Literatura académica sobre el tema "Federate learning"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Federate learning".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Federate learning"
Oktian, Yustus Eko, Brian Stanley y Sang-Gon Lee. "Building Trusted Federated Learning on Blockchain". Symmetry 14, n.º 7 (8 de julio de 2022): 1407. http://dx.doi.org/10.3390/sym14071407.
Texto completoLi, Yanbin, Yue Li, Huanliang Xu y Shougang Ren. "An Adaptive Communication-Efficient Federated Learning to Resist Gradient-Based Reconstruction Attacks". Security and Communication Networks 2021 (22 de abril de 2021): 1–16. http://dx.doi.org/10.1155/2021/9919030.
Texto completoBektemyssova, G. U., G. S. Bakirova, Sh G. Yermukhanbetova, A. Shyntore, D. B. Umutkulov y Zh S. Mangysheva. "Analysis of the relevance and prospects of application of federate training". Bulletin of the National Engineering Academy of the Republic of Kazakhstan 92, n.º 2 (30 de junio de 2024): 56–65. http://dx.doi.org/10.47533/2024.1606-146x.26.
Texto completoShkurti, Lamir y Mennan Selimi. "AdaptiveMesh: Adaptive Federate Learning for Resource-Constrained Wireless Environments". International Journal of Online and Biomedical Engineering (iJOE) 20, n.º 14 (14 de noviembre de 2024): 22–37. http://dx.doi.org/10.3991/ijoe.v20i14.50559.
Texto completoKholod, Ivan, Evgeny Yanaki, Dmitry Fomichev, Evgeniy Shalugin, Evgenia Novikova, Evgeny Filippov y Mats Nordlund. "Open-Source Federated Learning Frameworks for IoT: A Comparative Review and Analysis". Sensors 21, n.º 1 (29 de diciembre de 2020): 167. http://dx.doi.org/10.3390/s21010167.
Texto completoSrinivas, C., S. Venkatramulu, V. Chandra Shekar Rao, B. Raghuram, K. Vinay Kumar y Sreenivas Pratapagiri. "Decentralized Machine Learning based Energy Efficient Routing and Intrusion Detection in Unmanned Aerial Network (UAV)". International Journal on Recent and Innovation Trends in Computing and Communication 11, n.º 6s (13 de junio de 2023): 517–27. http://dx.doi.org/10.17762/ijritcc.v11i6s.6960.
Texto completoTabaszewski, Maciej, Paweł Twardowski, Martyna Wiciak-Pikuła, Natalia Znojkiewicz, Agata Felusiak-Czyryca y Jakub Czyżycki. "Machine Learning Approaches for Monitoring of Tool Wear during Grey Cast-Iron Turning". Materials 15, n.º 12 (20 de junio de 2022): 4359. http://dx.doi.org/10.3390/ma15124359.
Texto completoLaunet, Laëtitia, Yuandou Wang, Adrián Colomer, Jorge Igual, Cristian Pulgarín-Ospina, Spiros Koulouzis, Riccardo Bianchi et al. "Federating Medical Deep Learning Models from Private Jupyter Notebooks to Distributed Institutions". Applied Sciences 13, n.º 2 (9 de enero de 2023): 919. http://dx.doi.org/10.3390/app13020919.
Texto completoParekh, Nisha Harish y Mrs Vrushali Shinde. "Federated Learning : A Paradigm Shift in Collaborative Machine Learning". INTERANTIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT 08, n.º 11 (10 de noviembre de 2024): 1–6. http://dx.doi.org/10.55041/ijsrem38501.
Texto completoШубин, Б., Т. Максимюк, О. Яремко, Л. Фабрі y Д. Мрозек. "МОДЕЛЬ ІНТЕГРАЦІЇ ФЕДЕРАТИВНОГО НАВЧАННЯ В МЕРЕЖІ МОБІЛЬНОГО ЗВ’ЯЗКУ 5-ГО ПОКОЛІННЯ". Information and communication technologies, electronic engineering 2, n.º 1 (agosto de 2022): 26–35. http://dx.doi.org/10.23939/ictee2022.01.026.
Texto completoTesis sobre el tema "Federate learning"
Eriksson, Henrik. "Federated Learning in Large Scale Networks : Exploring Hierarchical Federated Learning". Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-292744.
