Literatura académica sobre el tema "Ferrite magnetic nanoparticles"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Ferrite magnetic nanoparticles".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Ferrite magnetic nanoparticles"
Swaminathan, R., J. Woods, S. Calvin, Joseph Huth y M. E. McHenry. "Microstructural Evolution Model of the Sintering Behaviour and Magnetic Properties of NiZn Ferrite Nanoparticles". Advances in Science and Technology 45 (octubre de 2006): 2337–44. http://dx.doi.org/10.4028/www.scientific.net/ast.45.2337.
Texto completoTambe, Sunanda y R. Y. Borse. "Effects of Al Doping with Zinc Ferrite Nanoparticles on Structural, Magnetic and Dielectric Properties". Material Science Research India 19, n.º 3 (30 de diciembre de 2022): 150–60. http://dx.doi.org/10.13005/msri/190306.
Texto completoAndrade, Priscyla L., Valdeene A. J. Silva, Kathryn L. Krycka, Juscelino B. Leão, I.-Lin Liu, Maria P. C. Silva y J. Albino Aguiar. "The effect of organic coatings in the magnetization of CoFe2O4 nanoparticles". AIP Advances 12, n.º 8 (1 de agosto de 2022): 085102. http://dx.doi.org/10.1063/5.0078167.
Texto completoAl-Senani, Ghadah M., Foziah F. Al-Fawzan, Rasmiah S. Almufarij, Omar H. Abd-Elkader y Nasrallah M. Deraz. "Magnetic Behavior of Virgin and Lithiated NiFe2O4 Nanoparticles". Crystals 13, n.º 1 (31 de diciembre de 2022): 69. http://dx.doi.org/10.3390/cryst13010069.
Texto completoDhariwal, Jyoti, Ravina Yadav, Sheetal Yadav, Anshu Kumar Sinha, Chandra Mohan Srivastava, Gyandshwar Kumar Rao, Manish Srivastava et al. "Magnetic Spinel Ferrite: An Efficient, Reusable Nano Catalyst for HMFsynthesis". Current Catalysis 10, n.º 3 (diciembre de 2021): 206–13. http://dx.doi.org/10.2174/2211544710666211119094247.
Texto completoPetrova, Elena G., Yana A. Shavshukova, Dzmitry A. Kotsikau, Kazimir I. Yanushkevich, Konstantin V. Laznev y Vladimir V. Pankov. "Thermolysis of sprayed suspensions for obtaining highly spinel ferrite nanoparticles". Journal of the Belarusian State University. Chemistry, n.º 1 (21 de febrero de 2019): 14–21. http://dx.doi.org/10.33581/2520-257x-2019-1-14-21.
Texto completoJIAO, QIGANG, YI ZHANG, YA ZHAI, XIAOJUN BAI, WEI ZHANG, JUN DU y HONGRU ZHAI. "MAGNETIC PROPERTIES AND INDUCTION HEATING OF NiZn FERRITE NANOPARTICLES". Modern Physics Letters B 22, n.º 15 (20 de junio de 2008): 1497–505. http://dx.doi.org/10.1142/s0217984908016212.
Texto completoAndrade, Raquel G. D., Sérgio R. S. Veloso y Elisabete M. S. Castanheira. "Shape Anisotropic Iron Oxide-Based Magnetic Nanoparticles: Synthesis and Biomedical Applications". International Journal of Molecular Sciences 21, n.º 7 (1 de abril de 2020): 2455. http://dx.doi.org/10.3390/ijms21072455.
Texto completoIacovita, Cristian, Gabriela Fabiola Stiufiuc, Roxana Dudric, Nicoleta Vedeanu, Romulus Tetean, Rares Ionut Stiufiuc y Constantin Mihai Lucaciu. "Saturation of Specific Absorption Rate for Soft and Hard Spinel Ferrite Nanoparticles Synthesized by Polyol Process". Magnetochemistry 6, n.º 2 (29 de mayo de 2020): 23. http://dx.doi.org/10.3390/magnetochemistry6020023.
Texto completoAlzoubi, Gassem M. "The Effect of Co-Doping on the Structural and Magnetic Properties of Single-Domain Crystalline Copper Ferrite Nanoparticles". Magnetochemistry 8, n.º 12 (22 de noviembre de 2022): 164. http://dx.doi.org/10.3390/magnetochemistry8120164.
