Artículos de revistas sobre el tema "Federate learning"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "Federate learning".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.
Oktian, Yustus Eko, Brian Stanley y Sang-Gon Lee. "Building Trusted Federated Learning on Blockchain". Symmetry 14, n.º 7 (8 de julio de 2022): 1407. http://dx.doi.org/10.3390/sym14071407.
Texto completoLi, Yanbin, Yue Li, Huanliang Xu y Shougang Ren. "An Adaptive Communication-Efficient Federated Learning to Resist Gradient-Based Reconstruction Attacks". Security and Communication Networks 2021 (22 de abril de 2021): 1–16. http://dx.doi.org/10.1155/2021/9919030.
Texto completoBektemyssova, G. U., G. S. Bakirova, Sh G. Yermukhanbetova, A. Shyntore, D. B. Umutkulov y Zh S. Mangysheva. "Analysis of the relevance and prospects of application of federate training". Bulletin of the National Engineering Academy of the Republic of Kazakhstan 92, n.º 2 (30 de junio de 2024): 56–65. http://dx.doi.org/10.47533/2024.1606-146x.26.
Texto completoShkurti, Lamir y Mennan Selimi. "AdaptiveMesh: Adaptive Federate Learning for Resource-Constrained Wireless Environments". International Journal of Online and Biomedical Engineering (iJOE) 20, n.º 14 (14 de noviembre de 2024): 22–37. http://dx.doi.org/10.3991/ijoe.v20i14.50559.
Texto completoKholod, Ivan, Evgeny Yanaki, Dmitry Fomichev, Evgeniy Shalugin, Evgenia Novikova, Evgeny Filippov y Mats Nordlund. "Open-Source Federated Learning Frameworks for IoT: A Comparative Review and Analysis". Sensors 21, n.º 1 (29 de diciembre de 2020): 167. http://dx.doi.org/10.3390/s21010167.
Texto completoSrinivas, C., S. Venkatramulu, V. Chandra Shekar Rao, B. Raghuram, K. Vinay Kumar y Sreenivas Pratapagiri. "Decentralized Machine Learning based Energy Efficient Routing and Intrusion Detection in Unmanned Aerial Network (UAV)". International Journal on Recent and Innovation Trends in Computing and Communication 11, n.º 6s (13 de junio de 2023): 517–27. http://dx.doi.org/10.17762/ijritcc.v11i6s.6960.
Texto completoTabaszewski, Maciej, Paweł Twardowski, Martyna Wiciak-Pikuła, Natalia Znojkiewicz, Agata Felusiak-Czyryca y Jakub Czyżycki. "Machine Learning Approaches for Monitoring of Tool Wear during Grey Cast-Iron Turning". Materials 15, n.º 12 (20 de junio de 2022): 4359. http://dx.doi.org/10.3390/ma15124359.
Texto completoLaunet, Laëtitia, Yuandou Wang, Adrián Colomer, Jorge Igual, Cristian Pulgarín-Ospina, Spiros Koulouzis, Riccardo Bianchi et al. "Federating Medical Deep Learning Models from Private Jupyter Notebooks to Distributed Institutions". Applied Sciences 13, n.º 2 (9 de enero de 2023): 919. http://dx.doi.org/10.3390/app13020919.
Texto completoParekh, Nisha Harish y Mrs Vrushali Shinde. "Federated Learning : A Paradigm Shift in Collaborative Machine Learning". INTERANTIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT 08, n.º 11 (10 de noviembre de 2024): 1–6. http://dx.doi.org/10.55041/ijsrem38501.
Texto completoШубин, Б., Т. Максимюк, О. Яремко, Л. Фабрі y Д. Мрозек. "МОДЕЛЬ ІНТЕГРАЦІЇ ФЕДЕРАТИВНОГО НАВЧАННЯ В МЕРЕЖІ МОБІЛЬНОГО ЗВ’ЯЗКУ 5-ГО ПОКОЛІННЯ". Information and communication technologies, electronic engineering 2, n.º 1 (agosto de 2022): 26–35. http://dx.doi.org/10.23939/ictee2022.01.026.
Texto completoLi, Chengan. "Research advanced in the integration of federated learning and reinforcement learning". Applied and Computational Engineering 40, n.º 1 (21 de febrero de 2024): 147–54. http://dx.doi.org/10.54254/2755-2721/40/20230641.
