Artículos de revistas sobre el tema "Fair Machine Learning"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "Fair Machine Learning".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.
Basu Roy Chowdhury, Somnath, and Snigdha Chaturvedi. "Sustaining Fairness via Incremental Learning." Proceedings of the AAAI Conference on Artificial Intelligence 37, no. 6 (2023): 6797–805. http://dx.doi.org/10.1609/aaai.v37i6.25833.
Texto completoPerello, Nick, and Przemyslaw Grabowicz. "Fair Machine Learning Post Affirmative Action." ACM SIGCAS Computers and Society 52, no. 2 (2023): 22. http://dx.doi.org/10.1145/3656021.3656029.
Texto completoRance, Joseph, and Filip Svoboda. "Can Private Machine Learning Be Fair?" Proceedings of the AAAI Conference on Artificial Intelligence 39, no. 19 (2025): 20121–29. https://doi.org/10.1609/aaai.v39i19.34216.
Texto completoOneto, Luca. "Learning fair models and representations." Intelligenza Artificiale 14, no. 1 (2020): 151–78. http://dx.doi.org/10.3233/ia-190034.
Texto completoKim, Yun-Myung. "Data and Fair use." Korea Copyright Commission 141 (March 30, 2023): 5–53. http://dx.doi.org/10.30582/kdps.2023.36.1.5.
Texto completoKim, Yun-Myung. "Data and Fair use." Korea Copyright Commission 141 (March 30, 2023): 5–53. http://dx.doi.org/10.30582/kdps.2023.36.1.5.
Texto completoZhang, Xueru, Mohammad Mahdi Khalili, and Mingyan Liu. "Long-Term Impacts of Fair Machine Learning." Ergonomics in Design: The Quarterly of Human Factors Applications 28, no. 3 (2019): 7–11. http://dx.doi.org/10.1177/1064804619884160.
Texto completoZhu, Yunlan. "The Comparative Analysis of Fair Use of Works in Machine Learning." SHS Web of Conferences 178 (2023): 01015. http://dx.doi.org/10.1051/shsconf/202317801015.
Texto completoJEONG, JIN KEUN. "Will the U.S. Court Judge TDM for Artificial Intelligence Machine Learning as Fair Use?" Korea Copyright Commission 144 (December 31, 2023): 215–50. http://dx.doi.org/10.30582/kdps.2023.36.4.215.
Texto completoRedko, Ievgen, and Charlotte Laclau. "On Fair Cost Sharing Games in Machine Learning." Proceedings of the AAAI Conference on Artificial Intelligence 33 (July 17, 2019): 4790–97. http://dx.doi.org/10.1609/aaai.v33i01.33014790.
Texto completoLee, Joshua, Yuheng Bu, Prasanna Sattigeri, et al. "A Maximal Correlation Framework for Fair Machine Learning." Entropy 24, no. 4 (2022): 461. http://dx.doi.org/10.3390/e24040461.
Texto completovan Berkel, Niels, Jorge Goncalves, Danula Hettiachchi, Senuri Wijenayake, Ryan M. Kelly, and Vassilis Kostakos. "Crowdsourcing Perceptions of Fair Predictors for Machine Learning." Proceedings of the ACM on Human-Computer Interaction 3, CSCW (2019): 1–21. http://dx.doi.org/10.1145/3359130.
Texto completoFahimi, Miriam, Mayra Russo, Kristen M. Scott, Maria-Esther Vidal, Bettina Berendt, and Katharina Kinder-Kurlanda. "Articulation Work and Tinkering for Fairness in Machine Learning." Proceedings of the ACM on Human-Computer Interaction 8, CSCW2 (2024): 1–23. http://dx.doi.org/10.1145/3686973.
Texto completoZhao, Han. "Fair and optimal prediction via post‐processing." AI Magazine 45, no. 3 (2024): 411–18. http://dx.doi.org/10.1002/aaai.12191.
Texto completoEdwards, Chris. "AI Struggles with Fair Use." New Electronics 56, no. 9 (2023): 40–41. http://dx.doi.org/10.12968/s0047-9624(24)60063-5.
Texto completoJang, Taeuk, Feng Zheng, and Xiaoqian Wang. "Constructing a Fair Classifier with Generated Fair Data." Proceedings of the AAAI Conference on Artificial Intelligence 35, no. 9 (2021): 7908–16. http://dx.doi.org/10.1609/aaai.v35i9.16965.
Texto completoEponeshnikov, Alexander, Natalia Bakhtadze, Gulnara Smirnova, Rustem Sabitov, and Shamil Sabitov. "Differentially Private and Fair Machine Learning: A Benchmark Study." IFAC-PapersOnLine 58, no. 19 (2024): 277–82. http://dx.doi.org/10.1016/j.ifacol.2024.09.192.
