Literatura académica sobre el tema "Extracellular matrix (ECM) peptides"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Extracellular matrix (ECM) peptides".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Extracellular matrix (ECM) peptides"
Hozumi, Kentaro y Motoyoshi Nomizu. "Mixed Peptide-Conjugated Chitosan Matrices as Multi-Receptor Targeted Cell-Adhesive Scaffolds". International Journal of Molecular Sciences 19, n.º 9 (11 de septiembre de 2018): 2713. http://dx.doi.org/10.3390/ijms19092713.
Texto completoTran, Thi Xuan Thuy, Gyu-Min Sun, Hue Vy An Tran, Young Hun Jeong, Petr Slama, Young-Chae Chang, In-Jeong Lee y Jong-Young Kwak. "Synthetic Extracellular Matrix of Polyvinyl Alcohol Nanofibers for Three-Dimensional Cell Culture". Journal of Functional Biomaterials 15, n.º 9 (10 de septiembre de 2024): 262. http://dx.doi.org/10.3390/jfb15090262.
Texto completoDolmatov, Igor Yu y Vladimir A. Nizhnichenko. "Extracellular Matrix of Echinoderms". Marine Drugs 21, n.º 7 (22 de julio de 2023): 417. http://dx.doi.org/10.3390/md21070417.
Texto completoMonteiro-Lobato, Gabriela M., Pedro S. T. Russo, Flavia V. Winck y Luiz H. Catalani. "Proteomic Analysis of Decellularized Extracellular Matrix: Achieving a Competent Biomaterial for Osteogenesis". BioMed Research International 2022 (11 de octubre de 2022): 1–18. http://dx.doi.org/10.1155/2022/6884370.
Texto completoFujita, Motomichi, Manabu Sasada, Takuya Iyoda, Satoshi Osada, Hiroaki Kodama y Fumio Fukai. "Biofunctional Peptide FNIII14: Therapeutic Potential". Encyclopedia 1, n.º 2 (8 de abril de 2021): 350–59. http://dx.doi.org/10.3390/encyclopedia1020029.
Texto completoOlivares-Navarrete, Rene, Sharon L. Hyzy, Argelia Almaguer-Flores, Corinna Mauth, Anja C. Gemperli, Barbara D. Boyan y Zvi Schwartz. "Amelogenin Peptide Extract Increases Differentiation and Angiogenic and Local Factor Production and Inhibits Apoptosis in Human Osteoblasts". ISRN Biomaterials 2013 (1 de agosto de 2013): 1–11. http://dx.doi.org/10.5402/2013/347318.
Texto completoMerchant, Michael L., Michelle T. Barati, Dawn J. Caster, Jessica L. Hata, Liliane Hobeika, Susan Coventry, Michael E. Brier et al. "Proteomic Analysis Identifies Distinct Glomerular Extracellular Matrix in Collapsing Focal Segmental Glomerulosclerosis". Journal of the American Society of Nephrology 31, n.º 8 (19 de junio de 2020): 1883–904. http://dx.doi.org/10.1681/asn.2019070696.
Texto completoBarnes, Ashlynn M., Tessa B. Holmstoen, Andrew J. Bonham y Teisha J. Rowland. "Differentiating Human Pluripotent Stem Cells to Cardiomyocytes Using Purified Extracellular Matrix Proteins". Bioengineering 9, n.º 12 (22 de noviembre de 2022): 720. http://dx.doi.org/10.3390/bioengineering9120720.
Texto completoHulahan, Taylor S., Laura Spruill, Elizabeth N. Wallace, Yeonhee Park, Robert B. West, Jeffrey R. Marks, E. Shelley Hwang, Richard R. Drake y Peggi M. Angel. "Extracellular Microenvironment Alterations in Ductal Carcinoma In Situ and Invasive Breast Cancer Pathologies by Multiplexed Spatial Proteomics". International Journal of Molecular Sciences 25, n.º 12 (19 de junio de 2024): 6748. http://dx.doi.org/10.3390/ijms25126748.
Texto completoMazzocchi, Andrea, Kyung Min Yoo, Kylie G. Nairon, L. Madison Kirk, Elaheh Rahbar, Shay Soker y Aleksander Skardal. "Exploiting maleimide-functionalized hyaluronan hydrogels to test cellular responses to physical and biochemical stimuli". Biomedical Materials 17, n.º 2 (13 de enero de 2022): 025001. http://dx.doi.org/10.1088/1748-605x/ac45eb.
