Índice
Literatura académica sobre el tema "Field crops Disease and pest resistance Genetic aspects"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Field crops Disease and pest resistance Genetic aspects".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Field crops Disease and pest resistance Genetic aspects"
Carlson, Craig H., Fred E. Gouker, Chase R. Crowell, Luke Evans, Stephen P. DiFazio, Christine D. Smart y Lawrence B. Smart. "Joint linkage and association mapping of complex traits in shrub willow (Salix purpurea L.)". Annals of Botany 124, n.º 4 (22 de abril de 2019): 701–15. http://dx.doi.org/10.1093/aob/mcz047.
Texto completoWilson, T. Michael A. y Jeffrey W. Davies. "New Roads to Crop Protection Against Viruses". Outlook on Agriculture 23, n.º 1 (marzo de 1994): 33–39. http://dx.doi.org/10.1177/003072709402300107.
Texto completoAnderson, W. K., R. F. Brennan, K. W. Jayasena, S. Micic, J. H. Moore y T. Nordblom. "Tactical crop management for improved productivity in winter-dominant rainfall regions: a review". Crop and Pasture Science 71, n.º 7 (2020): 621. http://dx.doi.org/10.1071/cp19315.
Texto completoMartyn, R. D. "Where will the next Norman Borlaug come from? A U.S. perspective of plant pathology education and research." Plant Protection Science 45, No. 4 (27 de diciembre de 2009): 125–39. http://dx.doi.org/10.17221/22/2009-pps.
Texto completoHayat, Anees, Asia Riaz y Nazia Suleman. "Effect of gamma irradiation and subsequent cold storage on the development and predatory potential of seven spotted ladybird beetle Coccinella septempunctata Linnaeus (Coleoptera; Coccinellidae) larvae". World Journal of Biology and Biotechnology 5, n.º 2 (15 de agosto de 2020): 37. http://dx.doi.org/10.33865/wjb.005.02.0297.
Texto completoChavdarov, Anatoliy V. "Special Issue No. – 10, June, 2020 Journal > Special Issue > Special Issue No. – 10, June, 2020 > Page 5 “Quantative Methods in Modern Science” organized by Academic Paper Ltd, Russia MORPHOLOGICAL AND ANATOMICAL FEATURES OF THE GENUS GAGEA SALISB., GROWING IN THE EAST KAZAKHSTAN REGION Authors: Zhamal T. Igissinova,Almash A. Kitapbayeva,Anargul S. Sharipkhanova,Alexander L. Vorobyev,Svetlana F. Kolosova,Zhanat K. Idrisheva, DOI: https://doi.org/10.26782/jmcms.spl.10/2020.06.00041 Abstract: Due to ecological preferences among species of the genus GageaSalisb, many plants are qualified as rare and/or endangered. Therefore, the problem of rational use of natural resources, in particular protection of early spring plant species is very important. However, literary sources analysis only reveals data on the biology of species of this genus. The present research,conducted in the spring of 2017-2019, focuses on anatomical and morphological features of two Altai species: Gagealutea and Gagea minima; these features were studied, clarified and confirmed by drawings and photographs. The anatomical structure of the stem and leaf blade was studied in detail. The obtained research results will prove useful for studies of medicinal raw materials and honey plants. The aforementioned species are similar in morphological features, yet G. minima issmaller in size, and its shoots appear earlier than those of other species Keywords: Flora,gageas,Altai species,vegetative organs., Refference: I. Atlas of areas and resources of medicinal plants of Kazakhstan.Almaty, 2008. II. Baitenov M.S. Flora of Kazakhstan.Almaty: Ġylym, 2001. III. DanilevichV. G. ThegenusGageaSalisb. of WesternTienShan. PhD Thesis, St. Petersburg,1996. IV. EgeubaevaR.A., GemedzhievaN.G. The current state of stocks of medicinal plants in some mountain ecosystems of Kazakhstan.Proceedings of the international scientific conference ‘”Results and prospects for the development of botanical science in Kazakhstan’, 2002. V. Kotukhov Yu.A. New species of the genus Gagea (Liliaceae) from Southern Altai. Bot. Journal.1989;74(11). VI. KotukhovYu.A. ListofvascularplantsofKazakhstanAltai. Botan. Researches ofSiberiaandKazakhstan.2005;11. VII. KotukhovYu. The current state of populations of rare and endangered plants in Eastern Kazakhstan. Almaty: AST, 2009. VIII. Kotukhov Yu.A., DanilovaA.N., AnufrievaO.A. Synopsisoftheonions (AlliumL.) oftheKazakhstanAltai, Sauro-ManrakandtheZaisandepression. BotanicalstudiesofSiberiaandKazakhstan. 2011;17: 3-33. IX. Kotukhov, Yu.A., Baytulin, I.O. Rareandendangered, endemicandrelictelementsofthefloraofKazakhstanAltai. MaterialsoftheIntern. scientific-practical. conf. ‘Sustainablemanagementofprotectedareas’.Almaty: Ridder, 2010. X. Krasnoborov I.M. et al. The determinant of plants of the Republic of Altai. Novosibirsk: SB RAS, 2012. XI. Levichev I.G. On the species status of Gagea Rubicunda. Botanical Journal.1997;6:71-76. XII. Levichev I.G. A new species of the genus Gagea (Liliaceae). Botanical Journal. 2000;7: 186-189. XIII. Levichev I.G., Jangb Chang-gee, Seung Hwan Ohc, Lazkovd G.A.A new species of genus GageaSalisb.(Liliaceae) from Kyrgyz Republic (Western Tian Shan, Chatkal Range, Sary-Chelek Nature Reserve). Journal of Asia-Pacific Biodiversity.2019; 12: 341-343. XIV. Peterson A., Levichev I.G., Peterson J. Systematics of Gagea and Lloydia (Liliaceae) and infrageneric classification of Gagea based on molecular and morphological data. Molecular Phylogenetics and Evolution.2008; 46. XV. Peruzzi L., Peterson A., Tison J.-M., Peterson J. Phylogenetic relationships of GageaSalisb.(Liliaceae) in Italy, inferred from molecular and morphological data matrices. Plant Systematics and Evolution; 2008: 276. XVI. Rib R.D. Honey plants of Kazakhstan. Advertising Digest, 2013. XVII. Scherbakova L.I., Shirshikova N.A. Flora of medicinal plants in the vicinity of Ust-Kamenogorsk. Collection of materials of the scientific-practical conference ‘Unity of Education, Science and Innovation’. Ust-Kamenogorsk: EKSU, 2011. XVIII. syganovA.P. PrimrosesofEastKazakhstan. Ust-Kamenogorsk: EKSU, 2001. XIX. Tsyganov A.P. Flora and vegetation of the South Altai Tarbagatay. Berlin: LAP LAMBERT,2014. XX. Utyasheva, T.R., Berezovikov, N.N., Zinchenko, Yu.K. ProceedingsoftheMarkakolskStateNatureReserve. Ust-Kamenogorsk, 2009. XXI. Xinqi C, Turland NJ. Gagea. Flora of China.2000;24: 117-121. XXII. Zarrei M., Zarre S., Wilkin P., Rix E.M. Systematic revision of the genus GageaSalisb. (Liliaceae) in Iran.BotJourn Linn Soc.2007;154. XXIII. Zarrei M., Wilkin P., Ingroille M.J., Chase M.W. A revised infrageneric classification for GageaSalisb. (Tulipeae; Liliaceae): insights from DNA sequence and morphological data.Phytotaxa.2011:5. View | Download INFLUENCE OF SUCCESSION CROPPING ON ECONOMIC EFFICIENCY OF NO-TILL CROP ROTATIONS Authors: Victor K. Dridiger,Roman S. Stukalov,Rasul G. Gadzhiumarov,Anastasiya A. Voropaeva,Viktoriay