Artículos de revistas sobre el tema "Fair Machine Learning"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "Fair Machine Learning".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.
Basu Roy Chowdhury, Somnath y Snigdha Chaturvedi. "Sustaining Fairness via Incremental Learning". Proceedings of the AAAI Conference on Artificial Intelligence 37, n.º 6 (26 de junio de 2023): 6797–805. http://dx.doi.org/10.1609/aaai.v37i6.25833.
Texto completoPerello, Nick y Przemyslaw Grabowicz. "Fair Machine Learning Post Affirmative Action". ACM SIGCAS Computers and Society 52, n.º 2 (septiembre de 2023): 22. http://dx.doi.org/10.1145/3656021.3656029.
Texto completoOneto, Luca. "Learning fair models and representations". Intelligenza Artificiale 14, n.º 1 (17 de septiembre de 2020): 151–78. http://dx.doi.org/10.3233/ia-190034.
Texto completoKim, Yun-Myung. "Data and Fair use". Korea Copyright Commission 141 (30 de marzo de 2023): 5–53. http://dx.doi.org/10.30582/kdps.2023.36.1.5.
Texto completoKim, Yun-Myung. "Data and Fair use". Korea Copyright Commission 141 (30 de marzo de 2023): 5–53. http://dx.doi.org/10.30582/kdps.2023.36.1.5.
Texto completoZhang, Xueru, Mohammad Mahdi Khalili y Mingyan Liu. "Long-Term Impacts of Fair Machine Learning". Ergonomics in Design: The Quarterly of Human Factors Applications 28, n.º 3 (25 de octubre de 2019): 7–11. http://dx.doi.org/10.1177/1064804619884160.
Texto completoZhu, Yunlan. "The Comparative Analysis of Fair Use of Works in Machine Learning". SHS Web of Conferences 178 (2023): 01015. http://dx.doi.org/10.1051/shsconf/202317801015.
Texto completoRedko, Ievgen y Charlotte Laclau. "On Fair Cost Sharing Games in Machine Learning". Proceedings of the AAAI Conference on Artificial Intelligence 33 (17 de julio de 2019): 4790–97. http://dx.doi.org/10.1609/aaai.v33i01.33014790.
Texto completoLee, Joshua, Yuheng Bu, Prasanna Sattigeri, Rameswar Panda, Gregory W. Wornell, Leonid Karlinsky y Rogerio Schmidt Feris. "A Maximal Correlation Framework for Fair Machine Learning". Entropy 24, n.º 4 (26 de marzo de 2022): 461. http://dx.doi.org/10.3390/e24040461.
Texto completovan Berkel, Niels, Jorge Goncalves, Danula Hettiachchi, Senuri Wijenayake, Ryan M. Kelly y Vassilis Kostakos. "Crowdsourcing Perceptions of Fair Predictors for Machine Learning". Proceedings of the ACM on Human-Computer Interaction 3, CSCW (7 de noviembre de 2019): 1–21. http://dx.doi.org/10.1145/3359130.
Texto completoJEONG, JIN KEUN. "Will the U.S. Court Judge TDM for Artificial Intelligence Machine Learning as Fair Use?" Korea Copyright Commission 144 (31 de diciembre de 2023): 215–50. http://dx.doi.org/10.30582/kdps.2023.36.4.215.
Texto completoEdwards, Chris. "AI Struggles with Fair Use". New Electronics 56, n.º 9 (septiembre de 2023): 40–41. http://dx.doi.org/10.12968/s0047-9624(24)60063-5.
Texto completoJang, Taeuk, Feng Zheng y Xiaoqian Wang. "Constructing a Fair Classifier with Generated Fair Data". Proceedings of the AAAI Conference on Artificial Intelligence 35, n.º 9 (18 de mayo de 2021): 7908–16. http://dx.doi.org/10.1609/aaai.v35i9.16965.