Texto completoK. Usha Rani, Sreenivasulu Reddy L., Yaswanth Kumar Alapati, M. Katyayani, Kumar Keshamoni, A. Sree Rama Chandra Murthy,. ""Federated Learning: Advancements, Applications, and Future Directions for Collaborative Machine Learning in Distributed Environments"". Journal of Electrical Systems 20, n.º 5s (13 de abril de 2024): 165–71. http://dx.doi.org/10.52783/jes.1900.
Texto completoDelfin, Carl, Iulian Dragan, Dmitry Kuznetsov, Juan Fernandez Tajes, Femke Smit, Daniel E. Coral, Ali Farzaneh et al. "A Federated Database for Obesity Research: An IMI-SOPHIA Study". Life 14, n.º 2 (16 de febrero de 2024): 262. http://dx.doi.org/10.3390/life14020262.
Texto completoSeol, Mihye y Taejoon Kim. "Performance Enhancement in Federated Learning by Reducing Class Imbalance of Non-IID Data". Sensors 23, n.º 3 (19 de enero de 2023): 1152. http://dx.doi.org/10.3390/s23031152.
Texto completoZhang, Yong y Mingchuan Zhang. "A Survey of Developments in Federated Meta-Learning". Academic Journal of Science and Technology 11, n.º 2 (12 de junio de 2024): 27–29. http://dx.doi.org/10.54097/bzpfwa11.
Texto completoRaju Cherukuri, Bangar. "Federated Learning: Privacy-Preserving Machine Learning in Cloud Environments". International Journal of Science and Research (IJSR) 13, n.º 10 (5 de octubre de 2024): 1539–49. http://dx.doi.org/10.21275/ms241022095645.
Texto completoJinhyeok Jang, Jinhyeok Jang, Yoonju Oh Jinhyeok Jang, Gwonsang Ryu Yoonju Oh y Daeseon Choi Gwonsang Ryu. "Data Reconstruction Attack with Label Guessing for Federated Learning". 網際網路技術學刊 24, n.º 4 (julio de 2023): 893–903. http://dx.doi.org/10.53106/160792642023072404007.
Texto completoAlaa Hamza Omran, Sahar Yousif Mohammed y Mohammad Aljanabi. "Detecting Data Poisoning Attacks in Federated Learning for Healthcare Applications Using Deep Learning". Iraqi Journal For Computer Science and Mathematics 4, n.º 4 (26 de noviembre de 2023): 225–37. http://dx.doi.org/10.52866/ijcsm.2023.04.04.018.
Texto completoGuo, Wenxin. "Overview of Research Progress and Challenges in Federated Learning". Transactions on Computer Science and Intelligent Systems Research 5 (12 de agosto de 2024): 797–804. http://dx.doi.org/10.62051/9qyaha16.
Texto completoMonteiro, Daryn, Ishaan Mavinkurve, Parth Kambli y Prof Sakshi Surve. "Federated Learning for Privacy-Preserving Machine Learning: Decentralized Model Training with Enhanced Data Security". International Journal for Research in Applied Science and Engineering Technology 12, n.º 11 (30 de noviembre de 2024): 355–61. http://dx.doi.org/10.22214/ijraset.2024.65062.
Texto completoAlferaidi, Ali, Kusum Yadav, Yasser Alharbi, Wattana Viriyasitavat, Sandeep Kautish y Gaurav Dhiman. "Federated Learning Algorithms to Optimize the Client and Cost Selections". Mathematical Problems in Engineering 2022 (1 de abril de 2022): 1–9. http://dx.doi.org/10.1155/2022/8514562.
Texto completoFeng, Zecheng. "Federated Learning Security Threats and Defense Approaches". Highlights in Science, Engineering and Technology 85 (13 de marzo de 2024): 121–27. http://dx.doi.org/10.54097/wvfhcd40.
Texto completoNing, Weiguang, Yingjuan Zhu, Caixia Song, Hongxia Li, Lihui Zhu, Jinbao Xie, Tianyu Chen, Tong Xu, Xi Xu y Jiwei Gao. "Blockchain-Based Federated Learning: A Survey and New Perspectives". Applied Sciences 14, n.º 20 (16 de octubre de 2024): 9459. http://dx.doi.org/10.3390/app14209459.
