Tesis sobre el tema "Fibrous composites Testing"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte los 44 mejores tesis para su investigación sobre el tema "Fibrous composites Testing".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Explore tesis sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.
Scott, David William. "Short- and long-term behavior of axially compressed slender doubly symmetric fiber-reinforced polymeric composite members". Diss., Georgia Institute of Technology, 1997. http://hdl.handle.net/1853/19276.
Texto completoZhang, Yuping y mikewood@deakin edu au. "The Tensile behaviour of non-uniform fibres and fibrous composites". Deakin University. School of Engineering and Technology, 2001. http://tux.lib.deakin.edu.au./adt-VDU/public/adt-VDU20051017.143549.
Texto completoSridharan, Srinivasan. "Environmental durability of E-glass/vinylester composites in hot-moist conditions". Diss., Georgia Institute of Technology, 1997. http://hdl.handle.net/1853/10144.
Texto completoAlvarez-Valencia, Daniel. "Structural Performance of Wood Plastic Composite Sheet Piling". Fogler Library, University of Maine, 2009. http://www.library.umaine.edu/theses/pdf/AlvarezValenciaD2009.pdf.
Texto completoEtheridge, George Alexander. "Investigation of progressive damage and failure in IM7 carbon fiber/5250-4 bismaleimide resin matrix composite laminates". Thesis, Georgia Institute of Technology, 1998. http://hdl.handle.net/1853/19669.
Texto completoStoddard, William Patrick. "Lateral-torsional buckling behavior of polymer composite I-shaped members". Diss., Georgia Institute of Technology, 1997. http://hdl.handle.net/1853/19275.
Texto completoFox, Bronwyn Louise. "The manufacture, characterization and aging of novel high temperature carbon fibre composites". View thesis entry in Australian Digital Theses Program, 2001. http://thesis.anu.edu.au/public/adt-ANU20011207.114246/index.html.
Texto completoElmore, Jennifer Susan. "Dynamic mechanical analysis of graphite/epoxy composites with varied interphases". Thesis, This resource online, 1994. http://scholar.lib.vt.edu/theses/available/etd-10312009-020414/.
Texto completoRubin, Ariel. "Strenghtening of reinforced concrete bridge decks with carbon fiber composites". Thesis, Georgia Institute of Technology, 2000. http://hdl.handle.net/1853/19320.
Texto completoKumar, Rajesh S. "Effects of damage and viscoelasticity on the constitutive behavior of fiber reinforced composites". Diss., Georgia Institute of Technology, 2001. http://hdl.handle.net/1853/13013.
Texto completoAvila, Melissa Barter. "The effect of resin type and glass content on the fire engineering properties of typical FRP composites". Worcester, Mass. : Worcester Polytechnic Institute, 2007. http://www.wpi.edu/Pubs/ETD/Available/etd-040307-133151/.
Texto completoBhutta, Salman Ahmed. "Analytical modeling of hybrid composite beams". Thesis, This resource online, 1993. http://scholar.lib.vt.edu/theses/available/etd-11102009-020112/.
Texto completoSuchinda, Chatr. "Experimental and analytical investigation of the thermal behavior of a fiber reinforced polymeric bridge deck". Diss., Georgia Institute of Technology, 2000. http://hdl.handle.net/1853/19250.
Texto completoMeurer, Thomas. "Wave propagation in hysteretic media". Thesis, Georgia Institute of Technology, 2000. http://hdl.handle.net/1853/19090.
Texto completoOlmedo, Reynaldo A. "Compression and buckling of composite panels with curvilinear fibers". Thesis, This resource online, 1992. http://scholar.lib.vt.edu/theses/available/etd-08142009-040516/.
Texto completoArnette, John Benjamin. "Proposed test method for the flexural testing of fiber-reinforced polymeric bridge deck panels". Thesis, Georgia Institute of Technology, 2002. http://hdl.handle.net/1853/21784.
