rice fields: Past, present, and future. Hauppauge, NY: Nova Science Publishers, 2009.
Buscar texto completoCapítulos de libros sobre el tema "Field effect emission"
Villarreal, Carlos, R. Jáuregui y S. Hacyan. "Dynamical Casimir Effect, “Particle Emission” and Squeezing". En Quantum Field Theory Under the Influence of External Conditions, 46. Wiesbaden: Vieweg+Teubner Verlag, 1996. http://dx.doi.org/10.1007/978-3-663-01204-7_6.
Texto completoSmolyaninov, I. I. "Light Emission from the Tunnel Junction of the STM. Possible Role of Tcherenkov Effect". En Near Field Optics, 353–60. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-1978-8_40.
Texto completoKazarnovskii, M. V. y A. V. Stepanov. "Recoilless γ Emission and Absorption by Atoms in a Magnetic Field". En Proceedings of the Dubna Conference on the Mössbauer Effect 1963, 148–51. Boston, MA: Springer US, 1995. http://dx.doi.org/10.1007/978-1-4899-4848-9_14.
Texto completoLee, Shih-Fong, Li-Ying Lee y Yung-Ping Chang. "The Effect of Hydrogen Plasma Treatment on the Field-Emission Characteristics of Silicon Nanowires". En Lecture Notes in Electrical Engineering, 931–37. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-04573-3_114.
Texto completoZaman, M., K. Kleineidam, L. Bakken, J. Berendt, C. Bracken, K. Butterbach-Bahl, Z. Cai et al. "Automated Laboratory and Field Techniques to Determine Greenhouse Gas Emissions". En Measuring Emission of Agricultural Greenhouse Gases and Developing Mitigation Options using Nuclear and Related Techniques, 109–39. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-55396-8_3.
Texto completoLuo, J. "On the Stress Field and Dislocation Emission of an Elliptically Blunted Mode III Crack with Surface Stress Effect". En IUTAM Symposium on Surface Effects in the Mechanics of Nanomaterials and Heterostructures, 277–87. Dordrecht: Springer Netherlands, 2012. http://dx.doi.org/10.1007/978-94-007-4911-5_24.
Texto completoFarías, Oscar, Pablo Cornejo, Cristian Cuevas, Jorge Jimenez, Meylí Valín, Claudio Garcés y Sebastian Gallardo. "Design of a Condensing Heat Recovery Integrated with an Electrostatic Precipitator for Wood Heaters". En Proceedings of the XV Ibero-American Congress of Mechanical Engineering, 210–16. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-38563-6_31.
Texto completoKumar, Abhishek. "Creating Effects with Particle Emissions and Fields/Solvers". En Beginning VFX with Autodesk Maya, 109–38. Berkeley, CA: Apress, 2021. http://dx.doi.org/10.1007/978-1-4842-7857-4_6.
Texto completoZaman, M., K. Kleineidam, L. Bakken, J. Berendt, C. Bracken, K. Butterbach-Bahl, Z. Cai et al. "Climate-Smart Agriculture Practices for Mitigating Greenhouse Gas Emissions". En Measuring Emission of Agricultural Greenhouse Gases and Developing Mitigation Options using Nuclear and Related Techniques, 303–28. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-55396-8_8.
Texto completode Colle, Fabio y Alejandro Raga. "Effects of the Magnetic Field on the Hα Emission from Jets". En Virtual Astrophysical Jets, 173–80. Dordrecht: Springer Netherlands, 2004. http://dx.doi.org/10.1007/978-1-4020-2664-5_19.
Texto completoActas de conferencias sobre el tema "Field effect emission"
Palma, John F. y Samson Mil'shtein. "P1.4: Field effect controlled lateral field emission triode". En 2010 23rd International Vacuum Nanoelectronics Conference (IVNC). IEEE, 2010. http://dx.doi.org/10.1109/ivnc.2010.5563165.
Texto completoYafyasov, A., V. Bogevolnov, A. Tomilov, B. Pavlov y G. Fursey. "Modelling of the electron field emission effect on the low dimensional carbon structures". En 2014 2nd International Conference on Emission Electronics (ICEE). IEEE, 2014. http://dx.doi.org/10.1109/emission.2014.6893980.
Texto completoKnap, Wojciech, Nina V. Dyakonova, Franz Schuster, Dominique Coquillat, Frédéric Teppe, Benoît Giffard, Dmytro B. But et al. "Terahertz detection and emission by field-effect transistors". En SPIE Optical Engineering + Applications, editado por Manijeh Razeghi, Alexei N. Baranov, Henry O. Everitt, John M. Zavada y Tariq Manzur. SPIE, 2012. http://dx.doi.org/10.1117/12.930091.
Texto completoBaturin, Stanislav S., Alexander V. Zinovev y Sergey V. Baryshev. "Vacuum effect on field emission I-V curves". En 2017 30th International Vacuum Nanoelectronics Conference (IVNC). IEEE, 2017. http://dx.doi.org/10.1109/ivnc.2017.8051638.