A. Kolomytseva, DOI: https://doi.org/10.26782/jmcms.spl.10/2020.06.00042 Abstract: This study was aimed at examining the influence of succession cropping on the economic efficiency of no-till field crop rotations on the black earth in the zone of unstable moistening of the Stavropol krai. A long-term stationary experiment was conducted to examine for the purpose nine field crop rotation patterns different in the number of fields (four to six), set of crops, and their succession in crop rotation. The respective shares of legumes, oilseeds, and cereals in the cropping pattern were 17 to 33, 17 to 40, and 50 to 67 %. It has been established that in case of no-till field crop cultivation the economic efficiency of plant production depends on the set of crops and their succession in rotation. The most economically efficient type of crop rotation is the soya-winter wheat-peas-winter wheat-sunflower-corn six-field rotation with two fields of legumes: in this rotation 1 ha of crop rotation area yields 3 850 grain units per ha at a grain unit prime cost of 5.46 roubles; the plant production output return and profitability were 20,888 roubles per ha and 113 %, respectively. The high production profitabilities provided by the soya-winter wheat-sunflower four-field and the soya-winter-wheat-sunflower-corn-winter wheat five-field crop rotation are 108.7 and 106.2 %, respectively. The inclusion of winter wheat in crop rotation for two years in a row reduces the second winter wheat crop yield by 80 to 100 %, which means a certain reduction in the grain unit harvesting rate to 3.48-3.57 thousands per ha of rotation area and cuts the production profitability down to 84.4-92.3 %. This is why, no-till cropping should not include winter wheat for a second time Keywords: No-till technology,crop rotation,predecessor,yield,return,profitability, Refference: I Badakhova G. Kh. and Knutas A. V., Stavropol Krai: Modern Climate Conditions [Stavropol’skiykray: sovremennyyeklimaticheskiyeusloviya]. Stavropol: SUE Krai Communication Networks, 2007. II Cherkasov G. N. and Akimenko A. S. Scientific Basis of Modernization of Crop Rotations and Formation of Their Systems according to the Specializations of Farms in the Central Chernozem Region [Osnovy moderniz atsiisevooborotoviformirovaniyaikh sistem v sootvetstvii so spetsi-alizatsiyeykhozyaystvTsentral’nogoChernozem’ya]. Zemledelie. 2017; 4: 3-5. III Decree 330 of July 6, 2017 the Ministry of Agriculture of Russia “On Approving Coefficients of Converting to Agricultural Crops to Grain Units [Ob utverzhdeniikoeffitsiyentovperevoda v zernovyyee dinitsysel’s kokhozyaystvennykhkul’tur]. IV Dridiger V. K., About Methods of Research of No-Till Technology [O metodikeissledovaniytekhnologii No-till]//Achievements of Science and Technology of AIC (Dostizheniyanaukiitekhniki APK). 2016; 30 (4): 30-32. V Dridiger V. K. and Gadzhiumarov R. G. Growth, Development, and Productivity of Soya Beans Cultivated On No-Till Technology in the Zone of Unstable Moistening of Stavropol Region [Rost, razvitiyeiproduktivnost’ soiprivozdelyvaniipotekhnologii No-till v zone ne-ustoychivog ouvlazhneniyaStavropol’skogokraya]//Oil Crops RTBVNIIMK (Maslichnyyekul’turyNTBVNIIMK). 2018; 3 (175): 52–57. VI Dridiger V. K., Godunova E. I., Eroshenko F. V., Stukalov R. S., Gadzhiumarov, R. G., Effekt of No-till Technology on erosion resistance, the population of earthworms and humus content in soil (Vliyaniyetekhnologii No-till naprotivoerozionnuyuustoychivost’, populyatsiyudozhdevykhcherveyisoderzhaniyegumusa v pochve)//Research Journal of Pharmaceutical, Biological and Chemical Sciences. 2018; 9 (2): 766-770. VII Karabutov A. P., Solovichenko V. D., Nikitin V. V. et al., Reproduction of Soil Fertility, Productivity and Energy Efficiency of Crop Rotations [Vosproizvodstvoplodorodiyapochv, produktivnost’ ienergeticheskayaeffektivnost’ sevooborotov]. Zemledelie. 2019; 2: 3-7. VIII Kulintsev V. V., Dridiger V. K., Godunova E. I., Kovtun V. I., Zhukova M. P., Effekt of No-till Technology on The Available Moisture Content and Soil Density in The Crop Rotation [Vliyaniyetekhnologii No-till nasoderzhaniyedostupnoyvlagiiplotnost’ pochvy v sevoob-orote]// Research Journal of Pharmaceutical, Biological and Chemical Sciences. 2017; 8 (6): 795-99. IX Kulintsev V. V., Godunova E. I., Zhelnakova L. I. et al., Next-Gen Agriculture System for Stavropol Krai: Monograph [SistemazemledeliyanovogopokoleniyaStavropol’skogokraya: Monogtafiya]. Stavropol: AGRUS Publishers, Stavropol State Agrarian University, 2013. X Lessiter Frank, 29 reasons why many growers are harvesting higher no-till yields in their fields than some university scientists find in research plots//No-till Farmer. 2015; 44 (2): 8. XI Rodionova O. A. Reproduction and Exchange-Distributive Relations in Farming Entities [Vosproizvodstvoiobmenno-raspredelitel’nyyeotnosheniya v sel’skokhozyaystvennykhorganizatsiyakh]//Economy, Labour, and Control in Agriculture (Ekonomika, trud, upravleniye v sel’skomkhozyaystve). 2010; 1 (2): 24-27. XII Sandu I. S., Svobodin V. A., Nechaev V. I., Kosolapova M. V., and Fedorenko V. F., Agricultural Production Efficiency: Recommended Practices [Effektivnost’ sel’skokhozyaystvennogoproizvodstva (metodicheskiyerekomendatsii)]. Moscow: Rosinforagrotech, 2013. XIII Sotchenko V. S. Modern Corn Cultivation Technologies [Sovremennayatekhnologiyavozdelyvaniya]. Moscow: Rosagrokhim, 2009. View | Download DEVELOPMENT AND TESTING OF AUTONOMOUS PORTABLE SEISMOMETER DESIGNED FOR USE AT ULTRALOW TEMPERATURES IN ARCTIC ENVIRONMENT Authors: Mikhail A. Abaturov,Yuriy V. Sirotinskiy, DOI: https://doi.org/10.26782/jmcms.spl.10/2020.06.00043 Abstract: This paper is concerned with solving one of the issues of the general problem of designing geophysical equipment for the natural climatic environment of the Arctic. The relevance of the topic has to do with an increased global interest in this region. The paper is aimed at considering the basic principles of developing and the procedure of testing seismic instruments for use at ultralow climatic temperatures. In this paper the indicated issue is considered through the example of a seismic module designed for petroleum and gas exploration by passive seismoacoustic methods. The seismic module is a direct-burial portable unit of around 5 kg in weight, designed to continuously measure and record microseismic triaxial orthogonal (ZNE) noise in a range from 0.1 to 45 Hz during several days in autonomous mode. The functional chart of designing the seismic module was considered, and concrete conclusions were made for choosing the necessary components to meet the ultralow-temperature operational requirements. The conclusions made served for