Tesis sobre el tema "Face spoofing"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte los 19 mejores tesis para su investigación sobre el tema "Face spoofing".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Explore tesis sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.
Abd, Aziz Azim Zaliha Binti. "Vision-based spoofing face detection using polarised light". Thesis, University of Reading, 2017. http://centaur.reading.ac.uk/75434/.
Texto completoEdmunds, Taiamiti. "Protection of 2D face identification systems against spoofing attacks". Thesis, Université Grenoble Alpes (ComUE), 2017. http://www.theses.fr/2017GREAT007/document.
Texto completoFace identification systems are growing rapidly and invade the consumer market with security products in smartphones, computers and banking. However, these systems are easily fooled by presenting a picture of the person having legitimate access to the system. This thesis is part of the BIOFENCE project which aim to develop a certification of biometric systems in order for industrials to promote their innovations in terms of protection. Our goal is to develop new anti-spoofing countermeasures for 2D face biometric systems and to evaluate the certification methodology on protected systems. First, a general state of the art in face spoofing attack forgery and in anti-spoofing protection measures is presented. Then texture-based countermeasures and motion-based countermeasures are investigated leading to the development of two novel countermeasures. Then, the recapturing process is modelled and a new fake face detection approach is proposed based on this model. Taking advantage of enrolment samples from valid users, a first step toward the synthesis of spoofing attacks for new users is taken. Finally, the certification methodology originally developed for fingerprint technology is evaluated on face biometric systems
Pereira, Tiago de Freitas 1985. "A comparative study of countermeasures to detect spoofing attacks in face authentication systems = Um estudo comparativo de contramedidas para detectar ataques de spoofing em sistemas de autenticação de faces". [s.n.], 2013. http://repositorio.unicamp.br/jspui/handle/REPOSIP/261478.
Texto completoDissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Elétrica e de Computação
Made available in DSpace on 2018-08-23T20:06:41Z (GMT). No. of bitstreams: 1 Pereira_TiagodeFreitas_M.pdf: 17638731 bytes, checksum: 15a8d07214e3b31accd3218e5bde20cb (MD5) Previous issue date: 2013
Resumo: O Resumo poderá ser visualizado no texto completo da tese digital
Abstract: The complete Abstract is available with the full electronic document.
Mestrado
Engenharia de Computação
Mestre em Engenharia Elétrica
Komulainen, J. (Jukka). "Software-based countermeasures to 2D facial spoofing attacks". Doctoral thesis, Oulun yliopisto, 2015. http://urn.fi/urn:isbn:9789526208732.
Texto completoTiivistelmä Kasvokuvaan perustuvan henkilöllisyyden tunnistamisen etuja ovat luonnollinen vuorovaikutus ja etätunnistus, minkä takia aihe on ollut erittäin aktiivinen tutkimusalue konenäön tutkimuksessa. Valitettavasti tavanomaiset kasvontunnistustekniikat ovat osoittautuneet haavoittuvaisiksi hyökkäyksille, joissa kameralle esitetään jäljennös kohdehenkilön kasvoista positiivisen tunnistuksen toivossa. Tässä väitöskirjassa tutkitaan erilaisia ohjelmistopohjaisia ratkaisuja keinotekoisten kasvojen ilmaisuun petkuttamisen estämiseksi. Työn ensimmäisessä osassa käytetään erilaisia matalan tason piirteitä kuvaamaan aitojen ja keinotekoisten kasvojen luontaisia staattisia ja dynaamisia eroavaisuuksia. Työn toisessa osassa esitetään toisiaan täydentäviä hyökkäystyyppikohtaisia vastakeinoja, jotta yleispätevien menetelmien puutteet voitaisiin ratkaista ongelmaa rajaamalla. Kasvojen staattisten ominaisuuksien esitys perustuu yleisesti tunnettuihin matalan tason piirteisiin, kuten paikallisiin