Texto completoFederated Learning står inför en utmaning när det gäller att hantera data med en hög grad av heterogenitet och det kan i vissa fall vara olämpligt att använda sig av en approach där en och samma modell är tränad för att användas av alla noder i nätverket. Olika approacher för att hantera detta problem har undersökts som att anpassa den tränade modellen till varje nod och att klustra noderna i nätverket och träna en egen modell för varje kluster inom vilket datan är mindre heterogen. I detta arbete studeras möjligheterna att förbättra prestandan hos de lokala modellerna genom att dra nytta av den hierarkiska anordning som uppstår när de deltagande noderna i nätverket grupperas i kluster. Experiment är utförda med ett Long Short-Term Memory-nätverk för att utföra tidsserieprognoser för att utvärdera olika approacher som drar nytta av den hierarkiska anordningen och jämför dem med vanliga federated learning-approacher. Experimenten är utförda med ett dataset insamlat av Ericsson AB. Det består av "handoversfrån basstationer i en europeisk stad. De hierarkiska approacherna visade inga fördelar jämfört med de vanliga två-nivåapproacherna.
Taiello, Riccardo. "Apprentissage automatique sécurisé pour l'analyse collaborative des données de santé à grande échelle". Electronic Thesis or Diss., Université Côte d'Azur, 2024. http://www.theses.fr/2024COAZ4031.
Texto completoThis PhD thesis explores the integration of privacy preservation, medical imaging, and Federated Learning (FL) using advanced cryptographic methods. Within the context of medical image analysis, we develop a privacy-preserving image registration (PPIR) framework. This framework addresses the challenge of registering images confidentially, without revealing their contents. By extending classical registration paradigms, we incorporate cryptographic tools like secure multi-party computation and homomorphic encryption to perform these operations securely. These tools are vital as they prevent data leakage during processing. Given the challenges associated with the performance and scalability of cryptographic methods in high-dimensional data, we optimize our image registration operations using gradient approximations. Our focus extends to increasingly complex registration methods, such as rigid, affine, and non-linear approaches using cubic splines or diffeomorphisms, parameterized by time-varying velocity fields. We demonstrate how these sophisticated registration methods can integrate privacy-preserving mechanisms effectively across various tasks. Concurrently, the thesis addresses the challenge of stragglers in FL, emphasizing the role of Secure Aggregation (SA) in collaborative model training. We introduce "Eagle", a synchronous SA scheme designed to optimize participation by late-arriving devices, significantly enhancing computational and communication efficiencies. We also present "Owl", tailored for buffered asynchronous FL settings, consistently outperforming earlier solutions. Furthermore, in the realm of Buffered AsyncSA, we propose two novel approaches: "Buffalo" and "Buffalo+". "Buffalo" advances SA techniques for Buffered AsyncSA, while "Buffalo+" counters sophisticated attacks that traditional methods fail to detect, such as model replacement. This solution leverages the properties of incremental hash functions and explores the sparsity in the quantization of local gradients from client models. Both Buffalo and Buffalo+ are validated theoretically and experimentally, demonstrating their effectiveness in a new cross-device FL task for medical devices.Finally, this thesis has devoted particular attention to the translation of privacy-preserving tools in real-world applications, notably through the FL open-source framework Fed-BioMed. Contributions concern the introduction of one of the first practical SA implementations specifically designed for cross-silo FL among hospitals, showcasing several practical use cases
Mäenpää, Dylan. "Towards Peer-to-Peer Federated Learning: Algorithms and Comparisons to Centralized Federated Learning". Thesis, Linköpings universitet, Institutionen för datavetenskap, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-176778.
Texto completoLiang, Jiarong. "Federated Learning for Bioimage Classification". Thesis, Uppsala universitet, Institutionen för biologisk grundutbildning, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-420615.
Texto completoZhao, Qiwei. "Federated Learning with Heterogeneous Challenge". Thesis, The University of Sydney, 2022. https://hdl.handle.net/2123/27399.
Texto completoCarlsson, Robert. "Privacy-Preserved Federated Learning : A survey of applicable machine learning algorithms in a federated environment". Thesis, Uppsala universitet, Institutionen för informationsteknologi, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-424383.
Texto completoDinh, The Canh. "Distributed Algorithms for Fast and Personalized Federated Learning". Thesis, The University of Sydney, 2023. https://hdl.handle.net/2123/30019.