developing appropriate seismic module. In this case, the components and tools used included a SAFT MP 176065 xc low-temperature lithium cell, industrial-spec electronic component parts, a Zhaofeng Geophysical ZF-4.5 Chinese primary electrodynamic seismic sensor, housing seal parts made of frost-resistant silicone materials, and finely dispersed silica gel used as water-retaining sorbent to avoid condensation in the housing. The paper also describes a procedure of low-temperature collation tests at the lab using a New Brunswick Scientific freezing plant. The test results proved the operability of the developed equipment at ultralow temperatures down to -55°C. In addition, tests were conducted at low microseismic noises in the actual Arctic environment. The possibility to detect signals in a range from 1 to 10 Hz at the level close to the NLNM limit (the Peterson model) has been confirmed, which allows monitoring and exploring petroleum and gas deposits by passive methods. As revealed by this study, the suggested approaches are efficient in developing high-precision mobile seismic instruments for use at ultralow climatic temperatures. The solution of the considered instrumentation and methodical issues is of great practical significance as a constituent of the generic problem of Arctic exploration. Keywords: Seismic instrumentation,microseismic monitoring,Peterson model,geological exploration,temperature ratings,cooling test, Refference: I. AD797: Ultralow Distortion, Ultralow Noise Op Amp, Analog Devices, Inc., Data Sheet (Rev. K). Analog Devices, Inc. URL: https://www.analog.com/media/en/technical-documentation/data-sheets/AD797.pdf(Date of access September 2, 2019). II. Agafonov, V. M., Egorov, I. V., and Shabalina, A. S. Operating Principles and Technical Characteristics of a Small-Sized Molecular–Electronic Seismic Sensor with Negative Feedback [Printsipyraboty I tekhnicheskiyekharakteristikimalogabaritnogomolekulyarno-elektronnogoseysmodatchika s otritsatel’noyobratnoysvyaz’yu]. SeysmicheskiyePribory (Seismic Instruments). 2014; 50 (1): 1–8. DOI: 10.3103/S0747923914010022. III. Antonovskaya, G., Konechnaya, Ya.,Kremenetskaya, E., Asming, V., Kvaema, T., Schweitzer, J., Ringdal, F. Enhanced Earthquake Monitoring in the European Arctic. Polar Science. 2015; 1 (9): 158-167. IV. Anthony, R. E., Aster, R. C., Wiens, D., Nyblade, Andr., Anandakrishnan, Sr., Huerta, Audr., Winberry, J. P., Wilson, T., and Rowe, Ch. The Seismic Noise Environment of Antarctica. Seismological Research Letters. 2015; 86(1): 89-100. DOI: 10.1785/0220150005 V. Brincker, R., Lago, T. L., Andersen, P., and Ventura, C. Improving the Classical Geophone Sensor Element by Digital Correction. In Conference Proceedings: IMAC-XXIII: A Conference & Exposition on Structural Dynamics Society for Experimental Mechanics, 2005. URL: https://www.researchgate.net/publication/242452637_Improving_the_Classical_Geophone_Sensor_Element_by_Digital_Correction(Date of access September 2, 2019). VI. Bylaw 164 of the State Committee for Construction of the Russian Federation “On adopting amendments to SNiP 31-01-99 “Construction climatology”. URL: https://base.garant.ru/2322381/(Date of access September 2, 2019). VII. Chao Xu, Junbo Wang, Deyong Chen, Jian Chen, Bowen Liu, Wenjie Qi, XichenZheng, Hua Wei, Guoqing Zhang. The Electrochemical Seismometer Based on a Novel Designed.Sensing Electrode for Undersea Exploration. 20th International Conference on Solid-State Sensors, Actuators and Microsystems &Eurosensors XXXIII (TRANSDUCERS &EUROSENSORS XXXIII). IEEE, 2019. DOI: 10.1109/TRANSDUCERS.2019.8808450. VIII. Chebotareva, I. Ya. New algorithms of emission tomography for passive seismic monitoring of a producing hydrocarbon deposit: Part I. Algorithms of processing and numerical simulation [Novyye algoritmyemissionnoyto mografiidlyapassivnogoseysmicheskogomonitoringarazrabatyvayemykhmestorozhdeniyuglevodorodov. Chast’ I: Algoritmyobrabotki I chislennoyemodelirovaniye]. FizikaZemli. 2010; 46(3):187-98. DOI: 10.1134/S106935131003002X IX. Danilov, A. V. and Konechnaya, Ya. V. Analytical comparison of seismic instruments for stationary surveys in the Arctic [Sravnitel’nyyanalizseysmicheskoyapparaturydlyastatsionarnykhnablyudeniy v Arktike]. DSYS. URL: https://dsys.ru/upload/id254_docPDF_FranzJosefLand.pdf(Date of access September 2, 2019). X. Dew point temperature calculator. Maple Tech. International LLC. URL: https://www.calculator.net/dew-point-calculator.html?airtemperature=20&airtemperatureunit=celsius&humidity=0.34&dewpoint=&dewpointunit=celsius&x=51&y=14(Date of access September 2, 2019). XI. Frolov, A. S. Matching of wave fields recorded by different geophysical receivers [Soglasovaniyevolnovykhpoley, poluchennykh s primeneniyemrazlichnoyregistriruyushcheyapparatury]. Abstracts IX International scientific and technical conference competition of young specialists “Geophysics-2013”. Saint-Petersburg: Gubkin University, 2013. URL: https://www.gubkin.ru/faculty/geology_and_geophysics/chairs_and_departments/exploration_geophysics_and_computers_systems/files/2013_SPb_Frolov.pdf. (Date of access September 2, 2019). XII. Gibbons, S. J., Asming, V., Fedorov, A., Fyen, J., Kero, J., Kozlovskaya, E., Kværna, T., Liszka, L., Näsholm, S.P., Raita, T., Roth, M., Tiira, T., Vinogradov, Yu. The European Arctic: A laboratory for seismoacoustic studies. Seism. Res. Letters. 2015; 86 (3): 917–928. XIII. GOST 8.395-80. State system for ensuring the uniformity of measurements. Reference conditions of measurements while calibrating. General requirements [Gosudarstvennayasistemaobespecheniyaedinstvaizmereniy. Normal’nyyeusloviyaizmereniypripoverke. Obshchiyetrebovaniya]. Moscow: Standartinform, 2008. URL: http://gostrf.com/normadata/1/4294821/4294821960.pdf (Date of access September 2, 2019). XIV. Guralp 6TD. Operators’ Guide. Document Number: MAN-T60-0002, Issue J: April, 2017. Guralp Systems Limited. URL: https://www.guralp.com/documents/MAN-T60-0002.pdf (Date of access September 2, 2019). XV. Inshakova, A. S., Barykina, E. S., and Kozlov, V. V. Role of silica gel in adsorption air drying [Rol’ silikagelya v adsorbtsionnoyosushkevozdukha]. AlleyaNauki (Alley of Science). 2017; 15. URL: https://www.alley- science.ru/domains_data/files/November2017/ROL%20SILIKAGELYa%20V%20ADSORBCIONNOY%20OSUShKE%20VOZDUHA.pdf(Date of access September 2, 2019). XVI. Ioffe, D. and Pozdnyakov, P. Searching for Hidden Reserves of Modern Microchip Circuits. Part I [Poiskskrytykhrezervovsovremennykhmikroskhem. Chast’ I].Komponenty I tekhnologii (Components and Technologies). 