binäärikuvioihin, Gabor-tekstuureihin ja suunnattujen gradienttien histogrammeihin. Pääajatuksena on kuvata aitojen ja keinotekoisten kasvojen laadun, heijastumisen ja varjostumisen eroavaisuuksia tekstuuria ja gradienttirakenteita analysoimalla. Lähestymistapaa laajennetaan myös tila-aika-avaruuteen, jolloin hyödynnetään samanaikaisesti sekä kasvojen ulkonäköä ja dynamiikkaa irroittamalla paikallisia binäärikuvioita tila-aika-avaruuden kolmelta ortogonaaliselta tasolta. Voidaan olettaa, ettei ole olemassa yksittäistä yleispätevää vastakeinoa, joka kykenee ilmaisemaan jokaisen tunnetun hyökkäystyypin, saati tuntemattoman. Näin ollen työssä keskitytään tarkemmin kahteen hyökkäystilanteeseen. Ensimmäisessä tapauksessa huijausapuvälineen reunoja ilmaistaan analysoimalla gradienttirakenteiden epäjatkuvuuksia havaittujen kasvojen ympäristössä. Jos apuvälineen reunat on piilotettu kameran näkymän ulkopuolelle, petkuttamisen ilmaisu toteutetaan yhdistämällä kasvojen ja taustan liikkeen korrelaation mittausta ja kasvojen tekstuurianalyysiä. Lisäksi työssä esitellään vastakeinojen yhdistämiseen avoimen lähdekoodin ohjelmisto, jonka avulla tutkitaan lähemmin menetelmien fuusion vaikutuksia. Tutkimuksessa esitetyt menetelmät on kokeellisesti vahvistettu alan viimeisimmillä julkisesti saatavilla olevilla tietokannoilla. Tässä väitöskirjassa käydään läpi kokeiden päähavainnot
Pinto, Allan da Silva 1984. "A countermeasure method for video-based face spoofing attacks : Detecção de tentativas de ataque com vídeos digitais em sistemas de biometria de face". [s.n.], 2013. http://repositorio.unicamp.br/jspui/handle/REPOSIP/275616.
Texto completoDissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Computação
Made available in DSpace on 2018-08-23T22:22:57Z (GMT). No. of bitstreams: 1 Pinto_AllandaSilva_M.pdf: 47523880 bytes, checksum: 072eb0490c26631b80cdcc47d55a4817 (MD5) Previous issue date: 2013
Resumo: O resumo poderá ser visualizado no texto completo da tese digital
Abstract: The complete abstract is available with the full electronic document
Mestrado
Ciência da Computação
Mestre em Ciência da Computação
Boulkenafet, Z. (Zinelabidine). "Face presentation attack detection using texture analysis". Doctoral thesis, Oulun yliopisto, 2018. http://urn.fi/urn:isbn:9789526219257.
Texto completoTiivistelmä Kasvontunnistusjärjestelmien suorituskyky on parantunut huomattavasti viime vuosina. Tästä syystä tätä teknologiaa pidetään nykyisin riittävän kypsänä ja käytetään jo useissa käytännön sovelluksissa kuten rajatarkastuksissa, rahansiirroissa ja tietoturvasovelluksissa. Monissa tutkimuksissa on kuitenkin havaittu, että nämä järjestelmät ovat myös haavoittuvia huijausyrityksille, joissa joku yrittää esiintyä jonakin toisena henkilönä esittämällä kameralle jäljennöksen kohdehenkilön kasvoista. Tämä haavoittuvuus rajoittaa kasvontunnistuksen laajempaa käyttöä monissa sovelluksissa. Tunnistusjärjestelmien turvaamiseksi on kehitetty lukuisia menetelmiä tällaisten hyökkäysten torjumiseksi. Nämä menetelmät ovat toimineet hyvin tätä tarkoitusta varten kehitetyillä kasvotietokannoilla, mutta niiden suorituskyky huononee dramaattisesti todellisissa käytännön olosuhteissa, esim. valaistuksen ja käytetyn kuvantamistekniikan variaatioista johtuen. Tässä työssä yritämme parantaa kasvontunnistuksen huijauksen estomenetelmien yleistämiskykyä keskittyen erityisesti tekstuuripohjaisiin menetelmiin. Toisin kuin useimmat olemassa olevat tekstuuripohjaiset menetelmät, joissa tekstuuripiirteitä irrotetaan harmaasävykuvista, ehdotamme väritekstuurianalyysiin pohjautuvaa ratkaisua. Ensin kasvokuvat muutetaan erilaisiin väriavaruuksiin. Sen jälkeen kuvan jokaiselta kanavalta erikseen lasketut piirrehistogrammit yhdistetään ja käytetään erottamaan aidot ja väärät kasvokuvat toisistaan. Kolmeen eri väriavaruuteen, RGB, HSV ja YCbCr, perustuvat testimme osoittavat, että tekstuuri-informaation