Texto completoMobuchon, Alain. "Effect of processing induced defects on the failure characteristics of graphite epoxy angles". Thesis, Virginia Polytechnic Institute and State University, 1989. http://hdl.handle.net/10919/53235.
Texto completoMaster of Science
Teh, Kuen Tat. "Impact damage resistance and tolerance of advanced composite material systems". Diss., This resource online, 1993. http://scholar.lib.vt.edu/theses/available/etd-06062008-170512/.
Texto completoVenkata, Vijai Kumar. "Development and testing of hurricane resistant laminated glass fiber reinforced composite window panels /". free to MU campus, to others for purchase, 2004. http://wwwlib.umi.com/cr/mo/fullcit?p1426111.
Texto completoGuo, Yifan. "Developments in moire interferometry: carrier pattern technique and vibration insensitive interferometers". Diss., Virginia Polytechnic Institute and State University, 1989. http://hdl.handle.net/10919/54181.
Texto completoPh. D.
Silva, Sergio Augusto Mello da. "Chapa de media densidade (MDF) fabricada com poliuretana mono-componente derivada de oleo de mamona - caracterização por metodo destrutivo e por ultra-som". [s.n.], 2003. http://repositorio.unicamp.br/jspui/handle/REPOSIP/257201.
Texto completoTese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Agricola
Made available in DSpace on 2018-08-06T00:21:33Z (GMT). No. of bitstreams: 1 Silva_SergioAugustoMelloda_D.pdf: 3060293 bytes, checksum: 3514c54e017be522e62c07231642a540 (MD5) Previous issue date: 2003
Resumo: As tecnologias para produção das chapas denominadas ¿Medium Density Fiberboard¿ (MDF), confeccionadas com fibras de madeiras de reflorestamento de baixo custo e resinas fenólicas provenientes de uréia, representam para vários setores industriais uma possibilidade de agregar valores às espécies com pouco interesse comercial, possibilitando para os seguimentos industriais investimento promissores. Um aspecto importante a ser considerado sobre a utilização de resinas fenólicas na confecção de chapas MDF é que produzem emissões tóxicas poluidoras da natureza e nocivas ao ser humano. Dentro deste contexto, de acordo com o ¿Protocolo de Quioto¿ de 1997, os países industrializados precisam diminuir suas emissões combinadas de gases de efeito estufa em pelo menos 5 % até 2012. Considerando-se as exigências do ¿Protocolo de Quioto¿, este trabalho objetivou avaliar o desempenho de chapas MDF confeccionadas com poliuretana (PU) derivada do óleo de mamona, pois este produto apresenta baixos teores de toxidez sendo classificado como não poluente e não tóxico ao ser humano. A caracterização das chapas foi realizada considerando-se a utilização do equipamento de ultra-som da Marca Steinkamp modelo BP7 com transdutoes de 45 kHz e a realização de ensaios físicos e mecânicos propostos pela EuroMDFBoard - EMB. A avaliação desenvolveu-se em três fases distintas: 1. Na fase I foram realizados estudos exploratórios com o objetivo de verificar as características do PU sendo utilizado como adesivo para confecção de chapas de Pinus caribaea. Nesta fase foram confeccionadas chapas com 5 e 10 % de PU3070, que de acordo com a caracterização física e mecânica observou-se que as chapas apresentaram resistências compatíveis com as exigências da EMB, entretanto, a forte exalação de solvente inviabilizou seu manuseio do PU3070. 2. Na fase II foram confeccionadas chapas com fibras de Pinus caribaea e Eucalyptus grandis com uma nova síntese de adesivo, denominada neste trabalho de PU7030. A caracterização física e mecânica determinou valores de resistências compatíveis com as exigências da EMB. Entretanto, verificou-se a necessidade de se ajustar o teor de umidade a temperatura e a pressão de prensagem. 3. Na fase III novas chapas foram confeccionadas com fibras de Pinus caribea e Eucalyptus grandis modificando-se o teor de umidade, a temperatura e a pressão de prensagem. Com o resultado da caracterização física e mecânica, observou-se que as alterações nas umidades, temperatura e pressão de prensagem propiciaram resistências compatíveis com a EMB, com vantagens de utilização de menores teores de PU7030 e diminuição na temperatura de prensagem, representando economia no consumo de energia. Outro aspecto muito importante estudado neste trabalho foi a caracterização das chapas utilizando ensaios não-destrutivos. Neste caso foram realizadas medições, por meio de equipamento de ultra-som, utilizando-se transdutores de faces exponenciais e planas aplicados nas direções x, y e z das chapas. A partir das