Texto completoTesis sobre el tema "Extracellular matrix (ECM) peptides"
Maayouf, Hasna. "Développement de plateformes de signalisation dérivées de particules pseudo-virales pour contrôler les fonctions cellulaires". Electronic Thesis or Diss., Mulhouse, 2024. http://www.theses.fr/2024MULH7387.
Texto completoScientists have explored various surface functionalization strategies to improve the biocompatibility of materials used in implantable devices, particularly in tissue engineering. For example, polydimethylsiloxane (PDMS), although used in many fields, has surface properties that are unfavorable for cell adhesion. Functionalization with extracellular matrix (ECM) proteins or synthetic peptides derived from ECM components improves cell adhesion. While these approaches offer some solutions, challenges such as production cost and control over 3D presentation limit their use. To overcome these challenges, we developed virus-like particles (VLPs) displaying bioactive peptides on their surface. The coat protein CP3, derived from the RNA bacteriophage AP205, was genetically modified at both its N- and C-termini to produce VLPs displaying adhesion peptides (RGD and YIGSR) and an osteogenic peptide (BMP2). The bioactivity of the VLPs was tested on PDMS with C2C12 myoblast cells, demonstrating enhanced cell adhesion, migration, proliferation, and differentiation. Heteromeric VLPs co-expressing RGD and YIGSR or BMP2 peptides showed combined bioactivity. By comparing focal adhesions formed by RGD VLPs and those formed by fibronectin, we elucidate both the similarities and the differences in cell interactions. These results demonstrate that AP205 VLPs can be used as nanoscale signaling platforms to stimulate multiple cell functions, with promising applications in nanomedicine and biomaterials
Kammerer, Theresa Anne [Verfasser] y Sebastian Johannes [Akademischer Betreuer] Arnold. "Visualization of the Extracellular Matrix (ECM) by fluorescent tagging of ECM components in mouse". Freiburg : Universität, 2021. http://d-nb.info/1232644803/34.
Texto completoRandles, Michael. "Proteomic analyses of kidney glomerular extracellular matrix in health and disease". Thesis, University of Manchester, 2015. https://www.research.manchester.ac.uk/portal/en/theses/proteomic-analyses-of-kidney-glomerular-extracellular-matrix-in-health-and-disease(a39fe408-db06-4d80-b97b-4e0651bf7bc3).html.
Texto completoMarengo, Kaitlyn A. "The Incorporation of Decellularized Cardiac ECM into Fibrin Microthreads". Digital WPI, 2017. https://digitalcommons.wpi.edu/etd-theses/843.
Texto completoVillaggio, Giusy. "Relationship between extracellular matrix (ECM) components and mineralization in bone marrow stromal cells". Doctoral thesis, Università di Catania, 2014. http://hdl.handle.net/10761/1492.
Texto completoKwak, Hyo Bum. "Exercise training regulation of extracellular matrix and remodeling in the aging rat heart". [College Station, Tex. : Texas A&M University, 2008. http://hdl.handle.net/1969.1/ETD-TAMU-2761.
Texto completoMcKenna, Declan Joseph. "Studies of the 67 kilodalton laminin receptor in retinal vasculature". Thesis, Queen's University Belfast, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.300777.
Texto completoSingh, Mahipal, Cerrone R. Foster, Suman Dalal y Krishna Singh. "Osteopontin: Role in Extracellular Matrix Deposition and Myocardial Remodeling Post-MI". Digital Commons @ East Tennessee State University, 2010. https://dc.etsu.edu/etsu-works/8576.
Texto completoBrian, Irene. "Crosstalk between ECM mechanical cues and cellular metabolism". Doctoral thesis, Università degli studi di Padova, 2019. http://hdl.handle.net/11577/3422721.
