Literatura académica sobre el tema "Faulty variable isolation"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Faulty variable isolation".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Faulty variable isolation"
Asokan, A. y D. Sivakumar. "Model based fault detection and diagnosis using structured residual approach in a multi-input multi-output system". Serbian Journal of Electrical Engineering 4, n.º 2 (2007): 133–45. http://dx.doi.org/10.2298/sjee0702133a.
Texto completoSellami, T., H. Berriri, S. Jelassi, A. M. Darcherif y M. F. Mimouni. "Sliding Mode Observers-based Fault Detection and Isolation for Wind Turbine-driven Induction Generator". International Journal of Power Electronics and Drive Systems (IJPEDS) 8, n.º 3 (1 de septiembre de 2017): 1345. http://dx.doi.org/10.11591/ijpeds.v8.i3.pp1345-1358.
Texto completoZhao, Chunhui y Wei Wang. "Efficient faulty variable selection and parsimonious reconstruction modelling for fault isolation". Journal of Process Control 38 (febrero de 2016): 31–41. http://dx.doi.org/10.1016/j.jprocont.2015.12.002.
Texto completoAntory, D., U. Kruger, G. Irwin y G. McCullough. "Fault diagnosis in internal combustion engines using non-linear multivariate statistics". Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering 219, n.º 4 (1 de junio de 2005): 243–58. http://dx.doi.org/10.1243/095965105x9614.
Texto completoKariwala, Vinay, Pabara-Ebiere Odiowei, Yi Cao y Tao Chen. "A branch and bound method for isolation of faulty variables through missing variable analysis". Journal of Process Control 20, n.º 10 (diciembre de 2010): 1198–206. http://dx.doi.org/10.1016/j.jprocont.2010.07.007.
Texto completoNie, Lei, Yizhu Ren, Rouhui Wu y Mengying Tan. "Sensor Fault Diagnosis, Isolation, and Accommodation for Heating, Ventilating, and Air Conditioning Systems Based on Soft Sensor". Actuators 12, n.º 10 (17 de octubre de 2023): 389. http://dx.doi.org/10.3390/act12100389.
Texto completoHu, Yunyun, Yue Wang y Chunhui Zhao. "A sparse fault degradation oriented fisher discriminant analysis (FDFDA) algorithm for faulty variable isolation and its industrial application". Control Engineering Practice 90 (septiembre de 2019): 311–20. http://dx.doi.org/10.1016/j.conengprac.2019.07.007.
Texto completoSorribes Pamer, Felix, Bernd Luber, Josef Fuchs, Thomas Kern y Martin Rosenberger. "Data-driven fault diagnosis of bogie suspension components with on- board acoustic sensors". PHM Society European Conference 5, n.º 1 (22 de julio de 2020): 13. http://dx.doi.org/10.36001/phme.2020.v5i1.1211.
Texto completoAbbas, Mohammed, Houcine Chafouk y Sid Ahmed El Mehdi Ardjoun. "Fault Diagnosis in Wind Turbine Current Sensors: Detecting Single and Multiple Faults with the Extended Kalman Filter Bank Approach". Sensors 24, n.º 3 (23 de enero de 2024): 728. http://dx.doi.org/10.3390/s24030728.
Texto completoUddin, Md Aftab, Mst Aysha Siddiqua y Mst Sadia Ahmed. "Isolation and quantification of indicator and pathogenic microorganisms along with their drug resistance traits from bottled and jar water samples within Dhaka city, Bangladesh". Stamford Journal of Microbiology 9, n.º 1 (27 de febrero de 2020): 12–14. http://dx.doi.org/10.3329/sjm.v9i1.45651.
Texto completoTesis sobre el tema "Faulty variable isolation"
Yang, Junjie. "Fault Diagnosis and Prognosis in multivariate complex systems". Electronic Thesis or Diss., université Paris-Saclay, 2023. http://www.theses.fr/2023UPAST001.