medições dos tempos de propagação das ondas ultra-sônicas determinaram-se as velocidades das ondas e as constantes dinâmicas das chapas. Estas variáveis foram comparadas com as propriedades de resistência das chapas obtidas nos ensaios estáticos. Em seguida desenvolveu-se análise estatística buscando-se avaliar as correlações entre os resultados de ensaios não-destrutivos e destrutivos tendo sido possível concluir que a utilização dos métodos de ensaios não-destrutivos é viável para inferir sobre as propriedades físicas e mecânicas das chapas. Com relação à utilização da PU7030, concluiu-se que essa poliuretana possibilita a substituição da resina fenólica na confecção das chapas MDF
Abstract: While employing low cost reforestation lumber, the technologies of the fabrication of fiber plates denominated ¿Medium Density Fiberboard¿ (MDF) offer to several industrial sectors the opportunity to aggregate worth to species with little or no commercial interest, opening to them the possibility of promising profitable investments. However, the phenolic resins used in the production of MDF plates are well-known pollutants to the environment and therefore harmful to the human beings in such a way that environmentally friendly alternatives have been eagerly sought. According to that, the present work has been aimed to evaluate the physical, chemical and mechanical properties of MDF manufactured with Polyurethane Adhesive (PU) derived from Castor Oil, due to the low toxicity and to the non-polluting characteristics of the resulting adhesive. The characterization of the plates has been accomplished with the help of Steinkamp BP7 ultrasonic equipment using 45 kHz transducers and the physical and mechanical tests recommended by Euro MDF Board - EMB. The work has been developed along three distinct phases. Initially a better understanding of the characteristics of the polyurethane adhesive derived from castor oil has been acquired. It has been learnt that the adhesive exhibits the main characteristic of a monocomponent synthesis, stabilized by air humidity. During that phase, plates with 5% and 10% of polyurethane adhesive have been manufactured, called Adhesive PU3070 in this work, corresponding to 30% of solids and 70% of solvents. The properties of the plates manufactured with this synthesis have been determined and it has been found that although they have met EMB demands, the strong exhalation of solvent has ruled out its usage for MDF manufacture. As for the second phase, fiber plates have been produced with a new synthesis, called Adhesive PU7030, that is, 70% of solids and 30% of solvents. Again mechanical properties have satisfied EMB regulations. However, during the tests, it has been noticed that in order to control the quality of the final product, a fine adjusting to the values of some important Variables in the manufacture process, such as humidity level, temperature and pressing pressure, would be necessary. Accordingly, in the last phase, using Pinus caribea as fiber material, three experimental conditions have been elaborated, one for each controlled Variable, and repeated again for Eucalyptus gandis. Resulting from the adjusting of the variables, it has been observed that during the manufacture process, plates using much less adhesive than the former standards still have satisfied EMB demands fully, with advantages of a significant decrease in the pressing temperature and the corresponding energy savings. The characterization of the plates using non-destructive tests has been an important feature of the present work. Measurements have been performed in the plates by means of ultrasound equipment, using exponential as well as plane face transducers. From the readings, the propagation times of the ultrasonic waves have been evaluated, allowing to the determination of the propagation velocity of the ultrasonic waves through the material and consequently its dynamic parameters, which have been correlated to the mechanical properties of the plates, by means of a suitable statistic model. It has been concluded from the results that non-destructive test methods could as well be employed for the characterization of the physical and mechanical properties of the plates
Doutorado
Construções Rurais
Doutor em Engenharia Agrícola
Lee, Tuan Kuan 1976. "Shear strength of reinforced concrete T-beams strengthened using carbon fibre reinforced polymer (CFRP) laminates". Monash University, Dept. of Civil Engineering, 2003. http://arrow.monash.edu.au/hdl/1959.1/6647.