Texto completoTesis sobre el tema "Ferrite magnetic nanoparticles"
Han, Man Huon. "Development of synthesis method for spinel ferrite magnetic nanoparticle and its superparamagnetic properties". Diss., Atlanta, Ga. : Georgia Institute of Technology, 2008. http://hdl.handle.net/1853/26465.
Texto completoCommittee Chair: Z. John Zhang; Committee Member: Angus Wilkinson; Committee Member: C P Wong; Committee Member: E. Kent Barefield; Committee Member: Mostafa El-Sayed. Part of the SMARTech Electronic Thesis and Dissertation Collection.
Anderson, Richard M. "Magneto-optical properties of superparamagnetic spinel ferrite nanoparticles". Diss., Georgia Institute of Technology, 2002. http://hdl.handle.net/1853/30027.
Texto completoVestal, Christy Riann. "Magnetic couplings and superparamagnetic properties of spinel ferrite nanoparticles". Diss., Available online, Georgia Institute of Technology, 2004:, 2004. http://etd.gatech.edu/theses/available/etd-06072004-131405/unrestricted/vestal%5Fchristy%5Fr%5F200405%5Fphd.pdf.
Texto completoRondinone, Adam Justin. "Superparamagnetic relaxation dynamics of magnetic spinel ferrite nanoparticles". Diss., Georgia Institute of Technology, 2001. http://hdl.handle.net/1853/30958.
Texto completoChen, Ritchie. "Optimizing hysteretic power loss of magnetic ferrite nanoparticles". Thesis, Massachusetts Institute of Technology, 2013. http://hdl.handle.net/1721.1/81064.
Texto completoCataloged from PDF version of thesis. "June 2013."
Includes bibliographical references (p. 44-46).
This thesis seeks to correlate hysteretic power loss of tertiary ferrite nanoparticles in alternating magnetic fields to trends predicted by physical models. By employing integration of hysteresis loops simulated from physical models for single-domain ferromagnets, we have identified ferrite materials optimal for remote heating. Several organometallic thermal decomposition methods were adapted to synthesize nanoparticles with anisotropy energies varying over 3 orders of magnitude and transferred into water using a high-temperature ligand exchange protocol. Furthermore, we compare nanoparticles of the same composition and size produced via different synthesis conditions and highlight differences in their materials properties. These analyses identify the synthesis conditions that yield nanoparticles with optimized magnetic properties and with some of the highest power dissipation (specific loss power) found in literature for tertiary ferrite materials.
by Ritchie Chen.
S.M.
Dondero, Russell A. "Silica coating of spinel ferrite nanoparticles". Thesis, Georgia Institute of Technology, 2000. http://hdl.handle.net/1853/27375.
Texto completoAygar, Gulfem. "Preparation Of Silica Coated Cobalt Ferrite Magnetic Nanoparticles For The Purification Of Histidine-tagged Proteins". Master's thesis, METU, 2011. http://etd.lib.metu.edu.tr/upload/12613894/index.pdf.
Texto completoit can be performed directly in crude samples containing suspended solid materials without pretreatment, and can easily isolate some biomolecules from aqueous systems in the presence of magnetic gradient fields. This thesis focused on the development of new class of magnetic separation material particularly useful for the separation of histidine-tagged proteins from the complex matrixes through the use of imidazole side chains of histidine molecules. For that reason surface modified cobalt ferrite nanoparticles which contain Ni-NTA affinity group were synthesized. Firstly, cobalt ferrite nanoparticles with a narrow size distribution were prepared in aqueous solution using the controlled coprecipitation method. In order to obtain small size of agglomerates two different dispersants, oleic acid and sodium chloride, were tried. After obtaining the best dispersant and optimum experimental conditions, ultrasonic bath was used in order to decrease the size of agglomerates. Then, they were coated with silica and this was followed by surface modification of these nanoparticles by amine in order to add functional groups on silica shell. Next, &ndash
COOH functional groups were added to silica coated cobalt ferrite magnetic nanoparticles through the NH2 groups. After that N&alpha
,N&alpha
-Bis(carboxymethyl)-L-lysine hydrate, NTA, was attached to carboxyl side of the structure. Finally, nanoparticles were labeled with Ni (II) ions. The size of the magnetic nanoparticles and their agglomerates were determined by FE-SEM images, particle size analyzer, and zeta potential analyzer (zeta-sizer). Vibrational sample magnetometer (VSM) was used to measure the magnetic behavior of cobalt ferrite and silica coated cobalt ferrite magnetic nanoparticles. Surface modifications of magnetic nanoparticles were followed by FT-IR measurements. ICP-OES was used to find the amount of Ni (II) ion concentration that was attached to the magnetic nanoparticle.