Texto completoBlumenröhr, Nicolas, Thomas Jejkal, Andreas Pfeil, and Rainer Stotzka. "FAIR Digital Object Application Case for Composing Machine Learning Training Data." Research Ideas and Outcomes 8 (October 12, 2022): e94113. https://doi.org/10.3897/rio.8.e94113.
Texto completoChandra, Rushil, Karun Sanjaya, AR Aravind, Ahmed Radie Abbas, Ruzieva Gulrukh, and T. S. Senthil kumar. "Algorithmic Fairness and Bias in Machine Learning Systems." E3S Web of Conferences 399 (2023): 04036. http://dx.doi.org/10.1051/e3sconf/202339904036.
Texto completoBrotcke, Liming. "Time to Assess Bias in Machine Learning Models for Credit Decisions." Journal of Risk and Financial Management 15, no. 4 (2022): 165. http://dx.doi.org/10.3390/jrfm15040165.
Texto completoTarasiuk, Anton. "Legal basis for using copyright objects in machine learning." Theory and Practice of Intellectual Property, no. 2 (June 4, 2024): 73–83. https://doi.org/10.33731/22024.305506.
Texto completoBlumenröhr, Nicolas, and Rossella Aversa. "From implementation to application: FAIR digital objects for training data composition." Research Ideas and Outcomes 9 (August 22, 2023): e108706. https://doi.org/10.3897/rio.9.e108706.
Texto completoLangenberg, Anna, Shih-Chi Ma, Tatiana Ermakova, and Benjamin Fabian. "Formal Group Fairness and Accuracy in Automated Decision Making." Mathematics 11, no. 8 (2023): 1771. http://dx.doi.org/10.3390/math11081771.
Texto completoSun, Shao Chao, and Dao Huang. "A Novel Robust Smooth Support Vector Machine." Applied Mechanics and Materials 148-149 (December 2011): 1438–41. http://dx.doi.org/10.4028/www.scientific.net/amm.148-149.1438.
Texto completoTian, Xiao, Rachael Hwee Ling Sim, Jue Fan, and Bryan Kian Hsiang Low. "DeRDaVa: Deletion-Robust Data Valuation for Machine Learning." Proceedings of the AAAI Conference on Artificial Intelligence 38, no. 14 (2024): 15373–81. http://dx.doi.org/10.1609/aaai.v38i14.29462.
Texto completoDavis, Jenny L., Apryl Williams, and Michael W. Yang. "Algorithmic reparation." Big Data & Society 8, no. 2 (2021): 205395172110448. http://dx.doi.org/10.1177/20539517211044808.
Texto completoDavis, Jenny L., Apryl Williams, and Michael W. Yang. "Algorithmic reparation." Big Data & Society 8, no. 2 (2021): 205395172110448. http://dx.doi.org/10.1177/20539517211044808.
Texto completoDhabliya, Dharmesh, Sukhvinder Singh Dari, Anishkumar Dhablia, N. Akhila, Renu Kachhoria, and Vinit Khetani. "Addressing Bias in Machine Learning Algorithms: Promoting Fairness and Ethical Design." E3S Web of Conferences 491 (2024): 02040. http://dx.doi.org/10.1051/e3sconf/202449102040.
Texto completoIan, Hardy. "[Re] An Implementation of Fair Robust Learning." ReScience C 8, no. 2 (2022): #16. https://doi.org/10.5281/zenodo.6574657.
Texto completoFirestone, Chaz. "Performance vs. competence in human–machine comparisons." Proceedings of the National Academy of Sciences 117, no. 43 (2020): 26562–71. http://dx.doi.org/10.1073/pnas.1905334117.
Texto completoRaftopoulos, George, Gregory Davrazos, and Sotiris Kotsiantis. "Fair and Transparent Student Admission Prediction Using Machine Learning Models." Algorithms 17, no. 12 (2024): 572. https://doi.org/10.3390/a17120572.
Texto completoVinay Kumar, Kotte, Santosh N.C, and Narasimha reddy soor. "Data Analysis and Fair Price Prediction Using Machine Learning Algorithms." Journal of Computer Allied Intelligence 2, no. 1 (2024): 26–45. http://dx.doi.org/10.69996/jcai.2024004.
Texto completoPlečko, Drago, and Elias Bareinboim. "Causal Fairness Analysis: A Causal Toolkit for Fair Machine Learning." Foundations and Trends® in Machine Learning 17, no. 3 (2024): 304–589. http://dx.doi.org/10.1561/2200000106.
Texto completoHoche, Marine, Olga Mineeva, Gunnar Rätsch, Effy Vayena, and Alessandro Blasimme. "What makes clinical machine learning fair? A practical ethics framework." PLOS Digital Health 4, no. 3 (2025): e0000728. https://doi.org/10.1371/journal.pdig.0000728.