2015; 4: 144-46. XVII. Jiang Xu, Xi Wang, Ningyi Yuan, Jianning Ding, Si Qin, Joselito M. Razal, Xuehang Wang, ShanhaiGe, Gogotsi, Yu. Extending the low temperature operational limit of Li-ion battery to −80 °C. Energy Storage Materials (IF0). Published 2019-04-27. DOI: 10.1016/j.ensm.2019.04.033. XVIII. Kouznetsov, O. L., Lyasch, Y. F., Chirkin, I. A., Rizanov, E. G., LeRoy, S. D., Koligaev, S. O. Long-term monitoring of microseismic emissions: Earth tides, fracture distribution, and fluid content. SEG, APPG Interpretation. 2016: 4 (2): T191–T204. XIX. Laverov, N. P., Bogoyavlenskiy, V. I., Bogoyavlenskiy, I. V. Fundamental Aspects of Rational Management of the Petroleum and Gas Resources of the Arctic and the Russian Continental Shelf: Strategy, Prospects, and Problems [Fundamental’nyyeaspektyratsional’nogoosvoyeniyaresursovneftiigazaArktiki I shel’faRossii: strategiya, perspektivyi problem].Arktika: ekologiya I ekonomika [Arctic: Ecology and Economy]. 2016; 2 (22): 4-13. XX. Lee, P. Low Noise Amplifier Selection Guide for Optimal Noise Performance, Analog Devices, Inc., AN-940 Application Note. Analog Devices, Inc. URL: https://www.analog.com/media/en/technical-documentation/application-notes/AN-940.pdf(Date of access September 2, 2019). XXI. Markatis, N., Polychronopoulou, K., Tselentis, Ak. Passive seismic tomography: A passive concept actively evolving. First Break. 2012; 30 (7): 83-90. XXII. Matveev, I. V. and Matveeva, N. V. Portable seismic recorder “SEISAR-5” with very low energy consumption for autonomous work in harsh climatic conditions [Portativnyyseysmicheskiyregistrator «Seysar-5» s ochen’ nizkimenergopotrebleniyemdlyaavtonomnoyraboty v slozhnykhklimatic heskikhusloviyakh]. Nauka I tekhnologicheskierazrabotki (Science and Technological Developments). 2017; 96 (3): 33-40. [Special Issue “Applied Geophysics: New Developments and Results. Part 1. Seismology and Seismic Exploration]. DOI: 10.21455/std2017.3-3. XXIII. Mishra, R. The Temperature Ratings of Electronic Parts.Electronics Cooling magazine. URL: http://www.electronics-cooling.com/2004/02/the-temperature-ratings-of-electronic-parts(Date of access September 2, 2019). XXIV. Moore, Sue E.; Stabeno, Phyllis J.; Van Pelt, Thomas I. The Synthesis of Arctic Research (SOAR) project. Deep-Sea Research Part II. 152: 1-7. DOI: 10.1016/j.dsr2.2018.05.013. XXV. MS-SPORT Viscous Silicone Lubricant with Fluoroplastic. ToR2257-010-45540231-2003. OOO VMPAUTO, URL: https://smazka.ru/attachments/get/469/ms-sport-tds.pdf(Date of access September 2, 2019). XXVI. New Brunswick™ Premium -86 °C Freezers. Operating manual. URL: https://www.eppendorf.com/product-media/doc/en/142770_Operating-Manual/New-Brunswick_Freezers_Operating-manual-86-C-Premium-Freezers.pdf(Date of access September 2, 2019). XXVII. New seismic digitizer/recorder for passive seismic monitoring applications. LandTech Enterprises. URL: http://www.landtechsa.com/Images/Instrument/SRi32L/SRi32L.pdf(Date of access September 2, 2019). XXVIII. Parker, T., Winberry, P., Huerta, A., Bainbridge, G., Devanney, P. Direct Burial Broadband Seismic Instrumentation for Polar Environments. Nanometrics Inc. URL: https://www.nanometrics.ca/sites/default/files/2017-11/direct_burial_bb_seismic_instrumentation_for_polar_environments.pdf. (Date of access September 2, 2019). XXIX. Peterson, J. Observation and Modeling of Seismic Background Noise. Albuquerque, New Mexico: US Department of Interior Geological Survey, 1993. XXX. Razinkov, O.G., Sidorov-Biryukov, D. D., Townsend, B., Parker, T., Bainbridge, G., Greiss, R. Strengths and Applications of Direct Burial Seismic Instruments [Preimushchestva I oblastiprimeneniyaseysmicheskikhpriborovdlyapryamoyustanovki v grunt] in Proc. VI Sci. Tech. Conf. “Problems of Complex Geophysical Monitoring of the Russian Far East”, Petropavlovsk-Kamchatskiy: Geophysical Survey, Russian Academy of Sciences, 2017. URL: http://www.emsd.ru/conf2017lib/pdf/techn/razinkov.pdf (Date of access September 2, 2019). XXXI. Roux, Ph., Wathelet, M., Roueff, Ant. The San Andreas Fault revisited through seismic-noise and surface-wave tomography. Geophysical Research Letters. 2011; 38 (13). DOI: 10.1029/2011GL047811. XXXII. Rubber O-ring seals for hydraulic and pneumatic equipment. Specifications [Kol’tsarezinovyyeuplotnitel’nyyekruglogosecheniyadlyagidravlicheskikh I pnevmaticheskikhustroystv. Tekhnicheskiyeusloviya]. GOST 18829-2017 Interstate standard. Moscow: Standartinform, 2017. URL: https://files.stroyinf.ru/Data/645/64562.pdf (Date of access September 2, 2019). XXXIII. Sanina, I., Gabsatarova, I., Chernykh, О.,Riznichenko, О., Volosov, S., Nesterkina, M., Konstantinovskaya, N. The Mikhnevo small aperture array enhances the resolution property of seismological observations on the East European Platform. Journal of Seismology (JOSE). 2011; 15 (3): 545-56. (DOI: 10.1007/sl0950-010-9211-х). XXXIV. SM-3VK Magnetoelectric Seismic Pickup. Specifications. ToR-4314-001-02698826-01. N. Laverov Federal Centre for Integrated Arctic Research, Russian Academy of Sciences. URL: http://fciarctic.ru/index.php?page=ckpg (Date of access September 2, 2019). XXXV. Sobisevich, A. L.,Presnov, D. A.,Agafonov, V. M.,Sobisevich, L. E. Autonomous geohydroacoustic ice buoy of new generation [Vmorazhivayemyyavtonomnyygeogidroakusticheskiy buy novogopokoleniya]. Nauka I tekhnologicheskierazrabotki (Science and Technological Developments). 2018; 97 (1): 25–34. [Special issue “Precise Geophysical Monitoring of Natural Hazards. Part 1. Instruments andTechnologies”]. DOI: 10.21455/ std2018.1-3. XXXVI. Zhukov, Y. V. Issues of resistance and reliability of electronic equipment products to the exposure factors [Voprosystoykosti i nadezhnostiizdeliyradioelektronnoytekhniki k vneshnimvozdeystvuyushchimfaktoram]. Provintsial’nyyenauchnyyezapiski (The journal Provincial scientific proceedings). 