Texto completoFelix, Johannes Morsbach. "Hardened Model Aggregation for Federated Learning backed by Distributed Trust Towards decentralizing Federated Learning using a Blockchain". Thesis, Uppsala universitet, Institutionen för informationsteknologi, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-423621.
Texto completoLeconte, Louis. "Compression and federated learning : an approach to frugal machine learning". Electronic Thesis or Diss., Sorbonne université, 2024. http://www.theses.fr/2024SORUS107.
Texto completo“Intelligent” devices and tools are gradually becoming the standard, as the implementation of algorithms based on artificial neural networks is experiencing widespread development. Neural networks consist of non-linear machine learning models that manipulate high-dimensional objects and obtain state-of-the-art performances in various areas, such as image recognition, speech recognition, natural language processing, and recommendation systems.However, training a neural network on a device with lower computing capacity can be challenging, as it can imply cutting back on memory, computing time or power. A natural approach to simplify this training is to use quantized neural networks, whose parameters and operations use efficient low-bit primitives. However, optimizing a function over a discrete set in high dimension is complex, and can still be prohibitively expensive in terms of computational power. For this reason, many modern applications use a network of devices to store individual data and share the computational load. A new approach, federated learning, considers a distributed environment: Data is stored on devices and a centralized server orchestrates the training process across multiple devices.In this thesis, we investigate different aspects of (stochastic) optimization with the goal of reducing energy costs for potentially very heterogeneous devices. The first two contributions of this work are dedicated to the case of quantized neural networks. Our first idea is based on an annealing strategy: we formulate the discrete optimization problem as a constrained optimization problem (where the size of the constraint is reduced over iterations). We then focus on a heuristic for training binary deep neural networks. In this particular framework, the parameters of the neural networks can only have two values. The rest of the thesis is about efficient federated learning. Following our contributions developed for training quantized neural network, we integrate them into a federated environment. Then, we propose a novel unbiased compression technique that can be used in any gradient based distributed optimization framework. Our final contributions address the particular case of asynchronous federated learning, where devices have different computational speeds and/or access to bandwidth. We first propose a contribution that reweights the contributions of distributed devices. Then, in our final work, through a detailed queuing dynamics analysis, we propose a significant improvement to the complexity bounds provided in the literature onasynchronous federated learning.In summary, this thesis presents novel contributions to the field of quantized neural networks and federated learning by addressing critical challenges and providing innovative solutions for efficient and sustainable learning in a distributed and heterogeneous environment. Although the potential benefits are promising, especially in terms of energy savings, caution is needed as a rebound effect could occur
Adapa, Supriya. "TensorFlow Federated Learning: Application to Decentralized Data". Master's thesis, Alma Mater Studiorum - Università di Bologna, 2021.
Buscar texto completoLibros sobre el tema "Federate learning"
Yang, Qiang, Yang Liu, Yong Cheng, Yan Kang, Tianjian Chen y Han Yu. Federated Learning. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-031-01585-4.
Texto completoLudwig, Heiko y Nathalie Baracaldo, eds. Federated Learning. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-96896-0.
Texto completoYang, Qiang, Lixin Fan y Han Yu, eds. Federated Learning. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-63076-8.
Texto completoJin, Yaochu, Hangyu Zhu, Jinjin Xu y Yang Chen. Federated Learning. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-7083-2.
Texto completoUddin, M. Irfan y Wali Khan Mashwani. Federated Learning. Boca Raton: CRC Press, 2024. http://dx.doi.org/10.1201/9781003466581.
Texto completoSahoo, Jayakrushna, Mariya Ouaissa y Akarsh K. Nair. Federated Learning. New York: Apple Academic Press, 2024. http://dx.doi.org/10.1201/9781003497196.
Texto completoRehman, Muhammad Habib ur y Mohamed Medhat Gaber, eds. Federated Learning Systems. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-70604-3.
Texto completoGoebel, Randy, Han Yu, Boi Faltings, Lixin Fan y Zehui Xiong, eds. Trustworthy Federated Learning. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-28996-5.
Texto completoRazavi-Far, Roozbeh, Boyu Wang, Matthew E. Taylor y Qiang Yang, eds. Federated and Transfer Learning. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-11748-0.
Texto completoKrishnan, Saravanan, A. Jose Anand, R. Srinivasan, R. Kavitha y S. Suresh. Handbook on Federated Learning. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003384854.