Texto completoJitendra Singh Chouhan, Amit Kumar Bhatt, Nitin Anand. "Federated Learning; Privacy Preserving Machine Learning for Decentralized Data". Tuijin Jishu/Journal of Propulsion Technology 44, n.º 1 (24 de noviembre de 2023): 167–69. http://dx.doi.org/10.52783/tjjpt.v44.i1.2234.
Texto completoMonika Dhananjay Rokade. "Advancements in Privacy-Preserving Techniques for Federated Learning: A Machine Learning Perspective". Journal of Electrical Systems 20, n.º 2s (31 de marzo de 2024): 1075–88. http://dx.doi.org/10.52783/jes.1754.
Texto completoLiu, Chaoyi y Qi Zhu. "Joint Resource Allocation and Learning Optimization for UAV-Assisted Federated Learning". Applied Sciences 13, n.º 6 (15 de marzo de 2023): 3771. http://dx.doi.org/10.3390/app13063771.
Texto completoYarlagadda, Sneha Sree, Sai Harshith Tule y Karthik Myada. "F1 Score Based Weighted Asynchronous Federated Learning". International Journal for Research in Applied Science and Engineering Technology 12, n.º 2 (29 de febrero de 2024): 947–53. http://dx.doi.org/10.22214/ijraset.2024.58487.
Texto completoLiu, Jessica Chia, Jack Goetz, Srijan Sen y Ambuj Tewari. "Learning From Others Without Sacrificing Privacy: Simulation Comparing Centralized and Federated Machine Learning on Mobile Health Data". JMIR mHealth and uHealth 9, n.º 3 (30 de marzo de 2021): e23728. http://dx.doi.org/10.2196/23728.
Texto completoToofanee, Mohammud Shaad Ally, Mohamed Hamroun, Sabeena Dowlut, Karim Tamine, Vincent Petit, Anh Kiet Duong y Damien Sauveron. "Federated Learning: Centralized and P2P for a Siamese Deep Learning Model for Diabetes Foot Ulcer Classification". Applied Sciences 13, n.º 23 (28 de noviembre de 2023): 12776. http://dx.doi.org/10.3390/app132312776.
Texto completoLi, Jipeng, Xinyi Li y Chenjing Zhang. "Analysis on Security and Privacy-preserving in Federated Learning". Highlights in Science, Engineering and Technology 4 (26 de julio de 2022): 349–58. http://dx.doi.org/10.54097/hset.v4i.923.
Texto completoWoo, Gimoon, Hyungbin Kim, Seunghyun Park, Cheolwoo You y Hyunhee Park. "Fairness-Based Multi-AP Coordination Using Federated Learning in Wi-Fi 7". Sensors 22, n.º 24 (13 de diciembre de 2022): 9776. http://dx.doi.org/10.3390/s22249776.
Texto completoDR.AR.SIVAKUMARAN, POLNENI ABHINAYA, PENDYALA SWETHA y POKALA MAHITHA. "DATA POISONING ATTACKS ON FEDERATED MACHINE LEARNING". International Journal of Engineering, Science and Advanced Technology 24, n.º 10 (2024): 188–97. http://dx.doi.org/10.36893/ijesat.2024.v24i10.022.
Texto completoChouhan, Khushi Udaysingh, Nikita Pradeep Kumar Jha, Roshni Sanjay Jha, Shaikh Insha Kamaluddin y Dr Nupur Giri. "Mobile Keyword Prediction using Federated Learning". International Journal for Research in Applied Science and Engineering Technology 11, n.º 4 (30 de abril de 2023): 3144–51. http://dx.doi.org/10.22214/ijraset.2023.50826.
Texto completoWang, Weixi. "Empowering safe and secure autonomy: Federated learning in the era of autonomous driving". Applied and Computational Engineering 51, n.º 1 (25 de marzo de 2024): 40–44. http://dx.doi.org/10.54254/2755-2721/51/20241158.
Texto completoAjay, Ajay, Ajay Kumar, Krishan Kant Singh Gautam, Pratibha Deshmukh, Pavithra G y Laith Abualigah. "Collaborative Intelligence for IoT: Decentralized Net security and confidentiality". Journal of Intelligent Systems and Internet of Things 13, n.º 2 (2024): 202–11. http://dx.doi.org/10.54216/jisiot.130216.
Texto completoEmmanni, Phani Sekhar. "Federated Learning for Cybersecurity in Edge and Cloud Computing". International Journal of Computing and Engineering 5, n.º 4 (12 de marzo de 2024): 27–38. http://dx.doi.org/10.47941/ijce.1829.