Texto completoFault diagnosis and prognosis have attracted huge attention in industry and academia for the increasing requirements on reliability, availability, maintainability, and safety.Despite the significant progress, the existing fault diagnosis methodologies still suffer from challenges, such as the lack of sufficient faulty data for training, ineffectiveness to complex distributed data, low sensitivity to incipient faults, and the interference of noise and outliers.Therefore, this work proposes a new one-class classification method implemented by generating anchors and selecting the region margin to determine a healthy region as a decision area.Then a particular distance measurement called local Mahalanobis distance is then defined to indicate the distance between a sample and the healthy region.Based on the proposed one-class classification method and the LMD index, this work first develops an incipient fault detection approach by combining the LMD index and the empirical probability density cumulative sum technique.This work also discusses the efficiency of LMD as a representative feature for fault detection.Secondly, this work proposes the faulty variable isolation method for single fault cases by combining the LMD technique with the contribution plot idea.Thirdly, an analytical expression of fault increasing rate is derived from the LMD index for the fault severity estimation task.Finally, we further develop a new reconstruction-based approach using the local Mahalanobis distance as a detection index to improve the isolation and estimation performance.The improved method can accurately isolate multiple faulty variables and estimate their fault amplitudes simultaneously.The case study based on the Continuous-flow Stirred Tank Reactor process data shows that the LMD technique has significant benefits for the fault diagnosis problem, such as high sensitivity to incipient faults, robustness to noise and outliers, and no distribution assumption.The fault diagnosis methods developed on LMD significantly outperform state-of-the-art solutions.The comparative study on the Case Western Reserve University bearing data indicates that the LMD technique can be used as a feature extraction approach and is more effective and robust than the other statistical techniques
Mnassri, Baligh. "Analyse de données multivariées et surveillance des processus industriels par analyse en composantes principales". Phd thesis, Aix-Marseille Université, 2012. http://tel.archives-ouvertes.fr/tel-00749282.
Texto completoDans l'objectif d'un choix optimal du modèle ACP, une étude comparative de quelques critères connus dans la littérature nous a permis de conclure que le problème rencontré est souvent lié à une ignorance des variables indépendantes et quasi-indépendantes. Dans ce cadre, nous avons réalisé deux démonstrations mettant en évidence les limitations de deux critères en particulier la variance non reconstruite (VNR). En s'appuyant sur le principe d'une telle variance, nous avons proposé trois nouveaux critères. Parmi eux, deux ont été considérés comme étant empiriques car seule l'expérience permettra de prouver leur efficacité. Le troisième critère noté VNRVI représente un remède à la limitation du critère VNR. Une étude de sa consistance théorique a permis d'établir les conditions garantissant l'optimalité de son choix. Les résultats de simulation ont validé une telle théorie en prouvant ainsi que le critère VNRVI étant plus efficace que ceux étudiés dans cette thèse.
Dans le cadre d'un diagnostic de défauts par ACP, l'approche de reconstruction des indices de détection ainsi que celle des contributions ont été utilisées. A travers une étude de généralisation, nous avons étendu le concept d'isolabilité de défauts par reconstruction à tout indice quadratique. Une telle généralisation nous a permis d'élaborer une analyse théorique d'isolabilité de défauts par reconstruction de la distance combinée versus celles des indices SPE et T2 de Hotelling en mettant en avant l'avantage de l'utilisation d'une telle distance. D'autre part, nous avons proposé une nouvelle méthode de contribution par décomposition partielle de l'indice SPE. Cette approche garantit un diagnostic correct de défauts simples ayant de grandes amplitudes. Nous avons également étendu une méthode de contribution classiquement connue par la RBC au cas multidimensionnel. Ainsi, la nouvelle forme garantit un diagnostic correct de défauts multiples de grandes amplitudes. En considérant la complexité de défauts, nous avons exploité la nouvelle approche de contribution RBC afin de proposer une nouvelle qui s'appelle RBCr. Cette dernière s'appuie sur un seuil de tolérance pour l'isolation de défauts. Une analyse de diagnosticabilité basée sur la RBCr montre que celle-ci garantit l'identification des défauts détectables. Ces derniers sont garantis isolables si leurs amplitudes satisfont les mêmes conditions d'isolabilité établies pour l'approche de reconstruction des indices.
Wang, Jian y 王健. "Experiment and Analysis of Near-Fault Seismic Isolation Using Sliding Bearings with Variable Curvatures". Thesis, 2006. http://ndltd.ncl.edu.tw/handle/79018104044579564168.
Texto completo國立高雄第一科技大學
營建工程所
94
ABSTRACT Conventional sliding isolation systems (e.g. Friction Pendulum System, FPS)may not be effective when the isolated structures are subjected to near-fault ground motions. The reason is that the isolation periods commonly adopted in conventional sliding isolators are usually in the range of the pulse periods of near-fault earthquakes. As a result, it may lead to a resonant motion that can reduce the effectiveness and safty of isolation. In order to improve the performance of near-fault isolation, an innovative isolator names “Polynomial Friction Pendulum Isolator” (PFPI) is proposed in this study. The restoring stiffness of this new type of isolators possesses a softening and a hardening section. By reducing the restoring stiffness in the softening section the structural acceleration can be reduced. On the other hand, by increasing the restoring stiffness in the hardening section, the large isolator drift induced by near-fault ground motion can be suppressed. Both theoretical and experimental studies were carried out in this work. The theoretical study includes:(1) Derivation of a formula that describes the hysteretic behavior of PFPI. (2) Parametric study on the optimal design III parameters of PFPI for engineering application. (3) Comparison of isolation performance of PFPI with those of other sliding isolators. In the experiment study, two tasks have been accomplished: (1) PFPI isolators were fabricated and a cyclic element test was conducted. (2) A shaking table test for a structure with PFPI was also conducted. Both test result were verified by the theoretical data. The result of theoretical study has shown that when subjected to a long-period pulse-like ground motion, the proposed isolator effectively suppresses the isolator drift without increasing the structural acceleration. The experimental data verified the feasibility of isolation technology using PFPI isolators, and have also verified that the dynamic behavior of the isolators is predictable by the theoretical formula.