Texto completoYang, Y., S. Huo, L. H. Jiang, Y. C. Kong, T. S. Chen, H. Zhou, A. S. Teh, T. Butler, D. Hasko y G. A. Amaratunga. "Carbon Nanotube Lateral Field Emission Device with Embedded Field Effect Transistor". En 2018 IEEE International Conference on Electron Devices and Solid State Circuits (EDSSC). IEEE, 2018. http://dx.doi.org/10.1109/edssc.2018.8487091.
Texto completoTao, Zhi, Xiang Liu, Wei Lei, Chi Li y Yuxuan Chen. "Photo enhanced QDs/ZnO-nanowire field-emission type field-effect transistor". En 2015 IEEE International Vacuum Electronics Conference (IVEC). IEEE, 2015. http://dx.doi.org/10.1109/ivec.2015.7223927.
Texto completoLiu, Thomas, David Morris, Jonathan Zagel, Codrin Cionca, Yang Li, Christopher Smith, Alexandru Riposan, Alec Gallimore, Brian Gilchrist y Roy Clarke. "Use of Boron Nitride for Field Effect Electron Emission". En 43rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2007. http://dx.doi.org/10.2514/6.2007-5253.
Texto completoDyakonova, N., A. El Fatimy, J. Lusakowskil, W. Knap, M. I. Dyakonov, M. A. Poisson, E. Morvan et al. "Room-temperature terahertz emission from nanometer field-effect transistors". En >2006 Joint 31st International Conference on Infrared Millimeter Waves and 14th International Conference on Teraherz Electronics. IEEE, 2006. http://dx.doi.org/10.1109/icimw.2006.368353.
Texto completoSchulz, S. "Field effect enhanced carrier-emission from InAs Quantum Dots". En PHYSICS OF SEMICONDUCTORS: 27th International Conference on the Physics of Semiconductors - ICPS-27. AIP, 2005. http://dx.doi.org/10.1063/1.1994352.
Texto completoLiao, M. X., S. Z. Deng, N. S. Xu y Jun Chen. "Photosensitivity effect of field emission from zinc oxide nanowires". En 2012 25th International Vacuum Nanoelectronics Conference (IVNC). IEEE, 2012. http://dx.doi.org/10.1109/ivnc.2012.6316961.
Texto completoInformes sobre el tema "Field effect emission"
Porter, Troy A., Igor V. Moskalenko y Andrew W. Strong. Inverse Compton Emission from Galactic Supernova Remnants: Effect of the Interstellar Radiation Field. Office of Scientific and Technical Information (OSTI), agosto de 2006. http://dx.doi.org/10.2172/888781.
Texto completoTong, W., T. E. Felter, L. S. Pan, S. Anders, A. Cossy-Facre y T. Stammler. The effect of aspect ratio and sp2/sp3 content on the field emission properties of carbon films grown by Ns-spiked PECVD. Office of Scientific and Technical Information (OSTI), abril de 1998. http://dx.doi.org/10.2172/666026.
Texto completoCowell, Luke, Alejandro Camou, Ivan Carlos y Dustin Truesdel. PR-283-16201-R01 Improved SoLoNOx Taurus 60 Control Algorithm to Reduce Part Load Emissions. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), agosto de 2018. http://dx.doi.org/10.55274/r0011510.
Texto completoBusby, Ryan, Morgan Conrady, Kyoo Jo y Donald Cropek. Characterising earth scent. Engineer Research and Development Center (U.S.), febrero de 2024. http://dx.doi.org/10.21079/11681/48262.
Texto completoOttinger, P. F., G. Cooperstein, J. W. Schumer y S. B. Swanekamp. Self-Magnetic Field Effects on Electron Emission as the Critical Current is Approached. Office of Scientific and Technical Information (OSTI), septiembre de 2001. http://dx.doi.org/10.2172/1185204.
Texto completoOttinger, P. F., G. Cooperstein, J. W. Schumer y S. B. Swanekamp. Self-Magnetic Field Effects on Electron Emission as the Critical Current is Approached. Fort Belvoir, VA: Defense Technical Information Center, septiembre de 2001. http://dx.doi.org/10.21236/ada390441.
Texto completoKlausmeier. L51483 Evaluation of EPA Method 20 Ambient Correction Procedure. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), mayo de 1985. http://dx.doi.org/10.55274/r0010652.
Texto completoFowler. L51754 Field Application of Electronic Gas Admission with Cylinder Pressure Feedback for LB Engines. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), junio de 1996. http://dx.doi.org/10.55274/r0010363.
Texto completoAlmutairi, Hossa y Axel Pierru. Assessing Climate Mitigation Benefits of Public Support to CCS-EOR: An Economic Analysis. King Abdullah Petroleum Studies and Research Center, junio de 2023. http://dx.doi.org/10.30573/ks--2023-dp12.
Texto completoKhalil, M. A. K. y R. A. Rasmussen. Methane emissions from rice fields: The effects of climatic and agricultural factors. Final report, March 1, 1994--April 30, 1997. Office of Scientific and Technical Information (OSTI), octubre de 1997. http://dx.doi.org/10.2172/534483.
Texto completo