Texto completoZhang, Ticao y Shiwen Mao. "An Introduction to the Federated Learning Standard". GetMobile: Mobile Computing and Communications 25, n.º 3 (7 de enero de 2022): 18–22. http://dx.doi.org/10.1145/3511285.3511291.
Texto completoLee, Haeyun, Young Jun Chai, Hyunjin Joo, Kyungsu Lee, Jae Youn Hwang, Seok-Mo Kim, Kwangsoon Kim et al. "Federated Learning for Thyroid Ultrasound Image Analysis to Protect Personal Information: Validation Study in a Real Health Care Environment". JMIR Medical Informatics 9, n.º 5 (18 de mayo de 2021): e25869. http://dx.doi.org/10.2196/25869.
Texto completoTian, Junfeng, Xinyao Chen y Shuo Wang. "Few-Shot Federated Learning: A Federated Learning Model for Small-Sample Scenarios". Applied Sciences 14, n.º 9 (4 de mayo de 2024): 3919. http://dx.doi.org/10.3390/app14093919.
Texto completoHang, Yifei. "Federated learning-based neural network for hotel cancellation prediction". Applied and Computational Engineering 45, n.º 1 (15 de marzo de 2024): 190–95. http://dx.doi.org/10.54254/2755-2721/45/20241092.
Texto completoGao, Yuan. "Federated learning: Impact of different algorithms and models on prediction results based on fashion-MNIST data set". Applied and Computational Engineering 86, n.º 1 (31 de julio de 2024): 210–18. http://dx.doi.org/10.54254/2755-2721/86/20241594.
Texto completoAl-Tameemi, M., M. B. Hassan y S. A. Abass. "Federated Learning (FL) – Overview". LETI Transactions on Electrical Engineering & Computer Science 17, n.º 5 (2024): 74–82. http://dx.doi.org/10.32603/2071-8985-2024-17-5-74-82.
Texto completoLi, Sirui, Keyu Shao y Jingqi Zhou. "Research Advanced in Federated Learning". Applied and Computational Engineering 40, n.º 1 (21 de febrero de 2024): 140–46. http://dx.doi.org/10.54254/2755-2721/40/20230640.
Texto completoChen, Gaofeng y Qingtao Wu. "A Review of Personalized Federated Reinforcement Learning". International Journal of Computer Science and Information Technology 3, n.º 1 (15 de junio de 2024): 1–9. http://dx.doi.org/10.62051/ijcsit.v3n1.01.
Texto completoJiang, Jingyan, Liang Hu, Chenghao Hu, Jiate Liu y Zhi Wang. "BACombo—Bandwidth-Aware Decentralized Federated Learning". Electronics 9, n.º 3 (5 de marzo de 2020): 440. http://dx.doi.org/10.3390/electronics9030440.
Texto completoShrivastava, Arpit. "Privacy-Centric AI: Navigating the Landscape with Federated Learning". International Journal for Research in Applied Science and Engineering Technology 12, n.º 5 (31 de mayo de 2024): 357–63. http://dx.doi.org/10.22214/ijraset.2024.61000.
Texto completoJin, Xuan, Yuanzhi Yao y Nenghai Yu. "Efficient secure aggregation for privacy-preserving federated learning based on secret sharing". JUSTC 53, n.º 4 (2023): 1. http://dx.doi.org/10.52396/justc-2022-0116.
Texto completoTian, Mengmeng. "An Contract Theory based Federated Learning Aggregation Algorithm in IoT Network". Journal of Physics: Conference Series 2258, n.º 1 (1 de abril de 2022): 012008. http://dx.doi.org/10.1088/1742-6596/2258/1/012008.
Texto completoYang, Xun, Shuwen Xiang, Changgen Peng, Weijie Tan, Yue Wang, Hai Liu y Hongfa Ding. "Federated Learning Incentive Mechanism with Supervised Fuzzy Shapley Value". Axioms 13, n.º 4 (11 de abril de 2024): 254. http://dx.doi.org/10.3390/axioms13040254.
Texto completoLuo, Yihang, Bei Gong, Haotian Zhu y Chong Guo. "A Trusted Federated Incentive Mechanism Based on Blockchain for 6G Network Data Security". Applied Sciences 13, n.º 19 (22 de septiembre de 2023): 10586. http://dx.doi.org/10.3390/app131910586.
Texto completo