Capítulos de libros sobre el tema "Faulty variable isolation"
Fezai, Radhia, Okba Taouali, Majdi Mansouri, Mohamed Faouzi Harkat y Nasreddine Bouguila. "Sensor Fault Detection and Isolation Based on Variable Moving Window KPCA". En Studies in Systems, Decision and Control, 31–54. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-1746-4_2.
Texto completoTian, Huifeng y Li Jia. "Dynamic Process Fault Isolation and Diagnosis Using Improved Fisher Discriminant Analysis and Relative Error of Variance". En Communications in Computer and Information Science, 201–11. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-6373-2_21.
Texto completoLiu, Jialin y Ding-Sou Chen. "Multiple Sensor Fault Isolation Using Contribution Plots without Smearing Effect to Non-Faulty Variables". En Computer Aided Chemical Engineering, 1517–21. Elsevier, 2012. http://dx.doi.org/10.1016/b978-0-444-59506-5.50134-6.
Texto completoActas de conferencias sobre el tema "Faulty variable isolation"
Yu, Jungwon, Jonggeun Kim, Hansoo Lee, Seunghwan Jung, June Ho Park y Sungshin Kim. "Application of CART-Based Variable Ranking for Faulty Variable Isolation in Tennessee Eastman Benchmark Process". En 2019 IEEE International Conference on Industrial Technology (ICIT). IEEE, 2019. http://dx.doi.org/10.1109/icit.2019.8755167.
Texto completoTang, Liang, Allan J. Volponi y Ethan Prihar. "Extending Engine Gas Path Analysis Using Full Flight Data". En ASME Turbo Expo 2019: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/gt2019-90161.
Texto completoKoh, Christopher K. H., Jianjun Shi, William J. Williams y Jun Ni. "Detection and Isolation of Faults in the Stamping Process". En ASME 1996 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 1996. http://dx.doi.org/10.1115/imece1996-0833.
Texto completoDePold, Hans R., Ravi Rajamani, William H. Morrison y Krishna R. Pattipati. "A Unified Metric for Fault Detection and Isolation in Engines". En ASME Turbo Expo 2006: Power for Land, Sea, and Air. ASMEDC, 2006. http://dx.doi.org/10.1115/gt2006-91095.
Texto completoTsai, C. S., Tsu-Cheng Chiang y Bo-Jen Chen. "Finite Element Formulations and Theoretical Study for VCFPS". En ASME 2003 Pressure Vessels and Piping Conference. ASMEDC, 2003. http://dx.doi.org/10.1115/pvp2003-2117.
Texto completoGanguli, Ranjan, Rajeev Verma y Niranjan Roy. "Soft Computing Application for Gas Path Fault Isolation". En ASME Turbo Expo 2004: Power for Land, Sea, and Air. ASMEDC, 2004. http://dx.doi.org/10.1115/gt2004-53209.
Texto completoBorguet, S. y O. Le´onard. "Constrained Sparse Estimation for Improved Fault Isolation". En ASME 2011 Turbo Expo: Turbine Technical Conference and Exposition. ASMEDC, 2011. http://dx.doi.org/10.1115/gt2011-45711.
Texto completoLiu, Jialin, David Shan Hill Wong y Ding-Sou Chen. "Isolating faulty variables for fault propagation using Bayesian decision theory". En 2013 European Control Conference (ECC). IEEE, 2013. http://dx.doi.org/10.23919/ecc.2013.6669296.
Texto completoLoboda, Igor, Juan Luis Pérez-Ruiz, Sergiy Yepifanov y Roman Zelenskyi. "Comparative Analysis of Two Gas Turbine Diagnosis Approaches". En ASME Turbo Expo 2019: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/gt2019-91644.
Texto completoScacchioli, Annalisa, Giorgio Rizzoni y Pierluigi Pisu. "Model-Based Fault Detection and Isolation in Automotive Electrical Systems". En ASME 2006 International Mechanical Engineering Congress and Exposition. ASMEDC, 2006. http://dx.doi.org/10.1115/imece2006-14504.
Texto completo