Texto completoThomson, Cameron Ian. "Probing the Nature of Cellulosic Fibre Interfaces with Fluorescence Resonance Energy Transfer". Diss., Georgia Institute of Technology, 2007. http://hdl.handle.net/1853/16277.
Texto completoWeissenbach, Gerd. "Issues in the analysis and testing of textile composites with large representative volume elements". Thesis, University of Ulster, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.270465.
Texto completoJavidinejad, Amir. "An experimental stress analysis approach for pure shear testing and analysis of a fiber reinforced plastic composite". Thesis, Georgia Institute of Technology, 1994. http://hdl.handle.net/1853/20706.
Texto completoPomarede, Pascal. "Détection de l'endommagement dans un composite tissé PA66,6/Fibres de verre à l'aide de techniques ultrasonores en vue d'une prédiction de la durabilité de pièces automobiles". Thesis, Paris, ENSAM, 2018. http://www.theses.fr/2018ENAM0024/document.
Texto completoThe present study is focused on the experimental study of a polyamide 66/6 based composite reinforced by a 2/2 twill weave glass fabric. The aim is to propose Non Destructive Evaluation (NDE) methods based on ultrasound that can efficiently distinguish different damage state. In order to do so, an investigation of the damage mechanisms induced by different type of mechanical solicitations. Tension along and off the axis of the fibers was considered as well as the case of drop weight impact. Those solicitations were shown to induce different damage mechanisms. The latter were characterized by means of Scanning Electronic Microscopy (SEM) and X-Ray tomography mostly. The decreasing of the elastic modulus and the void volume fraction evolution were shown to be more significant for the samples loaded in tension off-axis. During the drop weight impact tests, the energies were considered in order to remain close to the Barely Visible Impact Damage (BVID) regime in order to experience the capability of the ultrasound based NDE methods. Two NDE methods investigated during this study deserve to be highlighted. Firstly, the stiffness tensor was estimated by means of phase velocities measurements in different propagation direction. Damage indicators based on results from this method were proposed. They were found to give results similar with the one from the evaluation of damage discussed earlier on. Secondly, a study of the damage detection using guided waves was performed. No mode conversion effect was observed from this investigation. Consequently, the signal energy was proposed as damage indicator and was found to be suitable to detect damage induced by tension but not by impact. The measure of time shift allowed obtaining a localization and evaluation of the damage induced by impact
Promis, Geoffrey. "Composites fibres / matrice minérale : du matériau a la structure". Phd thesis, Université Claude Bernard - Lyon I, 2010. http://tel.archives-ouvertes.fr/tel-00646976.
Texto completoBale, Jefri Semuel. "The damage observation of composite using non destructive testing (NDT) method". Thesis, Paris 10, 2014. http://www.theses.fr/2015PA100067/document.
Texto completoThe aim of this study is to investigate the damage behaviour of composite material in static and fatigue condition with non destructive testing (NDT) thermography method and supported by acoustic emission and also computed tomography (CT) scan. Thermography and acoustic emission are used in real-time monitoring techniques during the test. On the other hand, NDT observation of tomography is used for a post-failure analysis. In order to achive this, continuous glass fiber composite (GFRP) and discontinuous carbon fiber composite (DCFC) have been used as the test specimens which supplied by PSA Company, France. A series of mechanical testing was carried out to determine the damage behaviour under static and fatigue loading. During all the mechanical testing, thermography was used in real-time observation to follow the temperature change on specimen surface and supported by acoustic emission in certain condition. This study used rectangular shape and consist of specimen with and without circular notches (hole) at the center. The constant displacement rate is applied to observe the effect on damage behaviour under tensile static loading. Under fatigue testing, the constant parameter of frequency and amplitude of stress was explored for each load level to have the fatigue properties and damage evolution of specimen. The tomography was used to confirm the appearance of damage and material condition after fatigue testing. The analysis from the experiment results and NDT observation shown the good agreement between mechnical results and NDT thermography with supported by acoustic emission observation in detect the appearance and propagation of damage for GFRP and DCFC under static loading. Fatigue testing shows that thermal dissipation is related to the damage evolution and also thermography and can be successfully used to determine high cycle fatigue strength (HCFS) and S-N curve of fiber composite material. From post failure analysis, CT scan analysis successfully measured and evaluated damage and material condition after fatigue test for fiber composite material. v
Gafsi, Rachid. "Capteurs de contraintes et de perturbations a fibres optiques". Châtenay-Malabry, Ecole centrale de Paris, 1997. http://www.theses.fr/1997ECAP0509.