irrottaminen HSV- ja YCbCr-väriavaruuksien erillisistä luminanssi- ja krominanssikuvista parantaa suorituskykyä kuvien harmaasävy- ja RGB-esitystapoihin verrattuna. Valaistuksen ja kuvaresoluution variaation takia ehdotamme myös tämän tekstuuri-informaation irrottamista eri tavoin skaalatuista kuvista. Sen lisäksi, että itse kasvot esitetään eri skaaloissa, useaan skaalaan perustuvat suodatusmenetelmät toimivat myös esikäsittelynä sellaisia suorituskykyä heikentäviä tekijöitä vastaan kuten kohina ja valaistus. Vaikka tässä tutkimuksessa saavutetut tulokset ovat parempia kuin uusinta tekniikkaa edustavat tulokset, ne ovat kuitenkin vielä riittämättömiä reaalimaailman sovelluksissa tarvittavaan suorituskykyyn. Sen takia edistääksemme uusien robustien kasvontunnistuksen huijaamisen ilmaisumenetelmien kehittämistä kokosimme uuden, haasteellisen huijauksenestotietokannan käyttäen kuutta kameraa kolmessa erilaisessa valaistus- ja ympäristöolosuhteessa. Järjestimme keräämällämme tietokannalla myös kansainvälisen kilpailun, jossa arvioitiin ja verrattiin neljäätoista kasvontunnistuksen huijaamisen ilmaisumenetelmää
Tang, Yinhang. "Contributions to biometrics : curvatures, heterogeneous cross-resolution FR and anti spoofing". Thesis, Lyon, 2016. http://www.theses.fr/2016LYSEC060/document.
Texto completoFace is one of the best biometrics for person recognition related application, because identifying a person by face is human instinctive habit, and facial data acquisition is natural, non-intrusive, and socially well accepted. In contrast to traditional appearance-based 2D face recognition, shape-based 3D face recognition is theoretically more stable and robust to illumination variance, small head pose changes, and facial cosmetics. The curvatures are the most important geometric attributes to describe the shape of a smooth surface. They are beneficial to facial shape characterization which makes it possible to decrease the impact of environmental variances. However, exiting curvature measurements are only defined on smooth surface. It is required to generalize such notions to discrete meshed surface, e.g., 3D face scans, and to evaluate their performance in 3D face recognition. Furthermore, even though a number of 3D FR algorithms with high accuracy are available, they all require high-resolution 3D scans whose acquisition cost is too expensive to prevent them to be implemented in real-life applications. A major question is thus how to leverage the existing 3D FR algorithms and low-resolution 3D face scans which are readily available using an increasing number of depth-consumer cameras, e.g., Kinect. The last but not least problem is the security threat from spoofing attacks on 3D face recognition system. This thesis is dedicated to study the geometric attributes, principal curvature measures, suitable to triangle meshes, and the 3D face recognition schemes involving principal curvature measures. Meanwhile, based on these approaches, we propose a heterogeneous cross-resolution 3D FR scheme, evaluate the anti-spoofing performance of shape-analysis based 3D face recognition system, and design a supplementary hand-dorsa vein recognition system based on liveness detection with discriminative power. In 3D shape-based face recognition, we introduce the generalization of the conventional point-wise principal curvatures and principal directions for fitting triangle mesh case, and present the concepts of principal curvature measures and principal curvature vectors. Based on these generalized curvatures, we design two 3D face descriptions and recognition frameworks. With the first feature description, named as Local Principal Curvature Measures Pattern descriptor (LPCMP), we generate three curvature faces corresponding to three principal curvature measures, and encode the curvature faces following Local Binary Pattern method. It can comprehensively describe the local