Texto completoGli stimoli meccanici provenienti dalla matrice extracellulare (ECM) sono fattori chiave nel controllo dell'omeostasi tissutale in condizioni fisiologiche e patologiche. Le cellule possono percepire questi segnali fisici e misurare le forze di resistenza esterne regolando il loro citoscheletro attraverso i filamenti di actomiosina, che a loro volta regolano le vie di segnalazione intracellulare per indurre una risposta cellulare adeguata. Pertanto, la rigidità della matrice extracellulare è importante per molti aspetti biologici come la proliferazione, la differenziazione e la migrazione. Si sa invece molto poco sull’ impatto che essa ha sul metabolismo cellulare, e i fattori molecolari coinvolti in questo processo sono in gran parte sconosciuti. Attraverso un’analisi metabolomica iniziale, abbiamo visto che le cellule tendono ad accumulare lipidi come risposta generale ai segnali meccanici e alle condizioni di bassa tensione. Abbiamo inoltre osservato che questo accumulo è associato ad un cambio di localizzazione della fosfatasi Lipin1, che diminuisce la sua affinità per le membrane del reticolo endoplasmatico e dell’apparato di Golgi e alla ridotta attività di Lipin1 che alla fine porta alla traslocazione nucleare e all'attivazione dei fattori di trascrizione SREBP1 / 2. Ciò si verifica indipendentemente dall’attività di YAP / TAZ e mTOR e in modo parallelo rispetto alla regolazione dei livelli di steroli nella cellula. Cercando una rilevanza biologica per il meccanisco da noi descritto, abbiamo inoltre scoperto che SREBP viene regolato in maniera coerente nei cheloidi, una patologia fibro-proliferativa legata a stress meccanici, e abbiamo identificato SREBP come un fattore importante e richiesto per la sopravvivenza di cellule staminali embrionali mediata dall’inibizione di ROCK. Quindi riassumendo, il nostro modello vede l’inibizione di LIPIN1 e l’attivazione di SREBP come un meccanismo generale che collega le forze fisiche derivanti dal microambiente e il metabolismo cellulare
Bilem, Ibrahim. "Micro-engineered substrates as bone extracellular matrix mimics". Doctoral thesis, Université Laval, 2016. http://hdl.handle.net/20.500.11794/27329.
Texto completoIt is becoming increasingly appreciated that the role of extracellular matrix (ECM) extends beyond acting as scaffolds to providing biochemical and biophysical cues, which are critically important in regulating stem cell self-renewal and differentiation. To date, more than 15 different extrinsic (environmental) factors, including the matrix spatial organization, topography, stiffness, porosity, biodegradability and chemistry have been identified as potent regulators of stem cells specification into lineage-specific progenies. Thus, it is plausible that the behavior of biomaterials inside the human body will depend to a large extent on their ability to mimic ECM properties of the tissue to be replaced. Recently, nano- and microengineering methods have emerged as an innovative tool to dissect the individual role of ECM features and understand how each element regulates stem cell fate. In addition, such tools are believed to be useful in reconstructing complex tissue-like structures resembling the native ECM to better predict and control cellular functions. In the thesis project presented here, the concept of deconstructing and reconstructing the ECM complexity was applied to reproduce several aspects inherent to the bone ECM and harness their individual or combinatorial effect on directing human mesenchymal stem cells (hMSCs) differentiation towards the osteoblastic lineage. Three main components were used throughout this project: a model material (borosilicate glass), ECM derived peptides (adhesive RGD and osteoinductive BMP-2 mimetic peptides) and bone marrow derived hMSCs. All cell differentiation experiments were performed in the absence of soluble osteogenic factors in the medium in order to precisely assess the interplay between hMSCs and the different artificial matrices developed in the current study. First, RGD and/or BMP-2 peptides were covalently immobilized and randomly distributed on glass surfaces. The objective here was to investigate the effect of each peptide as well as their combination on regulating hMSCs osteogenic differentiation. The most important funding was that RGD and BMP-2 peptides can act synergistically to enhance hMSCs osteogenesis. Then, micropatterning technique (photolithography) was introduced to control the spatial distribution of RGD and BMP-2 at the micrometer scale. The peptides were grafted individually onto glass substrates, as specific micropatterns of varied shapes (triangular, square and rectangle geometries) but constant size (50 μm² per pattern). In this second part of the project, the focus was made on investigating the role of ligands presentation in a spatially controlled manner in directing hMSCs differentiation into osteoblasts. Herein, we demonstrated that the effect of microscale geometric cues on stem cell differentiation is peptide dependent. Finally, glass surfaces modified with combined and spatially distributed peptides were used as in vitro cell culture models to evaluate the interplay between RGD/BMP-2 crosstalk and microscale geometric cues in regulating stem cell fate. In this study, we revealed that the combination of several ECM cues (ligand crosstalk and geometric cues), instead of the action of individual cues further enhances hMSCs osteogenesis. Overall, our findings provide new insights into the role of single ECM features as well their cooperation in regulating hMSCs fate. Such studies would allow the reconstruction of stem cell microenvironment in all the aspects ex vivo, which may pave the way towards the development of clinically relevant tissue-engineered constructs. Keywords: Chemical micropatterning, bioactive surfaces, mimetic peptides, BMP-2, mesenchymal stem cells, stem-cell differentiation, stem-cell niche, osteogenesis.