Texto completoDo, Hyungrok, Jesse Persily, Judy Zhong, Yassamin Neshatvar, Katie Murray, and Madhur Nayan. "MITIGATING DISPARITIES IN PROSTATE CANCER THROUGH FAIR MACHINE LEARNING MODELS." Urologic Oncology: Seminars and Original Investigations 43, no. 3 (2025): 80. https://doi.org/10.1016/j.urolonc.2024.12.201.
Texto completoTaylor, Greg. "Risks Special Issue on “Granular Models and Machine Learning Models”." Risks 8, no. 1 (2019): 1. http://dx.doi.org/10.3390/risks8010001.
Texto completoGuo, Peng, Yanqing Yang, Wei Guo, and Yanping Shen. "A Fair Contribution Measurement Method for Federated Learning." Sensors 24, no. 15 (2024): 4967. http://dx.doi.org/10.3390/s24154967.
Texto completoChowdhury, Somnath Basu Roy, and Snigdha Chaturvedi. "Learning Fair Representations via Rate-Distortion Maximization." Transactions of the Association for Computational Linguistics 10 (2022): 1159–74. http://dx.doi.org/10.1162/tacl_a_00512.
Texto completoPrimawati, Primawati, Fitrah Qalbina, Mulyanti Mulyanti, et al. "Predictive Maintenance of Old Grinding Machines Using Machine Learning Techniques." Journal of Applied Engineering and Technological Science (JAETS) 6, no. 2 (2025): 874–88. https://doi.org/10.37385/jaets.v6i2.6417.
Texto completoAhire, Pritam, Atish Agale, and Mayur Augad. "Machine Learning for Forecasting Promotions." International Journal of Science and Healthcare Research 8, no. 2 (2023): 329–33. http://dx.doi.org/10.52403/ijshr.20230242.
Texto completoHeidrich, Louisa, Emanuel Slany, Stephan Scheele, and Ute Schmid. "FairCaipi: A Combination of Explanatory Interactive and Fair Machine Learning for Human and Machine Bias Reduction." Machine Learning and Knowledge Extraction 5, no. 4 (2023): 1519–38. http://dx.doi.org/10.3390/make5040076.
Texto completoTae, Ki Hyun, Hantian Zhang, Jaeyoung Park, Kexin Rong, and Steven Euijong Whang. "Falcon: Fair Active Learning Using Multi-Armed Bandits." Proceedings of the VLDB Endowment 17, no. 5 (2024): 952–65. http://dx.doi.org/10.14778/3641204.3641207.
Texto completoPandey, Divya, Zohaib Hasan, Pradeep Soni, and Sujeet Padit. "Achieving Equity in Machine Learning: Technical Solutions and Societal Implications." International Journal of Innovative Research in Computer and Communication Engineering 10, no. 12 (2023): 8690–96. http://dx.doi.org/10.15680/ijircce.2022.1012034.
Texto completoFitzsimons, Jack, AbdulRahman Al Ali, Michael Osborne, and Stephen Roberts. "A General Framework for Fair Regression." Entropy 21, no. 8 (2019): 741. http://dx.doi.org/10.3390/e21080741.
Texto completoGaikar, Asha, Dr Uttara Gogate, and Amar Panchal. "Review on Evaluation of Stroke Prediction Using Machine Learning Methods." International Journal for Research in Applied Science and Engineering Technology 11, no. 4 (2023): 1011–17. http://dx.doi.org/10.22214/ijraset.2023.50262.
Texto completoFeder, Toni. "Research facilities strive for fair and efficient time allocation." Physics Today 77, no. 9 (2024): 20–22. http://dx.doi.org/10.1063/pt.jvgy.emrz.
Texto completoKhan, Shahid, Viktor Klochkov, Olha Lavoryk та ін. "Machine Learning Application for Λ Hyperon Reconstruction in CBM at FAIR". EPJ Web of Conferences 259 (2022): 13008. http://dx.doi.org/10.1051/epjconf/202225913008.
Texto completoKarim, Rizwan, and Muhammad Imran Asjad. "A Fair Approach to Heart Disease Prediction: Leveraging Machine Learning Model." Systems Assessment and Engineering Management 2 (December 1, 2024): 23–32. https://doi.org/10.61356/j.saem.2024.2438.
Texto completoNing, Yilin, Siqi Li, Yih Yng Ng, et al. "Variable importance analysis with interpretable machine learning for fair risk prediction." PLOS Digital Health 3, no. 7 (2024): e0000542. http://dx.doi.org/10.1371/journal.pdig.0000542.
Texto completoSingh, Vivek K., and Kailash Joshi. "Integrating Fairness in Machine Learning Development Life Cycle: Fair CRISP-DM." e-Service Journal 14, no. 2 (2022): 1–24. http://dx.doi.org/10.2979/esj.2022.a886946.
Texto completo