Texto completoChandra, Rushil, Karun Sanjaya, AR Aravind, Ahmed Radie Abbas, Ruzieva Gulrukh y T. S. Senthil kumar. "Algorithmic Fairness and Bias in Machine Learning Systems". E3S Web of Conferences 399 (2023): 04036. http://dx.doi.org/10.1051/e3sconf/202339904036.
Texto completoBrotcke, Liming. "Time to Assess Bias in Machine Learning Models for Credit Decisions". Journal of Risk and Financial Management 15, n.º 4 (5 de abril de 2022): 165. http://dx.doi.org/10.3390/jrfm15040165.
Texto completoTian, Xiao, Rachael Hwee Ling Sim, Jue Fan y Bryan Kian Hsiang Low. "DeRDaVa: Deletion-Robust Data Valuation for Machine Learning". Proceedings of the AAAI Conference on Artificial Intelligence 38, n.º 14 (24 de marzo de 2024): 15373–81. http://dx.doi.org/10.1609/aaai.v38i14.29462.
Texto completoPlečko, Drago y Elias Bareinboim. "Causal Fairness Analysis: A Causal Toolkit for Fair Machine Learning". Foundations and Trends® in Machine Learning 17, n.º 3 (2024): 304–589. http://dx.doi.org/10.1561/2200000106.
Texto completoSun, Shao Chao y Dao Huang. "A Novel Robust Smooth Support Vector Machine". Applied Mechanics and Materials 148-149 (diciembre de 2011): 1438–41. http://dx.doi.org/10.4028/www.scientific.net/amm.148-149.1438.
Texto completoFirestone, Chaz. "Performance vs. competence in human–machine comparisons". Proceedings of the National Academy of Sciences 117, n.º 43 (13 de octubre de 2020): 26562–71. http://dx.doi.org/10.1073/pnas.1905334117.
Texto completoLangenberg, Anna, Shih-Chi Ma, Tatiana Ermakova y Benjamin Fabian. "Formal Group Fairness and Accuracy in Automated Decision Making". Mathematics 11, n.º 8 (7 de abril de 2023): 1771. http://dx.doi.org/10.3390/math11081771.
Texto completoTaylor, Greg. "Risks Special Issue on “Granular Models and Machine Learning Models”". Risks 8, n.º 1 (30 de diciembre de 2019): 1. http://dx.doi.org/10.3390/risks8010001.
Texto completoDavis, Jenny L., Apryl Williams y Michael W. Yang. "Algorithmic reparation". Big Data & Society 8, n.º 2 (julio de 2021): 205395172110448. http://dx.doi.org/10.1177/20539517211044808.
Texto completoDavis, Jenny L., Apryl Williams y Michael W. Yang. "Algorithmic reparation". Big Data & Society 8, n.º 2 (julio de 2021): 205395172110448. http://dx.doi.org/10.1177/20539517211044808.
Texto completoDhabliya, Dharmesh, Sukhvinder Singh Dari, Anishkumar Dhablia, N. Akhila, Renu Kachhoria y Vinit Khetani. "Addressing Bias in Machine Learning Algorithms: Promoting Fairness and Ethical Design". E3S Web of Conferences 491 (2024): 02040. http://dx.doi.org/10.1051/e3sconf/202449102040.
Texto completoChowdhury, Somnath Basu Roy y Snigdha Chaturvedi. "Learning Fair Representations via Rate-Distortion Maximization". Transactions of the Association for Computational Linguistics 10 (2022): 1159–74. http://dx.doi.org/10.1162/tacl_a_00512.
Texto completoAhire, Pritam, Atish Agale y Mayur Augad. "Machine Learning for Forecasting Promotions". International Journal of Science and Healthcare Research 8, n.º 2 (25 de mayo de 2023): 329–33. http://dx.doi.org/10.52403/ijshr.20230242.