Texto completoBoumarafi, Abdelkader. "Évaluation des propriétés physiques et mécaniques et les effets des cycles gel-dégel de composites fabriqués par enroulement filamentaire". Mémoire, Université de Sherbrooke, 2014. http://hdl.handle.net/11143/5928.
Texto completoArif, Muhamad Fatikul. "Mécanismes d’endommagement du polyamide-66 renforcé par des fibres de verre courtes, soumis à un chargement monotone et en fatigue : Influence de l’humidité relative et de la microstructure induite par le moulage par injection". Thesis, Paris, ENSAM, 2014. http://www.theses.fr/2014ENAM0008/document.
Texto completoThe current work focuses on extensive experimental approaches to identify quasi-static and fatigue damage behavior of PA66/GF30 considering various effects such as relative humidity and injection process induced microstructure. By using in situ SEM tests, it was observed that relative humidity conditions strongly impact the damage mechanisms in terms of their initiation, level and chronology. The X-ray micro-tomography analysis on fatigue loaded samples demonstrated that the damage continuously increases during fatigue loading, but the evolution occurs more significantly in the second half of the fatigue life. From the results of damage investigation under quasi-static and fatigue loading, it was established that both loading types exhibit the same damage mechanisms, with fiber/matrix interfacial debonding as the principal damage mechanisms. General damage chronologies were proposed as the damage initiates at fiber ends and more generally at locations where fibers are relatively close to each other due to the generation of local stress concentrations. Afterwards, interfacial decohesions further propagate along the fiber/matrix interface. At high relative flexural stress, matrix microcracks can develop and propagate, leading to the damage accumulation and then the final failure. The experimental findings are important to provide a physically based damage mechanisms scenarios that can be integrated into multiscale damage models. These models will contribute towards reliable predictions of damage in reinforced thermoplastics for lightweight automotive applications
Liu, Zicheng. "Electromagnetic modeling and imaging of damages of fiber-reinforced composite laminates". Thesis, Université Paris-Saclay (ComUE), 2017. http://www.theses.fr/2017SACLS332.
Texto completoMy PhD work is about electromagnetic modeling and imaging of disorganized periodic structures. A certain pattern in an elementary subdivision (a “cell”) is repeated in the other cells of the structure into certain directions of space. This repetition is disorganized by a change of material properties and/or geometries of the constitutive parts, within one or more cells. At first level of modeling, these panels are a succession of planar plates one over the other. Each consists of a regular linear arrangement of long cylinders with same finite circular sections, all orientated into the same direction: we call them “fibers”, each cylinder resulting from the assumption of a bundle of small-size fibers. The constitutive material of the fibers differs from the embedding material (matrix) that they reinforce. Each plate is made of fibers with different axes for sturdiness. There are few or many plates, with repetition of a small stack of plates. For conductive panels (carbon-based), imaging is MHz; for lossless or weakly lossy panels (glass based), imaging is microwave (a few tens GHz, possibly more). There might be missing/displaced cylinders inside a plate, with consequent changes in possibly several cells, adjacent or not. Local damages might occur also, leading to changes in shape or electromagnetic properties of one or more cylinders in one or more cells in one or more plates. Randomness in distribution of the inclusions might account for uncertainties of positioning with respect to assumed geometries. Properly illuminating the structures and collecting the resulting fields (in the near-field hopefully, possibly in the far-field) should allow their imaging and concur to their diagnostics. So, a periodic structure under interrogation is disorganized. One wishes to successfully image the structure while taking care at best of prior information on periodicity and disorganization, on sensing systems, and obviously of needs and limitations of the testing. The PhD benefits from a grant from the Chinese Scholarship Council
Chebbi, Houssem. "Méthode des coordonnées curvilignes pour la modélisation électromagnétique des matériaux complexes : application au contrôle non destructif par courants de Foucault des matériaux composites The fast computation of eddy current distribution and probe response in homogenized composite material based on semi-analytical approach Investigation of layer interface model of multi-layer structure using semi-analytical and FEM analysis for eddy current pulsed thermography". Thesis, université Paris-Saclay, 2020. http://www.theses.fr/2020UPAST004.