shape information of 3D facial surface by concatenating a set of histograms calculated from small patches in the encoded curvature faces. In the second registration-free feature description, named as Principal Curvature Measures based meshSIFT descriptor (PCM-meshSIFT), the principal curvature measures are firstly computed in the Gaussian scale space, and the extremum of Difference of Curvautre (DoC) is defined as keypoints. Then we employ three principal curvature measures and their corresponding principal curvature vectors to build three rotation-invariant local 3D shape descriptors for each keypoint, and adopt the sparse representation-based classifier for keypoint matching. The comprehensive experimental results based on FRGCv2 database and Bosphorus database demonstrate that our proposed 3D face recognition scheme are effective for face recognition and robust to poses and occlusions variations. Besides, the combination of the complementary shape-based information described by three principal curvature measures significantly improves the recognition ability of system. To deal with the problem towards heterogeneous cross-resolution 3D FR, we continuous to adopt the PCM-meshSIFT based feature descriptor to perform the related 3D face recognition. [...]
Li, X. (Xiaobai). "Reading subtle information from human faces". Doctoral thesis, Oulun yliopisto, 2017. http://urn.fi/urn:isbn:9789526216386.
Texto completoTiivistelmä Kasvot ovat monipuolinen informaatiolähde ja keskeinen ihmisten välisessä vuorovaikutuksessa. Pystymme päättelemään paljon yhdestäkin kasvokuvasta, mutta kasvoissa on paljon tietoa, jota ei pysty irrottamaan ilman erityiskeinoja. Tässä työssä analysoidaan konenäöllä ihmiselle vaikeasti havaittavaa tietoa: mikroilmeitä ja sydämen sykettä. Tahdosta riippumattomat mikroilmeet paljastavat tunteita, joita ihmiset pyrkivät piilottamaan. Mikroilmeiden havaitseminen on vaikeaa niiden nopeuden ja pienuuden vuoksi, joten automaattinen analyysi voi johtaa uusiin merkittäviin sovelluksiin. Tämä työ tarkastelee mikroilmetutkimuksen edistysaskeleita ja sisältää neljä uutta tulosta. 1) Spontaanien mikroilmeiden tietokanta (Spontaneous MIcroexpression Corpus, SMIC). Spontaanien mikroilmeiden aiheuttaminen datan saamiseksi on oma haasteensa. SMIC:n keräämisessä ja mikroilmeiden annotoinnissa käytetty menettely on kuvattu myöhemmän datan keruun ohjeistukseksi. 2) Aiempia mikroilmeiden tunnistusmenetelmiä paremmaksi kahden testitietokannan avulla todennettu ratkaisu, joka käyttää kolmea eri piirrettä ja videon suurennusta. 3) Piirre-eroanalyysiin perustuva mikroilmeiden havaitsemismenetelmä, joka havaitsee ne pitkistä realistisista videoista. 4) Automaattinen analyysijärjestelmä (Micro-Expression Spotting and Recognition, MESR), jossa mikroilmeet havaitaan ja tunnistetaan. Sydämen syke on tärkeä terveyden ja tunteiden indikoija. Perinteiset sykkeenmittausmenetelmät vaativat ihokontaktia, eivätkä siten toimii etäältä. Tässä työssä esitetään sykkeen videolta pienistä värimuutoksista mittaava menetelmä, joka sietää valaistusmuutoksia ja sallii pään liikkeet. Menetelmä on monikäyttöinen ja sen sovelluksena kuvataan todellisten kasvojen varmentaminen sykemittauksella. Tulokset osoittavat sykepiirteiden toimivan perinteisiä tekstuuripiirteitä paremmin uudenlaisia naamarihuijauksia vastaan. Syketietoa voidaan myös käyttää osana sarjatyyppisissä ratkaisuissa havaitsemaan useanlaisia huijausyrityksiä. Työn yhteenveto keskittyy suunnitelmiin parantaa mikroilmeiden ja sydämen sykkeen analyysimenetelmiä nykyisen tutkimuksen rajoitteiden pohjalta. Tavoitteena on yhdistää mikroilmeiden ja sydämen sykkeen analyysit, sekä mahdollisesti muuta kasvoista saatavaa tietoa, multimodaaliseksi affektiivisen tilan määrittäväksi ratkaisuksi
Sarkar, Abhijit. "Cardiac Signals: Remote Measurement and Applications". Diss., Virginia Tech, 2017. http://hdl.handle.net/10919/78739.