Texto completoCapítulos de libros sobre el tema "Federate learning"
Rehman, Atiq Ur, Samir Brahim Belhaouari, Tanya Stanko y Vladimir Gorovoy. "Divide to Federate Clustering Concept for Unsupervised Learning". En Proceedings of Seventh International Congress on Information and Communication Technology, 19–29. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-2397-5_3.
Texto completoHuang, Hai, Wei Wu, Xin Tang y Zhong Zhou. "Federate Migration in Grid-Based Virtual Wargame Collaborative Environment". En Technologies for E-Learning and Digital Entertainment, 606–15. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/11736639_75.
Texto completoJin, Yaochu, Hangyu Zhu, Jinjin Xu y Yang Chen. "Summary and Outlook". En Federated Learning, 213–15. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-7083-2_5.
Texto completoJin, Yaochu, Hangyu Zhu, Jinjin Xu y Yang Chen. "Introduction". En Federated Learning, 1–92. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-7083-2_1.
Texto completoJin, Yaochu, Hangyu Zhu, Jinjin Xu y Yang Chen. "Communication Efficient Federated Learning". En Federated Learning, 93–137. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-7083-2_2.
Texto completoJin, Yaochu, Hangyu Zhu, Jinjin Xu y Yang Chen. "Secure Federated Learning". En Federated Learning, 165–212. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-7083-2_4.
Texto completoJin, Yaochu, Hangyu Zhu, Jinjin Xu y Yang Chen. "Evolutionary Multi-objective Federated Learning". En Federated Learning, 139–64. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-7083-2_3.
Texto completoYang, Qiang, Yang Liu, Yong Cheng, Yan Kang, Tianjian Chen y Han Yu. "Incentive Mechanism Design for Federated Learning". En Federated Learning, 95–105. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-031-01585-4_7.
Texto completoYang, Qiang, Yang Liu, Yong Cheng, Yan Kang, Tianjian Chen y Han Yu. "Introduction". En Federated Learning, 1–15. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-031-01585-4_1.
Texto completoYang, Qiang, Yang Liu, Yong Cheng, Yan Kang, Tianjian Chen y Han Yu. "Vertical Federated Learning". En Federated Learning, 69–81. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-031-01585-4_5.
Texto completoActas de conferencias sobre el tema "Federate learning"
Seo, Seonguk, Jinkyu Kim, Geeho Kim y Bohyung Han. "Relaxed Contrastive Learning for Federated Learning". En 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 12279–88. IEEE, 2024. http://dx.doi.org/10.1109/cvpr52733.2024.01167.
Texto completoAlbuquerque, R. A., L. P. Dias, Momo Ziazet, K. Vandikas, S. Ickin, B. Jaumard, C. Natalino, L. Wosinska, P. Monti y E. Wong. "Asynchronous Federated Split Learning". En 2024 IEEE 8th International Conference on Fog and Edge Computing (ICFEC), 11–18. IEEE, 2024. http://dx.doi.org/10.1109/icfec61590.2024.00010.
Texto completoOh, Seungeun, Jihong Park, Praneeth Vepakomma, Sihun Baek, Ramesh Raskar, Mehdi Bennis y Seong-Lyun Kim. "LocFedMix-SL: Localize, Federate, and Mix for Improved Scalability, Convergence, and Latency in Split Learning". En WWW '22: The ACM Web Conference 2022. New York, NY, USA: ACM, 2022. http://dx.doi.org/10.1145/3485447.3512153.
Texto completoOh, Seungeun, Jihong Park, Praneeth Vepakomma, Sihun Baek, Ramesh Raskar, Mehdi Bennis y Seong-Lyun Kim. "LocFedMix-SL: Localize, Federate, and Mix for Improved Scalability, Convergence, and Latency in Split Learning". En WWW '22: The ACM Web Conference 2022. New York, NY, USA: ACM, 2022. http://dx.doi.org/10.1145/3485447.3512153.
Texto completoCosta, Arthur N. F. Martins da y Pedro Silva. "Computação, Saúde e Segurança: Explorando o Potencial da Aprendizagem Federada na Detecção de Arritmias Cardíacas". En Escola Regional de Computação Aplicada à Saúde. Sociedade Brasileira de Computação - SBC, 2024. http://dx.doi.org/10.5753/ercas.2024.238587.