Texto completoThis doctoral thesis work, carried out within the Laboratory of Simulation and Modeling for Electromagnetics (LSME) of CEA List, is part of the “NDTonAir” European project funded under the action “H2020-MSCA-ITN -2016- GRANT 722134”. The main goal of the project is the development of a fast and accurate simulation tool for the non-destructive eddy current testing of homogenized composite materials. As an application case, we are particularly interested in the orientation of the fibers on the one hand, and on the other hand, in defects as delamination which are manifested by a local geometrical deformation of the interfaces. The semi-analytical methods existing in the literature, based on Green's Dyad formalism, have been limited so far to multilayered and planar structures. To introduce local variations in geometry at the interfaces, we propose an innovative approach based on a change of coordinates adapted to the profile of the local perturbation. We propose a powerful numerical model based on the covariant formalism of Maxwell's equations. This unifying formalism takes in the anisotropy of specimen and the local deformations of the interfaces. The curvilinear coordinate method is usually used to solve diffraction problems on rough interfaces in the high frequency domain (diffraction on gratings). This thesis work is inspired by Fourier Modal Methods and proposes new tools which have been adapted to the field of eddy currents. The extension of the curvilinear coordinate method to the field of eddy currents non-destructive testing technique of composites constitutes the innovation of this work. Two numerical models have been developed to calculate the interaction of the field emitted by an eddy current probe with a multilayered composite material. The numerical model developed for the evaluation of planar composite exploits the particular structures of sparse matrices to reduce the computation time without limiting the number of modes used for the modal expansion of the field. In the case of the curvilinear profiles of the interfaces, the model makes it possible to treat parallel interfaces and some particular cases of non-parallel profiles. The general case of non-identical profiles presents some limitations which require the development of complementary numerical tools. Finally, several testing configurations were considered and the numerical results produced by the models were compared to finite element simulated data. Some experiments were carried out in foreign partner laboratories to increase our experience on experimental validation
Gratton, Michel. "Comportement d'un composite 3D carb/carb : méso-modélisation pour la prévision de la réponse sous choc". Cachan, Ecole normale supérieure, 1998. http://www.theses.fr/1998DENS0004.
Texto completoRocher, Jean-Emile. "Caractérisation expérimentale et modélisation à l’échelle mésoscopique du comportement de tissus 3D de mèches comélées". Thesis, Orléans, 2014. http://www.theses.fr/2014ORLE2035/document.