2019; 1 (9): 118-124. View | Download COMPARATIVE ANALYSIS OF RESULTS OF TREATMENT OF PATIENTS WITH FOOT PATHOLOGY WHO UNDERWENT WEIL OPEN OSTEOTOMY BY CLASSICAL METHOD AND WITHOUT STEOSYNTHESIS Authors: Yuriy V. Lartsev,Dmitrii A. Rasputin,Sergey D. Zuev-Ratnikov,Pavel V.Ryzhov,Dmitry S. Kudashev,Anton A. Bogdanov, DOI: https://doi.org/10.26782/jmcms.spl.10/2020.06.00044 Abstract: The article considers the problem of surgical correction of the second metatarsal bone length. The article analyzes the results of treatment of patients with excess length of the second metatarsal bones that underwent osteotomy with and without osteosynthesis. The results of treatment of patients who underwent metatarsal shortening due to classical Weil-osteotomy with and without osteosynthesis were analyzed. The first group consisted of 34 patients. They underwent classical Weil osteotomy. The second group included 44 patients in whomosteotomy of the second metatarsal bone were not by the screw. When studying the results of the treatment in the immediate postoperative period, weeks 6, 12, slightly better results were observed in patients of the first group, while one year after surgical treatment the results in both groups were comparable. One year after surgical treatment, there were 2.9% (1 patient) of unsatisfactory results in the first group and 4.5% (2 patients) in the second group. Considering the comparability of the results of treatment in remote postoperative period, the choice of concrete method remains with the operating surgeon. Keywords: Flat feet,hallux valgus,corrective osteotomy,metatarsal bones, Refference: I. A novel modification of the Stainsby procedure: surgical technique and clinical outcome [Text] / E. Concannon, R. MacNiocaill, R. Flavin [et al.] // Foot Ankle Surg. – 2014. – Dec., Vol. 20(4). – P. 262–267. II. Accurate determination of relative metatarsal protrusion with a small intermetatarsal angle: a novel simplified method [Text] / L. Osher, M.M. Blazer, S. Buck [et al.] // J. Foot Ankle Surg. – 2014. – Sep.-Oct., Vol. 53(5). – P. 548–556. III. Argerakis, N.G. The radiographic effects of the scarf bunionectomy on rearfoot alignment [Text] / N.G. Argerakis, L.Jr. Weil, L.S. Sr. Weil // Foot Ankle Spec. – 2015. – Apr., Vol. 8(2). – P. 89–94. IV. Bauer, T. Percutaneous forefoot surgery [Text] / T. Bauer // Orthop. Traumatol. Surg. Res. – 2014. – Feb., Vol. 100(1 Suppl.). – P. S191–S204. V. Biomechanical Evaluation of Custom Foot Orthoses for Hallux Valgus Deformity [Text] // J. Foot Ankle Surg. – 2015. – Sep.-Oct., Vol.54(5). – P. 852–855. VI. Chopra, S. Characterization of gait in female patients with moderate to severe hallux valgus deformity [Text] / S. Chopra, K. Moerenhout, X. Crevoisier // Clin. Biomech. (Bristol, Avon). – 2015. – Jul., Vol. 30(6). – P. 629–635. VII. Computer assisted planning and custom-made surgical guide for malunited pronation deformity after first metatarsophalangeal joint arthrodesis in rheumatoid arthritis: a case report [Text] / M. Hirao, S. Ikemoto, H. Tsuboi [et al.] // Comput. Aided Surg. – 2014. – Vol. 19(1-3). – P. 13–19. VIII. Correlation between static radiographic measurements and intersegmental angular measurements during gait using a multisegment foot model [Text] / D.Y. Lee, S.G. Seo, E.J. Kim [et al.] // Foot Ankle Int. – 2015. – Jan., Vol.36(1). – P. 1–10. IX. Correlative study between length of first metatarsal and transfer metatarsalgia after osteotomy of first metatarsal [Text]: [Article in Chinese] / F.Q. Zhang, B.Y. Pei, S.T. Wei [et al.] // Zhonghua Yi XueZaZhi. – 2013. – Nov. 19, Vol. 93(43). – P. 3441–3444. X. Dave, M.H. Forefoot Deformity in Rheumatoid Arthritis: A Comparison of Shod and Unshod Populations [Text] / M.H. Dave, L.W. Mason, K. Hariharan // Foot Ankle Spec. – 2015. – Oct., Vol. 8(5). – P. 378–383. XI. Does arthrodesis of the first metatarsophalangeal joint correct the intermetatarsal M1M2 angle? Analysis of a continuous series of 208 arthrodeses fixed with plates [Text] / F. Dalat, F. Cottalorda, M.H. Fessy [et al.] // Orthop. Traumatol. Surg. Res. – 2015. – Oct., Vol. 101(6). – P. 709–714. XII. Dynamic plantar pressure distribution after percutaneous hallux valgus correction using the Reverdin-Isham osteotomy [Text]: [Article in Spanish] / G. Rodríguez-Reyes, E. López-Gavito, A.I. Pérez-Sanpablo [et al.] // Rev. Invest. Clin. – 2014. – Jul., Vol. 66, Suppl. 1. – P. S79-S84. XIII. Efficacy of Bilateral Simultaneous Hallux Valgus Correction Compared to Unilateral [Text] / A.V. Boychenko, L.N. Solomin, S.G. Parfeyev [et al.] // Foot Ankle Int. – 2015. – Nov., Vol. 36(11). – P. 1339–1343. XIV. Endolog technique for correction of hallux valgus: a prospective study of 30 patients with 4-year follow-up [Text] / C. Biz, M. Corradin, I. Petretta [et al.] // J. OrthopSurg Res. – 2015. – Jul. 2, № 10. – P. 102. XV. First metatarsal proximal opening wedge osteotomy for correction of hallux valgus deformity: comparison of straight versus oblique osteotomy [Text] / S.H. Han, E.H. Park, J. Jo [et al.] // Yonsei Med. J. – 2015. – May, Vol. 56(3). – P. 744–752. XVI. Long-term outcome of joint-preserving surgery by combination metatarsal osteotomies for shortening for forefoot deformity in patients with rheumatoid arthritis [Text] / H. Niki, T. Hirano, Y. Akiyama [et al.] // Mod. Rheumatol. – 2015. – Sep., Vol. 25(5). – P. 683–638. XVII. Maceira, E. Transfer metatarsalgia post hallux valgus surgery [Text] / E. Maceira, M. Monteagudo // Foot Ankle Clin. – 2014. – Jun., Vol. 19(2). – P.285–307. XVIII. Nielson, D.L. Absorbable fixation in forefoot surgery: a viable alternative to metallic hardware [Text] / D.L. Nielson, N.J. Young, C.M. Zelen // Clin. Podiatr. Med. Surg. – 2013. – Jul., Vol. 30(3). – P. 283–293 XIX. Patient’s satisfaction after outpatient forefoot surgery: Study of 619 cases [Text] / A. Mouton, V. Le Strat, D. Medevielle [et al.] // Orthop. Traumatol. Surg. Res. – 2015. – Oct., Vol. 101(6 Suppl.). – P. S217–S220. XX. Preference of surgical procedure for the forefoot deformity in the rheumatoid arthritis patients–A prospective, randomized, internal controlled study [Text] / M. Tada, T. Koike, T. Okano [et al.] // Mod. Rheumatol. – 2015. – May., Vol. 25(3). – P.362–366. XXI. Redfern, D. Percutaneous Surgery of the Forefoot [Text] / D. Redfern, J. Vernois, B.P. Legré // Clin. Podiatr. Med. Surg. – 2015. – Jul., Vol. 32(3). – P. 291–332. XXII. Singh, D. Bullous pemphigoid after bilateral forefoot surgery [Text] / D. Singh, A. Swann // Foot Ankle Spec. – 2015. – Feb., Vol. 8(1). – P. 68–72. XXIII. Treatment of moderate hallux valgus by percutaneous, extra-articular reverse-L Chevron (PERC) osteotomy [Text] / J. Lucas y Hernandez, P. Golanó, S. Roshan-Zamir [et al.] // Bone Joint J. – 2016. – Mar., Vol. 98-B(3). – P. 365–373. XXIV. Weil, L.Jr. Scarf osteotomy for correction of hallux abducto valgus deformity [Text] / L.Jr. Weil, M. Bowen // Clin. Podiatr. Med. Surg. – 2014. – Apr., Vol.31(2). – P. 233–246. View | Download QUANTITATIVE ULTRASONOGRAPHY OF THE STOMACH AND SMALL INTESTINE IN HEALTHYDOGS Authors: Roman A. Tcygansky,Irina I. Nekrasova,Angelina N. Shulunova,Alexander I.Sidelnikov, DOI: https://doi.org/10.26782/jmcms.spl.10/2020.06.00045 Abstract: Purpose.To determine the quantitative echogenicity indicators (and their ratio) of the layers of stomach and small intestine wall in healthy dogs. Methods. A prospective 3-year study of 86 healthy dogs (aged 1-7 yrs) of different breeds and of both sexes. Echo homogeneity and echogenicity of the stomach and intestines wall were determined by the method of Silina, T.L., et al. (2010) in absolute values of average brightness levels of ultrasound image pixels using the 8-bit scale with 256 shades of gray. Results. Quantitative echogenicity indicators of the stomach and the small intestine wall in dogs were determined. Based on the numerical values characterizing echogenicity distribution in each layer of a separate structure of the digestive system, the coefficient of gastric echogenicity is determined as 1:2.4:1.1 (mucosa/submucosa/muscle layers, respectively), the coefficient of duodenum and jejunum echogenicity is determined as 1:3.5:2 and that of ileum is 1:1.8:1. Clinical significance. The echogenicity coefficient of the wall of the digestive system allows an objective assessment of the stomach and intestines wall and can serve as the basis for a quantitative assessment of echogenicity changes for various pathologies of the digestive system Keywords: Ultrasound (US),echogenicity,echogenicity coefficient,digestive system,dogs,stomach,intestines, Refference: I. Agut, A. Ultrasound examination of the small intestine in small animals // Veterinary focus. 