Libros sobre el tema "Extracellular matrix (ECM) peptides"
(Editor), Nathan P. Colowick, Nathan P. Kaplan (Editor) y Leon W. Cunningham (Editor), eds. Structural and Contractile Proteins, Part E: Extracellular Matrix, Volume 145: Volume 145: Structural and Contractile Proteins Part E (Methods in Enzymology). Academic Press, 1987.
Buscar texto completoLennon, Rachel y Neil Turner. The molecular basis of glomerular basement membrane disorders. Editado por Neil Turner. Oxford University Press, 2018. http://dx.doi.org/10.1093/med/9780199592548.003.0320_update_001.
Texto completoMacGrogan, Donal, José Maria Pérez-Pomares, Bill Chaudhry, José Luis de la Pompa y Deborah J. Henderson. From cushions to leaflets: morphogenesis of cardiac atrioventricular valves. Editado por José Maria Pérez-Pomares, Robert G. Kelly, Maurice van den Hoff, José Luis de la Pompa, David Sedmera, Cristina Basso y Deborah Henderson. Oxford University Press, 2018. http://dx.doi.org/10.1093/med/9780198757269.003.0017.
Texto completovan der Vlag, Johan y Jo H. M. Berden. The patient with systemic lupus erythematosus. Editado por Giuseppe Remuzzi. Oxford University Press, 2015. http://dx.doi.org/10.1093/med/9780199592548.003.0161.
Texto completoCapítulos de libros sobre el tema "Extracellular matrix (ECM) peptides"
Helm, Richard F. y Malcolm Potts. "Extracellular Matrix (ECM)". En Ecology of Cyanobacteria II, 461–80. Dordrecht: Springer Netherlands, 2012. http://dx.doi.org/10.1007/978-94-007-3855-3_18.
Texto completoProske, Uwe, David L. Morgan, Tamara Hew-Butler, Kevin G. Keenan, Roger M. Enoka, Sebastian Sixt, Josef Niebauer et al. "Extracellular Matrix (ECM)". En Encyclopedia of Exercise Medicine in Health and Disease, 329–30. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-540-29807-6_2389.
Texto completoPapanicolaou, Michael y Thomas R. Cox. "Extracellular Matrix (ECM)". En Encyclopedia of Molecular Pharmacology, 1–8. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-21573-6_5691-1.
Texto completoPapanicolaou, Michael y Thomas R. Cox. "Extracellular Matrix (ECM)". En Encyclopedia of Molecular Pharmacology, 643–50. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-57401-7_5691.
Texto completoBalasubramanian, Swarnalatha, Elizabeth M. Powell y Jennie B. Leach. "Investigating Cell-ECM Interactions and ECM Synthesis in Three-Dimensional Hydrogels". En Extracellular Matrix, 101–9. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4939-2083-9_10.
Texto completoHennen, Eva y Andreas Faissner. "Modulation of Neural Stem Cell Expressed Extracellular Matrix (ECM) by Targeting Glycosyltransferases". En Extracellular Matrix, 151–60. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4939-2083-9_13.
Texto completoZhang, Xiaoming y Michael P. Sarras. "ECM in Hydra Development and Regeneration". En Extracellular Matrix in Development, 163–86. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-35935-4_7.
Texto completoCaravà, Elena, Cristiana Marcozzi, Barbara Bartolini, Marcella Reguzzoni, Paola Moretto, Ilaria Caon, Evgenia Karousou, Alberto Passi y Manuela Viola. "Method for Studying ECM Expression: In Situ RT-PCR". En The Extracellular Matrix, 21–31. New York, NY: Springer New York, 2019. http://dx.doi.org/10.1007/978-1-4939-9133-4_2.
Texto completoGhorbani, Farnaz, Niyousha Davari, Chaozong Liu y Behafarid Ghalandari. "Advances in ECM Protein-Based Materials". En Handbook of the Extracellular Matrix, 1–44. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-030-92090-6_11-1.
Texto completoGhorbani, Farnaz, Niyousha Davari, Chaozong Liu y Behafarid Ghalandari. "Advances in ECM Protein-Based Materials". En Handbook of the Extracellular Matrix, 193–236. Cham: Springer International Publishing, 2024. http://dx.doi.org/10.1007/978-3-031-56363-8_11.