Texto completoThis thesis is part of the European project 3D-LightTrans whose objectives are the large scale and low-cost manufacturing of composite parts. To achieve these goals, semi-finished products in the form of 3D fabrics of commingled yarns were produced. The purpose of this work is to characterize the mechanical behavior of these fabrics in order to investigate their formability and be able to predict their behavior during the forming processes used for the manufacturing of composite parts. The first objective of the work was to characterize experimentally the 3D fabrics mechanical behavior. A state of the art was realized in order to define the types and test parameters to use. The analysis of these test results allowed to highlight the specific 3D fabrics mechanical behaviour. The second objective of the work was to model the fabrics behavior using a numerical method. A mesoscopic scale approach having been selected, experimental characterization of the commingled yarns mechanical behavior was necessary. Then, GeoFab software limitations on its use for the generation of CAD models of 3D fabrics unit cells were identified. Improvements to address these limitations have been proposed and their feasibility was demonstrated. A CAD model of a sub part of one of the fabrics unit cell was then generated. After having modeled the commingled yarns behaviour using experimental results, finite element simulations were performed on fabric CAD model and first encouraging results were obtained
Gavérina, Ludovic. "Caractérisation thermique de milieux hétérogènes par excitation laser mobile et thermographie infrarouge". Thesis, Bordeaux, 2017. http://www.theses.fr/2017BORD0012/document.
Texto completoNowadays, composite materials are widely used in the aeronautic and aerospace industries because of their high mechanical resistance. However, they have a large heterogeneity due to the fiber and matrix they are made of. In this way, for many years, the TIC team «Thermal Imaging Fields and Characterization » from TREFLE department of I2M laboratory develops methods to measure thermal in-plane properties of heterogeneous materials such as inverses (integral transforms, double singular value decomposition…) or experimental (Flash, laser diode…) methods. The recent progress made in optical control, lasers and infrared (IR) cameras enables the development of a new scanning system (based on galvanometer-mirror) which allows the easy control of a laser hot spot spatial and temporal displacements over a plane surface. The low cost of laser diodes and optical control (galvanometric mirror) systems allows to develop a laser scanning system fixed on a test bench. We can revisit the different types of thermal excitation and realize infinite spatio-temporal combinations of thermal excitations by laser method. This is one of this thesis aims. New inverse methods based on the thermal response to an instantaneous point source heating, and temperature fields separability, have been proposed. These methods allow to estimate the thermal diffusivity tensor along the main axes of anisotropy, but also out of those axes, where it is possible to estimate the anisotropy axes orientation when the heat transfer takes place out of the image axes. These methods have produced interesting results in view of their simplicity. Moreover, they made it possible to obtain in-plane thermal diffusivities maps because, compared to the other methods, they allow to obtain, locally, thermal diffusivity tensor estimations by getting a surface heat flux map using the laser optical scanner
Bumpus, Scott Robert John. "Experimental setup and testing of fiber reinforced composite structures". 2005. http://hdl.handle.net/1828/585.
Texto completoCampbell, I. "Failure criteria and acoustic emission as applied to composite materials". Thesis, 1992. http://hdl.handle.net/10539/22068.
Texto completoThis project involves the comparison of different failure criteria with experimental results for fibre composite materials, and investigates the usefulness of acoustic emission in composite testing. Three sets of specimens were tested to failure in tension. The specimens had various ply orientations and were tested using acoustic emission to determine ply failures. Carbon and glass fibre reinforced epoxy pre-impregnated specimens were used. The testing machine was an ESH testing machine, and a physical Acoustics corporation computer and data acquisition unit were used to record data from a piezo-electric sensor. Suitable failure criteria should be chosen on the basis of ply orientation and material type (eg fibre stiffness), a combination of criteria being used if necessary. Acoustic emission was successfully used to detect ply failure in multi-layered laminates.
AC2017
Kiestler, William C. "Design and testing of fabric composite heat pipes for space nuclear power applications". Thesis, 1992. http://hdl.handle.net/1957/36479.
Texto completoGraduation date: 1993
Li, Chunling. "Mechanical response of fiber-reinforced soil". Thesis, 2005. http://hdl.handle.net/2152/1781.
Texto completoPark, Soojae. "Durability of adhesive joints between concrete and FRP reinforcement in aggressive environments". Thesis, 2004. http://hdl.handle.net/2152/1285.
Texto completoOkai, Smart K. "Determination of residual stresses in a carbon-fibre reinforced polymer using the incremental hole-drilling technique". Thesis, 2017. http://hdl.handle.net/10539/22997.