2009.Vol. 19. No. 1. P. 20-29. II. Bull. 4.RF patent 2398513, IPC51A61B8 / 00 A61B8 / 14 (2006.01) A method for determining the homoechogeneity and the degree of echogenicity of an ultrasound image / T. Silina, S. S. Golubkov. – No. 2008149311/14; declared 12/16/2008; publ. 09/10/2010 III. Choi, M., Seo, M., Jung, J., Lee, K., Yoon, J., Chang, D., Park, RD. Evaluation of canine gastric motility with ultrasonography // J. of Veterinary Medical Science. – 2002. Vol. 64. – № 1. – P. 17-21. IV. Delaney, F., O’Brien, R.T., Waller, K.Ultrasound evaluation of small bowel thickness compared to weight in normal dogs // Veterinary Radiology and Ultrasound. 2003 Vol. 44, № 5. Р 577-580. V. Diana, A., Specchi, S., Toaldo, M.B., Chiocchetti, R., Laghi, A., Cipone, M. Contrast-enhanced ultrasonography of the small bowel in healthy cats // Veterinary Radiology and Ultrasound. – 2011. – Vol. 52, № 5. – Р. 555-559. VI. Garcia, D.A.A., Froes, T.R. Errors in abdominal ultrasonography in dogs and cats // J. of Small Animal Practice. – 2012. Vol. 53. – № 9. – P. 514-519. VII. Garcia, D.A.A., Froes, T.R. Importance of fasting in preparing dogs for abdominal ultrasound examination of specific organs // J. of Small Animal Practice. – 2014. Vol. 55. – № 12. – P. 630-634. VIII. Gaschen, L., Granger, L.A., Oubre, O., Shannon, D., Kearney, M., Gaschen, F. The effects of food intake and its fat composition on intestinal echogenicity in healthy dogs // Veterinary Radiology and Ultrasound. 2016. Vol. 57. № 5. P. 546-550 IX. Gaschen, L., Kircher, P., Stussi, A., Allenspach, K., Gaschen, F., Doherr, M., Grone, A. Comparison of ultrasonographic findings with clinical activity index (CIBDAI) and diagnosis in dogs with chronic enteropathies // Veterinary radiology and ultrasound. – 2008. – Vol. 49. – № 1. – Р. 56-64. X. Gil, E.M.U. Garcia, D.A.A. Froes, T.R. In utero development of the fetal intestine: Sonographic evaluation and correlation with gestational age and fetal maturity in dogs // Theriogenology. 2015. Vol. 84, №5. Р. 681-686. XI. Gladwin, N.E. Penninck, D.G., Webster, C.R.L. Ultrasonographic evaluation of the thickness of the wall layers in the intestinal tract of dogs // American Journal of Veterinary Research. 2014. Vol. 75, №4. Р. 349-353. XII. Gory, G., Rault, D.N., Gatel, L, Dally, C., Belli, P., Couturier, L., Cauvin, E. Ultrasonographic characteristics of the abdominal esophagus and cardia in dogs // Veterinary Radiology and Ultrasound. 2014. Vol. 55, № 5. P. 552-560. XIII. Günther, C.S. Lautenschläger, I.E., Scholz, V.B. Assessment of the inter- and intraobserver variability for sonographical measurement of intestinal wall thickness in dogs without gastrointestinal diseases | [Inter-und Intraobserver-Variabilitätbei der sonographischenBestimmung der Darmwanddicke von HundenohnegastrointestinaleErkrankungen] // Tierarztliche Praxis Ausgabe K: Kleintiere – Heimtiere. 2014. Vol. 42 №2. Р. 71-78. XIV. Hanazono, K., Fukumoto, S., Hirayama, K., Takashima, K., Yamane, Y., Natsuhori, M., Kadosawa, T., Uchide, T. Predicting Metastatic Potential of gastrointestinal stromal tumors in dog by ultrasonography // J. of Veterinary Medical Science. – 2012. Vol. 74. – № 11. – P. 1477-1482. XV. Heng, H.G., Lim, Ch.K., Miller, M.A., Broman, M.M.Prevalence and significance of an ultrasonographic colonic muscularishyperechoic band paralleling the serosal layer in dogs // Veterinary Radiology and Ultrasound. 2015. Vol. 56 № 6. P. 666-669. XVI. Ivančić, M., Mai, W. Qualitative and quantitative comparison of renal vs. hepatic ultrasonographic intensity in healthy dogs // Veterinary Radiology and Ultrasound. 2008. Vol. 49. № 4. Р. 368-373. XVII. Lamb, C.R., Mantis, P. Ultrasonographic features of intestinal intussusception in 10 dogs // J. of Small Animal Practice. – 2008. Vol. 39. – № 9. – P. 437-441. XVIII. Le Roux, A. B., Granger, L.A., Wakamatsu, N, Kearney, M.T., Gaschen, L.Ex vivo correlation of ultrasonographic small intestinal wall layering with histology in dogs // Veterinary Radiology and Ultrasound.2016. Vol. 57. № 5. P. 534-545. XIX. Nielsen, T. High-frequency ultrasound of Peyer’s patches in the small intestine of young cats / T. Nielsen [et al.] // Journal of Feline Medicine and Surgery. – 2015. – Vol. 18, № 4. – Р. 303-309. XX. PenninckD.G. Gastrointestinal tract. In Nyland T.G., Mattoon J.S. (eds): Small Animal Diagnostic Ultrasound. Philadelphia: WB Saunders. 2002, 2nd ed. Р. 207-230. XXI. PenninckD.G. Gastrointestinal tract. In: PenninckD.G.,d´Anjou M.A. Atlas of Small Animal Ultrasonography. Blackwell Publishing, Iowa. 2008. Р. 281-318. XXII. Penninck, D.G., Nyland, T.G., Kerr, L.Y., Fisher, P.E. Ultrasonographic evaluation of gastrointestinal diseases in small animals // Veterinary Radiology. 1990. Vol. 31. №3. P. 134-141. XXIII. Penninck, D.G.,Webster, C.R.L.,Keating, J.H. The sonographic appearance of intestinal mucosal fibrosis in cats // Veterinary Radiology and Ultrasound. – 2010. – Vol. 51, № 4. – Р. 458-461. XXIV. Pollard, R.E.,Johnson, E.G., Pesavento, P.A., Baker, T.W., Cannon, A.B., Kass, P.H., Marks, S.L. Effects of corn oil administered orally on conspicuity of ultrasonographic small intestinal lesions in dogs with lymphangiectasia // Veterinary Radiology and Ultrasound. 2013. Vol. 54. № 4. P. 390-397. XXV. Rault, D.N., Besso, J.G., Boulouha, L., Begon, D., Ruel, Y. Significance of a common extended mucosal interface observed in transverse small intestine sonograms // Veterinary Radiology and Ultrasound. 