Texto completoLiu, Gaoyang, Xiaoqiang Ma, Yang Yang, Chen Wang y Jiangchuan Liu. "FedEraser: Enabling Efficient Client-Level Data Removal from Federated Learning Models". En 2021 IEEE/ACM 29th International Symposium on Quality of Service (IWQOS). IEEE, 2021. http://dx.doi.org/10.1109/iwqos52092.2021.9521274.
Texto completoDupuy, Christophe, Tanya G. Roosta, Leo Long, Clement Chung, Rahul Gupta y Salman Avestimehr. "Learnings from Federated Learning in The Real World". En ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2022. http://dx.doi.org/10.1109/icassp43922.2022.9747113.
Texto completoda Silva, Vinicios B., Renan R. de Oliveira, Antonio Oliveira-Jr y Ronaldo M. da Costa. "Treinamento Federado Aplicado à Segmentação do Ventrículo Esquerdo". En Escola Regional de Informática de Goiás. Sociedade Brasileira de Computação, 2023. http://dx.doi.org/10.5753/erigo.2023.237317.
Texto completoChen, Zhikun, Daofeng Li, Ming Zhao, Sihai Zhang y Jinkang Zhu. "Semi-Federated Learning". En 2020 IEEE Wireless Communications and Networking Conference (WCNC). IEEE, 2020. http://dx.doi.org/10.1109/wcnc45663.2020.9120453.
Texto completoRizk, Elsa, Stefan Vlaski y Ali H. Sayed. "Dynamic Federated Learning". En 2020 IEEE 21st International Workshop on Signal Processing Advances in Wireless Communications (SPAWC). IEEE, 2020. http://dx.doi.org/10.1109/spawc48557.2020.9154327.
Texto completoInformes sobre el tema "Federate learning"
Shteyn, Anastasia, Konrad Kollnig y Calum Inverarity. Federated learning: an introduction [report]. Open Data Institute, enero de 2023. http://dx.doi.org/10.61557/vnfu8593.
Texto completoWang, Yixuan. Federated Learning User Friendly Web App. Ames (Iowa): Iowa State University, agosto de 2023. http://dx.doi.org/10.31274/cc-20240624-720.
Texto completoSokolovsky, Dmitry, Sergey Sokolov y Alexey Rezaykin. e-learning course "Informatics". SIB-Expertise, enero de 2024. http://dx.doi.org/10.12731/er0785.29012024.
Texto completoFerraz, Claudio, Frederico Finan y Diana Moreira. Corrupting Learning: Evidence from Missing Federal Education Funds in Brazil. Cambridge, MA: National Bureau of Economic Research, junio de 2012. http://dx.doi.org/10.3386/w18150.
Texto completoInman, Robert y Daniel Rubinfeld. Federal Institutions and the Democratic Transition: Learning from South Africa. Cambridge, MA: National Bureau of Economic Research, enero de 2008. http://dx.doi.org/10.3386/w13733.
Texto completoEugenio, Evercita. Federated Learning and Differential Privacy: What might AI-Enhanced co-design of microelectronics learn?. Office of Scientific and Technical Information (OSTI), mayo de 2022. http://dx.doi.org/10.2172/1868417.
Texto completoWorley, Sean, Scott Palmer y Nathan Woods. Building, Sustaining and Improving: Using Federal Funds for Summer Learning and Afterschool. Education Counsel, julio de 2022. http://dx.doi.org/10.59656/yd-os9931.001.
Texto completoDavis, Allison Crean, John Hitchcock, Beth-Ann Tek, Holly Bozeman, Kristen Pugh, Clarissa McKithen y Molly Hershey-Arista. A National Call to Action for Summer Learning: How Did States Respond? Westat, julio de 2023. http://dx.doi.org/10.59656/yd-os6574.001.
Texto completoBadrinarayan, Aneesha y Linda Darling-Hammond. Developing State Assessment Systems That Support Teaching and Learning: What Can the Federal Government Do? Learning Policy Institute, abril de 2023. http://dx.doi.org/10.54300/885.821.
Texto completoHart, Nick Hart, Sara Stefanik Stefanik, Christopher Murell Murell y Karol Olejniczak Olejniczak. Blueprints for Learning: A Synthesis of Federal Evidence-Building Plans Under the Evidence Act. Data Foundation, junio de 2024. http://dx.doi.org/10.15868/socialsector.43901.
Texto completo