Cripps, Chala Ann. "Synthesis and characterization of cobalt ferrite spinel nanoparticles doped with erbium". Thesis, Georgia Institute of Technology, 2003. http://hdl.handle.net/1853/30855.
Texto completoHeintz, Eva Liang-Huang. "Surface Biological Modification and Cellular Interactions of Magnetic Spinel Ferrite Nanoparticles". Diss., Georgia Institute of Technology, 2004. http://hdl.handle.net/1853/4944.
Texto completoMAMELI, VALENTINA. "Colloidal CoFe2O4-based nanoparticles for Magnetic Fluid Hyperthermia". Doctoral thesis, Università degli Studi di Cagliari, 2016. http://hdl.handle.net/11584/266766.
Texto completoLibros sobre el tema "Ferrite magnetic nanoparticles"
Superparamagnetic iron oxide nanoparticles: Synthesis, surface engineering, cytotoxicity, and biomedical applications. New York: Nova Science Publishers, 2011.
Buscar texto completoFunctional Materials: Fundamental Research and Industrial Application. Trans Tech Publications, Limited, 2021.
Buscar texto completoCapítulos de libros sobre el tema "Ferrite magnetic nanoparticles"
Irfan Hussain, M., Min Xia, Xiao-NaRen, Kanwal Akhtar, Ahmed Nawaz, S. K. Sharma y Yasir Javed. "Ferrite Nanoparticles for Biomedical Applications". En Magnetic Nanoheterostructures, 243–65. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-39923-8_7.
Texto completoJe, Hae June y Byung Kook Kim. "Magnetic Properties of Mn-Zn Ferrite Nanoparticles Fabricated by Conventional Ball-Milling". En Solid State Phenomena, 891–94. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/3-908451-31-0.891.
Texto completoBalavijayalakshmi, J. y T. Sudha. "Effect of Cobalt Substitution on Structural and Magnetic Properties of Magnesium Ferrite Nanoparticles". En Springer Proceedings in Physics, 289–97. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-44890-9_27.
Texto completoSankaran, K. J., U. Balaji y R. Sakthivel. "Magnetic and LPG Sensing Properties of Nickel Ferrite Nanoparticles Derived from Metallurgical Wastes". En Lecture Notes in Mechanical Engineering, 257–64. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-7264-5_19.
Texto completoSreeja, V., S. Vijayanand, S. Deka y P. A. Joy. "Magnetic and Mössbauer spectroscopic studies of NiZn ferrite nanoparticles synthesized by a combustion method". En ICAME 2007, 271–79. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-78697-9_32.
Texto completoSwaminathan, R., J. Woods, S. Calvin, J. Huth y M. E. McHenry. "Microstructural Evolution Model of the Sintering Behaviour and Magnetic Properties of NiZn Ferrite Nanoparticles". En Advances in Science and Technology, 2337–44. Stafa: Trans Tech Publications Ltd., 2006. http://dx.doi.org/10.4028/3-908158-01-x.2337.
Texto completoNeelima, G., K. Lakshmi y K. Sesha Maheswaramma. "In Silico Studies of Benzoxazole Derivatives Using Ferrite-L-cysteine Magnetic Nanoparticles: Green Synthesis". En Special Publications, 288–301. Cambridge: Royal Society of Chemistry, 2019. http://dx.doi.org/10.1039/9781839160783-00288.
Texto completoBalavijayalakshmi, J. y C. Annie Josphine. "Impact of Annealing on Structural and Magnetic Properties of Manganese Co-Doped Magnesium-Cobalt Ferrite Nanoparticles". En Springer Proceedings in Physics, 233–43. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-44890-9_22.
Texto completoSingh, Ashtosh Kumar, M. G. H. Zaidi y Rakesh Saxena. "DC Electrical Conductivity and Magnetic Behaviour of Epoxy Matrix Composites Impregnated with Surface-Modified Ferrite Nanoparticles". En Advances in Materials Engineering and Manufacturing Processes, 69–77. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-4331-9_7.