Texto completoAn extensive variety of experimental techniques exist to determining residual stresses, but few of these techniques is suitable, however, for finding the residual stresses that exist in orthotropic or anisotropic layered materials, such as carbon-fibre reinforced polymers (CFRP). Among these techniques, particularly among the relaxation techniques, the incremental hole-drilling technique (IHD) has shown to be a suitable technique to be developed for this purpose. This technique was standardized for the case of linear elastic isotropic materials, such as the metallic alloys in general. However, its reliable application to anisotropic and layered materials, such as CFRP materials, needs to be better studied. In particular, accurate calculation methods to determine the residual stresses in these materials based on the measured in-depth strain relaxation curves need to be developed. In this work, existing calculation methods and already proposed theoretical approaches to determine residual stresses in composite laminates by the incremental hole-drilling technique are reviewed. The selected residual stress calculation method is implemented using MATLAB. For these calculations, specific calibration coefficients have to be numerically determined by the finite element method, using the ANSYS software. The developed MATLAB scripts are then validated using an experimental procedure previously developed. This experimental procedure was performed using CFRP specimens, with the stacking sequence [0o, 90o]5s and, therefore, this composite laminate was selected as case study in this work. Some discrepancies between the calculated stresses using the MATLAB scripts and those imposed during the experimental calibration procedure are observed. The errors found could be explained considering the limitations inherent to the incremental hole-drilling technique and the theoretical approach followed. However, the obtained results showed that the incremental hole-drilling can be considered a promising technique for residual stress measurement in composite laminates.
MT2017
Mashau, Shivasi Christopher. "An investigation into the manufacturing of complex, three-dimensional components using continuous fibre reinforced thermoplastic composites". Thesis, 2017. https://hdl.handle.net/10539/24191.
Texto completoThis research looks into the manufacturing process of complex geometries using continuous fibre reinforced thermoplastics (CFRTP). The purpose of this work was to develop methods that will enable the production of defect free complex components. This was achieved by investigating the key process parameters in the CFRTP manufacturing process, and optimizing them in order to improve the quality of components. The investi- gations were performed with the aid of software making use of the finite element method, and this was found to be instrumental in predicting the formability of geometries. The re- search showed that the formability of complex geometry is largely determined by the ability of the laminate to be draped into the required geometry. The forming mechanisms that take place during the draping process can be linked to the formation of defects where draping is unsuccessful. The study also showed that the quality of the drape can be influenced by blank and tool design factors. It was also shown that the blank can be manipulated using a restraint mechanism to improve the formability of geometries. The effect of processing parameters such as forming speed, forming pressure and tool temperature were also investigated. The research resulted in the formulation of guidelines to follow when manufacturing CFRTP components. The developments that were made were successfully implemented to improve the formability of a complex component that had previously been difficult to form without defects.
MT2018
Freitas, João Rui Aguiar de. "Produção e caracterização de compósitos de matriz epóxi com fibras de conteira e de sisal". Master's thesis, 2021. http://hdl.handle.net/10400.26/38562.
Texto completoThere is a great need in the search for innovative, economical and sustainable materials. The development of materials more resistant, durable and with high ductility is possible using the incorporation of fibers, such as natural fibers, in composite materials. Thus, the present work aimed to produce and characterise composites with conteira fibre and sisal fibre, in an epoxy matrix. For this, composites with fibre percentages varying between 2.5% and 10% in weight, with a fibre size of 6 mm, were fabricated. These fibres were submitted to an alkaline treatment with NaOH, to guarantee a better adhesion of the fibres to the matrix. For the characterisation of the materials, the Archimedes method, macroscopy and scanning electron microscopy were used and the mechanical properties were obtained through hardness and tensile tests. The results showed a small significant variation in the density of the composites with the increase of the amount of fibre incorporated, and also a decrease in the tensile strength, ductility and fracture toughness of the materials. On the other hand, with this increase in the amount there was an increase in the modulus of elasticity, as well as an increase in the hardness of the composite materials. In summary, the addition of fibre significantly increases the dimensional stability of the materials, but leads to a reduction in tensile strength.