Texto completoHeidrich, Louisa, Emanuel Slany, Stephan Scheele y Ute Schmid. "FairCaipi: A Combination of Explanatory Interactive and Fair Machine Learning for Human and Machine Bias Reduction". Machine Learning and Knowledge Extraction 5, n.º 4 (18 de octubre de 2023): 1519–38. http://dx.doi.org/10.3390/make5040076.
Texto completoTae, Ki Hyun, Hantian Zhang, Jaeyoung Park, Kexin Rong y Steven Euijong Whang. "Falcon: Fair Active Learning Using Multi-Armed Bandits". Proceedings of the VLDB Endowment 17, n.º 5 (enero de 2024): 952–65. http://dx.doi.org/10.14778/3641204.3641207.
Texto completoFitzsimons, Jack, AbdulRahman Al Ali, Michael Osborne y Stephen Roberts. "A General Framework for Fair Regression". Entropy 21, n.º 8 (29 de julio de 2019): 741. http://dx.doi.org/10.3390/e21080741.
Texto completoKhan, Shahid, Viktor Klochkov, Olha Lavoryk, Oleksii Lubynets, Ali Imdad Khan, Andrea Dubla y Ilya Selyuzhenkov. "Machine Learning Application for Λ Hyperon Reconstruction in CBM at FAIR". EPJ Web of Conferences 259 (2022): 13008. http://dx.doi.org/10.1051/epjconf/202225913008.
Texto completoSingh, Vivek K. y Kailash Joshi. "Integrating Fairness in Machine Learning Development Life Cycle: Fair CRISP-DM". e-Service Journal 14, n.º 2 (diciembre de 2022): 1–24. http://dx.doi.org/10.2979/esj.2022.a886946.
Texto completoWei, Jingrui y Paul M. Voyles. "Foundry-ML: a Platform for FAIR Machine Learning in Materials Science". Microscopy and Microanalysis 29, Supplement_1 (22 de julio de 2023): 720. http://dx.doi.org/10.1093/micmic/ozad067.355.
Texto completoGaikar, Asha, Dr Uttara Gogate y Amar Panchal. "Review on Evaluation of Stroke Prediction Using Machine Learning Methods". International Journal for Research in Applied Science and Engineering Technology 11, n.º 4 (30 de abril de 2023): 1011–17. http://dx.doi.org/10.22214/ijraset.2023.50262.
Texto completoGuo, Zhihao, Shengyuan Chen, Xiao Huang, Zhiqiang Qian, Chunsing Yu, Yan Xu y Fang Ding. "Fair Benchmark for Unsupervised Node Representation Learning". Algorithms 15, n.º 10 (17 de octubre de 2022): 379. http://dx.doi.org/10.3390/a15100379.
Texto completoAmpountolas, Apostolos, Titus Nyarko Nde, Paresh Date y Corina Constantinescu. "A Machine Learning Approach for Micro-Credit Scoring". Risks 9, n.º 3 (9 de marzo de 2021): 50. http://dx.doi.org/10.3390/risks9030050.
Texto completoZhang, Yixuan, Boyu Li, Zenan Ling y Feng Zhou. "Mitigating Label Bias in Machine Learning: Fairness through Confident Learning". Proceedings of the AAAI Conference on Artificial Intelligence 38, n.º 15 (24 de marzo de 2024): 16917–25. http://dx.doi.org/10.1609/aaai.v38i15.29634.
Texto completoMenezes, Andreia Duarte, Edilberto Pereira Teixeira, Jose Roberto Delalibera Finzer y Rafael Bonacin de Oliveira. "Machine learning-driven development of niobium-containing optical glasses". Research, Society and Development 11, n.º 9 (5 de julio de 2022): e13811931290. http://dx.doi.org/10.33448/rsd-v11i9.31290.
Texto completoAsher, Nicholas, Lucas De Lara, Soumya Paul y Chris Russell. "Counterfactual Models for Fair and Adequate Explanations". Machine Learning and Knowledge Extraction 4, n.º 2 (31 de marzo de 2022): 316–49. http://dx.doi.org/10.3390/make4020014.