Texto completoThomas, Bintu y L. K. Alexander. "Ferrite-Based Magnetic Nanoparticle Heterostructures for Removal of Dyes". En Sustainable Textiles: Production, Processing, Manufacturing & Chemistry, 213–31. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-0882-8_7.
Texto completoActas de conferencias sobre el tema "Ferrite magnetic nanoparticles"
Gutierrez, Gustavo, Juan Catan˜o y Oscar Perales-Perez. "Development of a Magnetocaloric Pump Using a Mn-Zn Ferrite Ferrofluid". En ASME 2006 International Mechanical Engineering Congress and Exposition. ASMEDC, 2006. http://dx.doi.org/10.1115/imece2006-13784.
Texto completoShahane, G. S., Ashok Kumar, R. P. Pant, Krishan Lal, P. K. Giri, D. K. Goswami, A. Perumal y A. Chattopadhyay. "Structural And Magnetic Properties Of Ni-Zn Ferrite Nanoparticles". En INTERNATIONAL CONFERENCE ON ADVANCED NANOMATERIALS AND NANOTECHNOLOGY (ICANN-2009). AIP, 2010. http://dx.doi.org/10.1063/1.3504329.
Texto completoKaran, T., S. Ram y R. K. Kotnala. "Magnetic properties of carbon stabilized multiferroic bismuth ferrite nanoparticles". En SOLID STATE PHYSICS: Proceedings of the 56th DAE Solid State Physics Symposium 2011. AIP, 2012. http://dx.doi.org/10.1063/1.4710046.
Texto completoMahale, Vinay A., A. V. Raut, R. C. Alange, D. R. Sapate, P. S. Aghav y R. G. Dorik. "Synthesis, structural and magnetic properties of Mg0.6Zn0.4Fe2O4 ferrite nanoparticles". En NATIONAL CONFERENCE ON PHYSICS AND CHEMISTRY OF MATERIALS: NCPCM2020. AIP Publishing, 2021. http://dx.doi.org/10.1063/5.0061099.
Texto completoGomez-Polo, C., S. Larumbe, J. Beato-Lopez, E. Mendonca, C. De Meneses y J. Duque. "Self-regulated magnetic induction heating Of Zn-Co ferrite nanoparticles". En 2015 IEEE International Magnetics Conference (INTERMAG). IEEE, 2015. http://dx.doi.org/10.1109/intmag.2015.7157443.
Texto completoAsmatulu, R., A. Garikapati, H. E. Misak, Z. Song, S. Y. Yang y P. Wooley. "Cytotoxicity of Magnetic Nanocomposite Spheres for Possible Drug Delivery Systems". En ASME 2010 International Mechanical Engineering Congress and Exposition. ASMEDC, 2010. http://dx.doi.org/10.1115/imece2010-40269.
Texto completoXavier, Sheena, Dhanya Jose, Sona George y K. V. Alekha. "Structural and magnetic characterization of transition metal substituted ferrite nanoparticles". En INTERNATIONAL CONFERENCE ON SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS: STAM 20. AIP Publishing, 2020. http://dx.doi.org/10.1063/5.0017047.
Texto completoSugimoto, Seiichi, Kazuo Yagi, Yujiro Harada y Masataka Tokuda. "Synthesis and Magnetic Properties of New Multi-components Spinel Ferrite Nanoparticles". En 2007 International Symposium on Micro-NanoMechatronics and Human Science. IEEE, 2007. http://dx.doi.org/10.1109/mhs.2007.4420915.
Texto completoArgish, V., M. Chithra, C. N. Anumol, B. N. Sahu y S. C. Sahoo. "Magnetic studies of magnesium ferrite nanoparticles prepared by sol-gel technique". En NANOFORUM 2014. AIP Publishing LLC, 2015. http://dx.doi.org/10.1063/1.4917736.
Texto completoJadoun, Priya, Jyoti, B. L. Prashant, S. N. Dolia, D. Bhatnagar y V. K. Saxena. "Magnetic and dielectric behavior of chromium substituted Co-Mg ferrite nanoparticles". En INTERNATIONAL CONFERENCE ON CONDENSED MATTER AND APPLIED PHYSICS (ICC 2015): Proceeding of International Conference on Condensed Matter and Applied Physics. Author(s), 2016. http://dx.doi.org/10.1063/1.4946319.
Texto completo