2004. Vol. 45. №2. Р. 177-179. XXVI. Sutherland-Smith, J., Penninck, D.G., Keating, J.H., Webster, C.R.L. Ultrasonographic intestinal hyperechoic mucosal striations in dogs are associated with lacteal dilation // Veterinary Radiology and Ultrasound. – 2007. Vol. 48. – № 1. – P. 51-57. View | Download EVALUATION OF ADAPTIVE POTENTIAL IN MEDICAL STUDENTS IN THE CONTEXT OF SEASONAL DYNAMICS Authors: Larisa A. Merdenova,Elena A. Takoeva,Marina I. Nartikoeva,Victoria A. Belyayeva,Fatima S. Datieva,Larisa R. Datieva, DOI: https://doi.org/10.26782/jmcms.spl.10/2020.06.00046 Abstract: The aim of this work was to assess the functional reserves of the body to quantify individual health; adaptation, psychophysiological characteristics of the health quality of medical students in different seasons of the year. When studying the temporal organization of physiological functions, the rhythm parameters of physiological functions were determined, followed by processing the results using the Cosinor Analysis program, which reveals rhythms with an unknown period for unequal observations, evaluates 5 parameters of sinusoidal rhythms (mesor, amplitude, acrophase, period, reliability). The essence of desynchronization is the mismatch of circadian rhythms among themselves or destruction of the rhythms architectonics (instability of acrophases or their disappearance). Desynchronization with respect to the rhythmic structure of the body is of a disregulatory nature, most pronounced in pathological desynchronization. High neurotism, increased anxiety reinforces the tendency to internal desynchronization, which increases with stress. During examination stress, students experience a decrease in the stability of the temporary organization of the biosystem and the tension of adaptive mechanisms develops, which affects attention, mental performance and the quality of adaptation to the educational process. Time is shortened and the amplitude of the “initial minute” decreases, personal and situational anxiety develops, and the level of psychophysiological adaptation decreases. The results of the work are priority because they can be used in assessing quality and level of health. Keywords: Desynchronosis,biorhythms,psycho-emotional stress,mesor,acrophase,amplitude,individual minute, Refference: I. Arendt, J., Middleton, B. Human seasonal and circadian studies in Antarctica (Halley, 75_S) – General and Comparative Endocrinology. 2017: 250-259. (http://dx.doi.org/10.1016/j.ygcen.2017.05.010). II. BalandinYu.P. A brief methodological guide on the use of the agro-industrial complex “Health Sources” / Yu.P. Balandin, V.S. Generalov, V.F. Shishlov. Ryazan, 2007. III. Buslovskaya L.K. Adaptation reactions in students at exam stress/ L.K. Buslovskaya, Yu.P. Ryzhkova. Scientific bulletin of Belgorod State University. Series: Natural Sciences. 2011;17(21):46-52. IV. Chutko L. S. Sindromjemocionalnogovygoranija – Klinicheskie I psihologicheskieaspekty./ L.S Chutko. Moscow: MEDpress-inform, 2013. V. Eroshina K., Paul Wilkinson, Martin Mackey. The role of environmental and social factors in the occurrence of diseases of the respiratory tract in children of primary school age in Moscow. Medicine. 2013:57-71. VI. Fagrell B. “Microcirculation of the Skin”. The physiology and pharmacology of the microcirculation. 2013:423. VII. Gurova O.A. Change in blood microcirculation in students throughout the day. New research. 2013; 2 (35):66-71. VIII. Khetagurova L.G. – Stress/Ed. L.G. Khetagurov. Vladikavkaz: Project-Press Publishing House, 2010. IX. Khetagurova L.G., Urumova L.T. et al. Stress (chronomedical aspects). International Journal of Experimental Education 2010; 12: 30-31. X. Khetagurova L.G., Salbiev K.D., Belyaev S.D., Datieva F.S., Kataeva M.R., Tagaeva I.R. Chronopathology (experimental and clinical aspects/ Ed. L.G. Khetagurov, K.D. Salbiev, S.D.Belyaev, F.S. Datiev, M.R. Kataev, I.R. Tagaev. Moscow: Science, 2004. XI. KlassinaS.Ya. Self-regulatory reactions in the microvasculature of the nail bed of fingers in person with psycho-emotional stress. Bulletin of new medical technologies, 2013; 2 (XX):408-412. XII. Kovtun O.P., Anufrieva E.V., Polushina L.G. Gender-age characteristics of the component composition of the body in overweight and obese schoolchildren. Medical Science and Education of the Urals. 2019; 3:139-145. XIII. Kuchieva M.B., Chaplygina E.V., Vartanova O.T., Aksenova O.A., Evtushenko A.V., Nor-Arevyan K.A., Elizarova E.S., Efremova E.N. A comparative analysis of the constitutional features of various generations of healthy young men and women in the Rostov Region. Modern problems of science and education. 2017; 5:50-59. XIV. Mathias Adamsson1, ThorbjörnLaike, Takeshi Morita – Annual variation in daily light expo-sure and circadian change of melatonin and cortisol consent rations at a northern latitude with large seasonal differences in photoperiod length – Journal of Physiological Anthropology. 2017; 36: 6 – 15. XV. Merdenova L.A., Tagaeva I.R., Takoeva E.A. Features of the study of biological rhythms in children. The results of fundamental and applied research in the field of natural and technical sciences. Materials of the International Scientific and Practical Conference. Belgorod, 2017, pp. 119-123. XVI. Ogarysheva N.V. The dynamics of mental performance as a criterion for adapting to the teaching load. Bulletin of the Samara Scientific Center of the Russian Academy of Sciences. 2014;16:5 (1): S.636-638. XVII. Pekmezovi T. Gene-environment interaction: A genetic-epidemiological approach. Journal of Medical Biochemistry. 2010;29:131-134. XVIII. Rapoport S.I., Chibisov S.M. Chronobiology and chronomedicine: history and prospects/Ed. S.M. Chibisov, S.I. Rapoport ,, M.L. Blagonravova. Chronobiology and Chronomedicine: Peoples’ Friendship University of Russia (RUDN) Press. Moscow, 2018. XIX. Roustit M., Cracowski J.L. “Non-invasive assessment of skin microvascular function in humans: an insight into methods” – Microcirculation 2012; 19 (1): 47-64. XX. Rud V.O., FisunYu.O. – References of the circadian desinchronosis in students. Ukrainian Bulletin of Psychoneurology. 2010; 18(2) (63): 74-77. XXI. Takoeva Z. A., Medoeva N. O., Berezova D. T., Merdenova L. A. et al. Long-term analysis of the results of chronomonitoring of the health of the population of North Ossetia; Vladikavkaz Medical and Biological Bulletin. 2011; 12(12,19): 32-38. XXII. Urumova L.T., Tagaeva I.R., Takoeva E.A., Datieva L.R. – The study of some health indicators of medical students in different periods of the year. Health and education in the XXI century. 2016; 18(4): 94-97. XXIII. Westman J. – Complex diseases. In: Medical genetics for the modern clinician. USA: Lippincott Williams & Wilkins, 2006. XXIV. Yadrischenskaya T.V. Circadian biorhythms of students and their importance in educational activities. Problems of higher education. Pacific State University Press. 