Texto completoMohsin, Farhad, Ao Liu, Pin-Yu Chen, Francesca Rossi y Lirong Xia. "Learning to Design Fair and Private Voting Rules". Journal of Artificial Intelligence Research 75 (30 de noviembre de 2022): 1139–76. http://dx.doi.org/10.1613/jair.1.13734.
Texto completoGoretzko, David y Laura Sophia Finja Israel. "Pitfalls of Machine Learning-Based Personnel Selection". Journal of Personnel Psychology 21, n.º 1 (enero de 2022): 37–47. http://dx.doi.org/10.1027/1866-5888/a000287.
Texto completoYugam Bajaj and Shallu Bashambu. "Traffic Signs Detection Using Machine Learning Algorithms". November 2020 6, n.º 11 (23 de noviembre de 2020): 109–12. http://dx.doi.org/10.46501/ijmtst061119.
Texto completoZhao, Yanqi, Yong Yu, Yannan Li, Gang Han y Xiaojiang Du. "Machine learning based privacy-preserving fair data trading in big data market". Information Sciences 478 (abril de 2019): 449–60. http://dx.doi.org/10.1016/j.ins.2018.11.028.
Texto completoLuo, Xi, Ran Yan, Shuaian Wang y Lu Zhen. "A fair evaluation of the potential of machine learning in maritime transportation". Electronic Research Archive 31, n.º 8 (2023): 4753–72. http://dx.doi.org/10.3934/era.2023243.
Texto completoMudarakola, Lakshmi Prasad, D. Shabda Prakash, K. L. N. Shashidhar y D. Yaswanth. "Car Price Prediction Using Machine Learning". International Journal for Research in Applied Science and Engineering Technology 12, n.º 5 (31 de mayo de 2024): 81–87. http://dx.doi.org/10.22214/ijraset.2024.61441.
Texto completoBuijs, Maria Magdalena, Mohammed Hossain Ramezani, Jürgen Herp, Rasmus Kroijer, Morten Kobaek-Larsen, Gunnar Baatrup y Esmaeil S. Nadimi. "Assessment of bowel cleansing quality in colon capsule endoscopy using machine learning: a pilot study". Endoscopy International Open 06, n.º 08 (agosto de 2018): E1044—E1050. http://dx.doi.org/10.1055/a-0627-7136.
Texto completoCovaci, Florina. "Machine Learning Empowered Insights into Rental Market Behavior". Journal of Economics, Finance and Accounting Studies 6, n.º 2 (23 de abril de 2024): 143–55. http://dx.doi.org/10.32996/jefas.2024.6.2.11.
Texto completoPemmaraju Satya Prem. "Machine learning in employee performance evaluation: A HRM perspective". International Journal of Science and Research Archive 11, n.º 1 (28 de febrero de 2024): 1573–85. http://dx.doi.org/10.30574/ijsra.2024.11.1.0193.
Texto completoLakshmi, Metta Dhana, Jani Revathi, Chichula Sravani, Maddila Adarsa Suhas y Balagam Umesh. "Comparative Analysis of Ride-On-Demand Services for Fair Price Detection Using Machine Learning". International Journal for Research in Applied Science and Engineering Technology 12, n.º 4 (30 de abril de 2024): 2557–66. http://dx.doi.org/10.22214/ijraset.2024.60337.
Texto completoChakraborty, Pratic. "Embedded Machine Learning and Embedded Systems in the Industry." International Journal for Research in Applied Science and Engineering Technology 9, n.º 11 (30 de noviembre de 2021): 1872–75. http://dx.doi.org/10.22214/ijraset.2021.39067.
Texto completoFazelpour, Sina y Maria De-Arteaga. "Diversity in sociotechnical machine learning systems". Big Data & Society 9, n.º 1 (enero de 2022): 205395172210820. http://dx.doi.org/10.1177/20539517221082027.
Texto completo