Texto completoPh. D.
Trabelsi, Anis. "Robustesse aux attaques en authentification digitale par apprentissage profond". Electronic Thesis or Diss., Sorbonne université, 2022. http://www.theses.fr/2022SORUS580.
Texto completoThe identity of people on the Internet is becoming a major security issue. Since the Bale agreements, banking institutions have integrated the verification of people's identity or Know Your Customer (KYC) in their registration process. With the dematerialization of banks, this procedure has become e-KYC or remote KYC which works remotely through the user's smartphone. Similarly, remote identity verification has become the standard for enrollment in electronic signature tools. New regulations are emerging to secure this approach, for example, in France, the PVID framework regulates the remote acquisition of identity documents and people's faces under the eIDAS regulation. This is required because a new type of digital crime is emerging: deep identity theft. With new deep learning tools, imposters can change their appearance to look like someone else in real time. Imposters can then perform all the common actions required in a remote registration without being detected by identity verification algorithms. Today, smartphone applications and tools for a more limited audience exist allowing imposters to easily transform their appearance in real time. There are even methods to spoof an identity based on a single image of the victim's face. The objective of this thesis is to study the vulnerabilities of remote identity authentication systems against new attacks in order to propose solutions based on deep learning to make the systems more robust
Tak, Hemlata. "End-to-End Modeling for Speech Spoofing and Deepfake Detection". Electronic Thesis or Diss., Sorbonne université, 2023. https://accesdistant.sorbonne-universite.fr/login?url=https://theses-intra.sorbonne-universite.fr/2023SORUS104.pdf.
Texto completoVoice biometric systems are being used in various applications for secure user authentication using automatic speaker verification technology. However, these systems are vulnerable to spoofing attacks, which have become even more challenging with recent advances in artificial intelligence algorithms. There is hence a need for more robust, and efficient detection techniques. This thesis proposes novel detection algorithms which are designed to perform reliably in the face of the highest-quality attacks. The first contribution is a non-linear ensemble of sub-band classifiers each of which uses a Gaussian mixture model. Competitive results show that models which learn sub-band specific discriminative information can substantially outperform models trained on full-band signals. Given that deep neural networks are more powerful and can perform both feature extraction and classification, the second contribution is a RawNet2 model. It is an end-to-end (E2E) model which learns features directly from raw waveform. The third contribution includes the first use of graph neural networks (GNNs) with an attention mechanism to model the complex relationship between spoofing cues present in spectral and temporal domains. We propose an E2E spectro-temporal graph attention network called RawGAT-ST. RawGAT-ST model is further extended to an integrated spectro-temporal graph attention network, named AASIST which exploits the relationship between heterogeneous spectral and temporal graphs. Finally, this thesis proposes a novel data augmentation technique called RawBoost and uses a self-supervised, pre-trained speech model as a front-end to improve generalisation in the wild conditions
MOMIN, ZAHID AKHTAR SHABBEER AHMAD. "Security of multimodal biometric systems against spoof attacks". Doctoral thesis, Università degli Studi di Cagliari, 2012. http://hdl.handle.net/11584/266071.
Texto completoTseng, Tz-Chia y 曾子家. "Anti-Spoofing of Live Face Authentication on Smartphone". Thesis, 2019. http://ndltd.ncl.edu.tw/handle/7j6fm5.