2016; 2:176-178. View | Download TRIADIC COMPARATIVE ANALYSIS Authors: Stanislav A.Kudzh,Victor Ya. Tsvetkov, DOI: https://doi.org/10.26782/jmcms.spl.10/2020.06.00047 Abstract: The present study of comparison methods based on the triadic model introduces the following concepts: the relation of comparability and the relation of comparison, and object comparison and attributive comparison. The difference between active and passive qualitative comparison is shown, two triadic models of passive and active comparison and models for comparing two and three objects are described. Triadic comparison models are proposed as an alternative to dyadic comparison models. Comparison allows finding the common and the different; this approach is proposed for the analysis of the nomothetic and ideographic method of obtaining knowledge. The nomothetic method identifies and evaluates the general, while the ideographic method searches for unique in parameters and in combinations of parameters. Triadic comparison is used in systems and methods of argumentation, as well as in the analysis of consistency/inconsistency. Keywords: Comparative analysis,dyad,triad,triadic model,comparability relation,object comparison,attributive comparison,nomothetic method,ideographic method, Refference: I. AltafS., Aslam.M.Paired comparison analysis of the van Baarenmodel using Bayesian approach with noninformativeprior.Pakistan Journal of Statistics and Operation Research 8(2) (2012) 259{270. II. AmooreJ. E., VenstromD Correlations between stereochemical assessments and organoleptic analysis of odorous compounds. Olfaction and Taste (2016) 3{17. III. BarnesJ., KlingerR. Embedding projection for targeted cross-lingual sentiment: model comparisons and a real-world study. Journal of Artificial Intelligence Research 66 (2019) 691{742. doi.org/10.1613/jair.1.11561 IV. Castro-SchiloL., FerrerE.Comparison of nomothetic versus idiographic-oriented methods for making predictions about distal outcomes from time series data. Multivariate Behavioral Research 48(2) (2013) 175{207. V. De BonaG.et al. Classifying inconsistency measures using graphs. Journal of Artificial Intelligence Research 66 (2019) 937{987. VI. FideliR. La comparazione. Milano: Angeli, 1998. VII. GordonT. F., PrakkenH., WaltonD. The Carneades model of argument and burden of proof. Artificial Intelligence 10(15) (2007) 875{896. VIII. GrenzS.J. The social god and the relational self: A Triad theology of the imago Dei. Westminster: John Knox Press, 2001. IX. HermansH.J. M.On the integration of nomothetic and idiographic research methods in the study of personal meaning.Journal of Personality 56(4) (1988) 785{812. X. JamiesonK. G., NowakR. Active ranking using pairwise comparisons.Advances in Neural Information Processing Systems (2011) 2240{2248. XI. JongsmaC.Poythress’s triad logic: a review essay. Pro Rege 42(4) (2014) 6{15. XII. KärkkäinenV.M. Trinity and Religious Pluralism: The Doctrine of the Trinity in Christian Theology of Religions. London: Routledge, 2017. XIII. KudzhS. A., TsvetkovV.Ya. Triadic systems. Russian Technology Magazine 7(6) (2019) 74{882. XIV. NelsonK.E.Some observations from the perspective of the rare event cognitive comparison theory of language acquisition.Children’s Language 6 (1987) 289{331. XV. NiskanenA., WallnerJ., JärvisaloM.Synthesizing argumentation frameworks from examples. Journal of Artificial Intelligence Research 66 (2019) 503{554. XVI. PührerJ.Realizability of three-valued semantics for abstract dialectical frameworks.Artificial Intelligence 278 (2020) 103{198. XVII. SwansonG.Frameworks for comparative research: structural anthropology and the theory of action. In: Vallier, Ivan (Ed.). Comparative methods in sociology: essays on trends and applications.Berkeley: University of California Press, 1971 141{202. XVIII. TsvetkovV.Ya.Worldview model as the result of education.World Applied Sciences Journal 31(2) (2014) 211{215. XIX. TsvetkovV. Ya. Logical analysis and variable scales. Slavic Forum 4(22) (2018) 103{109. XX. Wang S. et al. Transit traffic analysis zone delineating method based on Thiessen polygon. Sustainability 6(4) (2014) 1821{1832. View | Download DEVELOPING TECHNOLOGY OF CREATING WEAR-RESISTANT CERAMIC COATING FOR ICE CYLINDER". JOURNAL OF MECHANICS OF CONTINUA AND MATHEMATICAL SCIENCES spl10, n.º 1 (28 de junio de 2020). http://dx.doi.org/10.26782/jmcms.spl.10/2020.06.00048.
Texto completoTesis sobre el tema "Field crops Disease and pest resistance Genetic aspects"
Taylor, Sharyn Patricia. "The root lesion nematode, Pratylenchus neglectus, in field crops in South Australia". Title page, contents and summary only, 2000. http://web4.library.adelaide.edu.au/theses/09PH/09pht2462.pdf.
Texto completoBeeck, Cameron. "Simultaneous improvement in black spot resistance and stem strength in field pea (Pisum sativum L.)". University of Western Australia. School of Plant Biology, 2006. http://theses.library.uwa.edu.au/adt-WU2006.0057.
Texto completoLibros sobre el tema "Field crops Disease and pest resistance Genetic aspects"
Congress, Eucarpia. Genetics and breeding for crop quality and resistance: Proceedings of the XV EUCARPIA Congress, Viterbo, Italy, September 20-25, 1998. Boston, Mass: Kluwer Academic Publishers, 1999.
Buscar texto completoRobinson, Raoul A. Return to resistance: Breeding crops to reduce pesticide dependence. Davis, Calif: AgAccess, 1996.
Buscar texto completoLal, Sukanya, ed. Genetic engineering of plants for crop improvement. Boca Raton: CRC Press, 1993.
Buscar texto completoBrewbaker, James L. The MIR (Maize inbred resistance) trials: Performance of tropical-adapted maize inbreds. Honolulu, Hawaii: HITAHR, College of Tropical Agriculture and Human Resources, University of Hawaii, 1989.
Buscar texto completoG.T. Scarascia Mugnozza (Editor), E. Porceddu (Editor) y M. A. Pagnotta (Editor), eds. Genetics and Breeding for Crop Quality and Resistance (Developments in Plant Breeding). Springer, 1999.
Buscar texto completoTh, Jacobs y Parlevliet J. E, eds. Durability of disease resistance. Dordrecht: Kluwer Academic Publishers, 1993.
Buscar texto completoFood and Agriculture Organization of the United Nations., ed. Breeding for durable resistance in perennial crops. Rome: Food and Agriculture Organization of the United Nations, 1986.
Buscar texto completoRobinson, Raoul A. Return to Resistance: Breeding Crops to Reduce Pestcide Dependence. Agaccess, 1995.
Buscar texto completoField performance of Populus in short-rotation intensive culture plantations in the north-central U.S. St. Paul, Minn. (1992 Folwell Ave., St. Paul 55108): U.S. Dept. of Agriculture, Forest Service, North Central Forest Experiment Station, 1994.
Buscar texto completo1942-, Kim Leo, ed. Advanced engineered pesticides. New York: Marcel Dekker, 1993.
Buscar texto completo