Texto completoActas de conferencias sobre el tema "Extracellular matrix (ECM) peptides"
Almirall, L., J. Aznar-Salatti, I. Calopa, A. Ordinas y E. Bastida. "ADHESION OF TUMOR CELLS TO EXTRACELLULAR MATRIX IS MEDIATED BY FIBRONECTIN". En XIth International Congress on Thrombosis and Haemostasis. Schattauer GmbH, 1987. http://dx.doi.org/10.1055/s-0038-1643207.
Texto completoRawal, Atul, Kristen L. Rhinehardt y Ram V. Mohan. "Mechanical Behavior of Collagen Mimetic Peptides Under Fraying Deformation via Molecular Dynamics". En ASME 2019 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/imece2019-11492.
Texto completoHurley, Jennifer R. y Daria A. Narmoneva. "Endothelial-Fibroblast Interactions in Angiogenesis and Matrix Remodeling". En ASME 2009 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2009. http://dx.doi.org/10.1115/sbc2009-206534.
Texto completoHurley, Jennifer R., Abdul Q. Sheikh, Meredith Beckenhaupt, Cameron Ingram, Andrew Mutchler y Daria A. Narmoneva. "Self-Assembling Peptide Nanofibers for MMP Delivery and Cardiac Regeneration in Diabetes". En ASME 2011 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2011. http://dx.doi.org/10.1115/sbc2011-53761.
Texto completoCiardelli, G., F. M. Montevecchi, P. Giusti, D. Silvestri, I. Morelli, C. Cristallini y G. Vozzi. "Molecular Imprinted Nanostructures in Biomedical Applications". En ASME 8th Biennial Conference on Engineering Systems Design and Analysis. ASMEDC, 2006. http://dx.doi.org/10.1115/esda2006-95669.
Texto completoFreytes, Donald O., Samuel Kolman, Sachin S. Velankar y Stephen F. Badylak. "Rheological Properties of Extracellular Matrix Derived Gels". En ASME 2007 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2007. http://dx.doi.org/10.1115/sbc2007-176537.
Texto completoKong, AKCW, JMB Sand, DJ Leeming, SR Rønnow, CM Spalluto, K. Staples, K. Ostridge, A. Platt y T. Wilkinson. "S62 Extracellular matrix (ECM) remodelling in COPD". En British Thoracic Society Winter Meeting 2024, QEII Centre, Broad Sanctuary, Westminster, London SW1P 3EE, 27 to 29 November 2024, Programme and Abstracts, A48. BMJ Publishing Group Ltd and British Thoracic Society, 2024. http://dx.doi.org/10.1136/thorax-2024-btsabstracts.68.
Texto completoRoeder, Blayne A., Klod Kokini, Jennifer E. Sturgis, J. Paul Robinson y Sherry L. Voytik-Harbin. "Micromechanics of Extracellular Matrix: Three-Dimensional Microstructure Under Load". En ASME 2001 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2001. http://dx.doi.org/10.1115/imece2001/bed-23165.
Texto completoLevine, R. F., A. Eldor, R. Stromberg, I. Vlodavsky, E. HyAm, A. R. Koslow y L. I. Friedman. "THE EFFECT OF FLOW ON THE INTERACTION OF ISOLATED MEGAKARYOCYTES WITH EXTRACELLULAR MATRIX". En XIth International Congress on Thrombosis and Haemostasis. Schattauer GmbH, 1987. http://dx.doi.org/10.1055/s-0038-1644617.
Texto completoSteward, Robert L., Chao-Min Cheng y Philip R. LeDuc. "Probing Dynamic Responses of the Extracellular Matrix to Coupled Mechanical and Chemical Inputs". En ASME 2010 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2010. http://dx.doi.org/10.1115/sbc2010-19206.
Texto completoInformes sobre el tema "Extracellular matrix (ECM) peptides"
Barash, Itamar, J. Mina Bissell, Alexander Faerman y Moshe Shani. Modification of Milk Composition via Transgenesis: The Role of the Extracellular Matrix in Regulating Transgene Expression. United States Department of Agriculture, julio de 1995. http://dx.doi.org/10.32747/1995.7570558.bard.
Texto completoCao, Siyang, Yihao Wei, Huihui Xu, Jian Weng, Tiantian Qi, Fei Yu, Su Liu, Ao Xiong, Peng Liu y Hui Zeng. Crosstalk between Ferroptosis and Chondrocytes in Osteoarthritis: A Systematic Review of in-vivo and in-vitro Studies. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, marzo de 2023. http://dx.doi.org/10.37766/inplasy2023.3.0044.
Texto completo