Texto completo國立臺灣大學
生醫電子與資訊學研究所
107
Our proposed method is capable of authenticating the input image is from real user or spoofing attack, including paper photograph, digital photograph, and video, using only the Red, Green, Blue (RGB) frontal camera of common smart phone, without the help of depth camera or infrared thermal sensor. We first capture live faces in each frame of input video streams by single shot multi-box detector then feed into our designed convolution neural network after certain data augmentation and finally obtain a well-trained spoof face classifier.
Cong, Tin Nguyen y 阮功信. "Face Anti Spoofing Using Autoencoder Pretraining In Multi-Branch CNN". Thesis, 2019. http://ndltd.ncl.edu.tw/handle/j6n62m.
Texto completo國立中央大學
資訊工程學系
107
In this thesis, we propose a face classification system based on deep learning algorithm. This system is capable of distinguishing real and fake faces from RGB images taken by a normal camera. To do that, we have built a system of 4 parts: RGB image processing, HSV image processing, YCrCb image processing, and classification. With the first 3 parts of image processing, the model will have different viewpoints of the object to be considered so that the classification can make the most accurate conclusion possible. In addition, in order to achieve optimal processing performance, we include encoder and decoder structure models, which eliminate unnecessary components and help the model focus only on the components it gives. is important, and most importantly, this structure helps reduce the complexity of the model. In the process of experimentation, we found some problems arising in the processing of data, namely that the research data does not match the actual data. In order to create a model for good results on actual research and operational data, we have applied a number of special tweaks to the data before being put into training. Experimental results indicate that our system gives a very high result on public databases.
Liao, Wen-Yang y 廖文揚. "Deep Face Spoofing via Local Binary Based Convolutional Neural Network". Thesis, 2018. http://ndltd.ncl.edu.tw/handle/hdr585.
Texto completo元智大學
電機工程學系
106
There are many ways to do authentication, but most of the systems verification are still based on passwords. Passwords are very valuable to hackers, and there is endless news that involving hackers stealing passwords and obtaining user information for illegal purposes. In order to solve this problem, people gradually turn their attention to the biometric authentication system with high security. With the great evolution of deep convolutional neural networks in recent years, deep convolutional features with high robustness and adaptability has been utilized as features in the liveness detection mechanism. However, a large amount of parameters and high computational complexity are less suitable for portable mobile device with offline operation. In this paper, we use a lightweight local binary pattern based deep convolutional network to analyze real faces and fake faces. In order to evaluate our performance, we also utilized the CASIA-FASD database, REPLAY-ATTACK database as our benchmark database. Empirically, our proposed architecture not only shows that can improve the overall performance, but also significantly reduce amount of parameters in the relevant neural network method.
Kuo, Han-Hsun y 郭漢遜. "An Unsupervised Face Anti-Spoofing Model Based on Deep Feature Clustering". Thesis, 2019. http://ndltd.ncl.edu.tw/handle/8njtdz.
Texto completo國立臺灣大學
工程科學及海洋工程學研究所
107
With the increasing requirements for face recognition in many authentication systems, how to prevent intruders from accessing the permission via Face Anti-Spoofing(FAS) techniques has become an important research area in biometrics. After the endeavors over the past few years, researchers around the world have achieved acceptable FAS detection accuracy in the same training and testing dataset. However, it is still problematic when the model trained on one dataset is tested on some other datasets. The detection error rate increases dramatically when this kind of cross-dataset evaluation arises. To address this issue, this thesis introduces the unique techniques of transfer learning and unsupervised learning to increase the generalization ability for cross-dataset evaluation. Specifically, we develop a pre-trained deep learning model to extract the high dimension features of the attack and bona fide images, and the extracted features are clustered into two subsets after the dimension is reduced. One particular characteristic of this strategy is that the dataset that being used to train the pre-trained model is not necessarily in the FAS domain, which makes our framework naturally cross-data oriented. This is quite different from other existing transfer learning methods, which mostly utilize the labeled data of the target domain to fine-tune the model parameters. Based on benchmark dataset experiments, our FAS classifier achieved lower average classification error rate (ACER) scores than state-of-the-art methods by 3%. We believe that the proposed semi-supervised learning model is of potential to overcome this challenging FAS task in biometrics.
Huang, Chi-Yang y 黃啟陽. "Face Spoofing Detection from a Single Image Using Texture and Direction Analysis in HSV Color Space". Thesis, 2016. http://ndltd.ncl.edu.tw/handle/46627897251475594634.
Texto completo國立交通大學
電控工程研究所
104
In the recent years, there are many liveness detection methods proposed to against photograph spoofing through analyzing the fundamental differences between human faces and printed faces. The differences in surface between human faces and printed faces are distinctive specular reflections and shades because a human face is a complex 3D object whereas a printed face can be seen as a planar object. Because an image recaptured from a photograph has the twice reflection, the gradient direction histogram of the image is different. Furthermore, the HSV color space can be more perfectly to deal with some information which human’s eyes cannot get and closer to the perception of humans. Therefore, we present to analyze facial image textures using multi-scale LBP and gradient direction analysis by Sobel operators on the illumination component of HSV color space for detecting whether there is a live person or a printed face in front of the camera. From our experiment results, we can see that the proposed feature can improve the face spoofing detection performance.
Wang, Shun-Yi y 王順億. "Face Spoofing Detection from a Single Image Based on Dual-Channel Texture and Color Distortion Analysis". Thesis, 2017. http://ndltd.ncl.edu.tw/handle/wx8g7v.
Texto completo國立交通大學
電控工程研究所
105
In recent years, there are many spoofing face detection methods proposed to against 2D face spoofing attacks including printed photos and screen displayed photos through analyzing the differences between human faces and fake faces. The difference in light reflection between human faces and 2D fake faces mainly comes from distinctive shades and specular reflections because a human face is a complex 3D object whereas a 2D fake face is a flat surface. Besides, the color distribution of a fake face image is quite different to a real face due to the qualities of spoofing mediums such as a printer and a screen. For example, a printed face image usually has lower color contrast than a real face while a screen displayed face image has higher color contrast. For these different properties, this thesis proposes an approach by using the combination of two texture features and a color feature to determine whether there is a live person or a spoofing face in front of the camera. The two texture features include multi-scale LBP and the R-G deviated texture proposed in this thesis, while the color feature adopts the color moment, which is a measurement of the color distribution of an image. From the experimental results, the proposed approach indeed improves the performance of spoofing face detection.
Wu, Tzu-Yuan y 吳紫源. "A Deep-Learning-Based Face Liveness Detection System Against Spoofing Attack Using 2D Image Distortion Analysis". Thesis, 2019. http://ndltd.ncl.edu.tw/handle/52dj7s.
Texto completo國立臺灣科技大學
資訊工程系
107
With the development of science and technology, face recognition is now an important technology for authentication in various access control applications, especially used in mobile devices. Unlocking by face has gradually replaced fingerprint identification in some scenarios, which becomes one of the major biometric authentication technology of mobile phones. In a common camera, due to the lack of depth information, it is easy to make fake face images to crack the identification system (e.g., paper printing and screen display) compared with other biological features such as fingerprints and palm prints. Therefore, face liveness detection against spoofing attack using 2D image distortion analysis will be a very important issue in the field of information security. By virtue of the different features between real faces and fake faces, this thesis adopts local binary pattern and 2D image distortion analysis to extract texture information of images, which are used for developing our face liveness detection system against spoofing attack to distinguish fake faces from real faces by a deep neural network. The system employs only a single image captured from a common camera to discriminant real faces and fake faces. In the experiments, three kinds of face spoofing databases are used as subjects of cross-validation. The methods and dataset made by ourselves presented in this thesis can effectively classify the authenticity of human faces. The accuracy of the inside test reaches 99.55%, while that of the outside test attains 95.13%. The experimental results show that our face liveness detection system has high accuracy and generality.