Literatura académica sobre el tema "Extension field cryptosystem"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Extension field cryptosystem".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Extension field cryptosystem"
Chakraborty, Olive, Jean-Charles Faugère y Ludovic Perret. "Cryptanalysis of the extension field cancellation cryptosystem". Designs, Codes and Cryptography 89, n.º 6 (18 de abril de 2021): 1335–64. http://dx.doi.org/10.1007/s10623-021-00873-9.
Texto completoRehman, Hafeez Ur, Mohammad Mazyad Hazzazi, Tariq Shah, Amer Aljaedi y Zaid Bassfar. "Color image encryption by piecewise function and elliptic curve over the Galois field $ {G}{F}\left({2}^{{n}}\right) $". AIMS Mathematics 9, n.º 3 (2024): 5722–45. http://dx.doi.org/10.3934/math.2024278.
Texto completoEl-Kassar, A. N. y Ramzi Haraty. "ElGamal Public-Key cryptosystem in multiplicative groups of quotient rings of polynomials over finite fields". Computer Science and Information Systems 2, n.º 1 (2005): 63–77. http://dx.doi.org/10.2298/csis0501063e.
Texto completoGeorge, Kiernan y Alan J. Michaels. "Designing a Block Cipher in Galois Extension Fields for IoT Security". IoT 2, n.º 4 (5 de noviembre de 2021): 669–87. http://dx.doi.org/10.3390/iot2040034.
Texto completoSaju, M. I., Renjith Varghese y E. F. Antony John. "A design of public key Cryptosystem in an algebraic extension field over a finite field using the difficulty of solving DLP". Malaya Journal of Matematik 8, n.º 2 (abril de 2020): 459–63. http://dx.doi.org/10.26637/mjm0802/0022.
Texto completoUr Rehman, Hafeez, Mohammad Mazyad Hazzazi, Tariq Shah, Zaid Bassfar y Dawood Shah. "An Efficient Audio Encryption Scheme Based on Elliptic Curve over Finite Fields". Mathematics 11, n.º 18 (6 de septiembre de 2023): 3824. http://dx.doi.org/10.3390/math11183824.
Texto completoHammami, Sonia. "Multi-switching combination synchronization of discrete-time hyperchaotic systems for encrypted audio communication". IMA Journal of Mathematical Control and Information 36, n.º 2 (29 de enero de 2018): 583–602. http://dx.doi.org/10.1093/imamci/dnx058.
Texto completoLi, Jiakun y Wei Gao. "Hardware Optimization and System Design of Elliptic Curve Encryption Algorithm Based on FPGA". Journal of Sensors 2022 (11 de octubre de 2022): 1–12. http://dx.doi.org/10.1155/2022/9074524.
Texto completoGuang Gong y Lein Harn. "Public-key cryptosystems based on cubic finite field extensions". IEEE Transactions on Information Theory 45, n.º 7 (1999): 2601–5. http://dx.doi.org/10.1109/18.796413.
Texto completoBessalov, Anatoliy V. "CALCULATION OF PARAMETERS OF CRYPTIC CRIVIAE EDWARDS OVER THE FIELDS OF CHARACTERISTICS 5 AND 7". Cybersecurity: Education, Science, Technique, n.º 1 (2018): 94–104. http://dx.doi.org/10.28925/2663-4023.2018.1.94104.
Texto completoTesis sobre el tema "Extension field cryptosystem"
Abu-Mahfouz, Adnan Mohammed. "Elliptic curve cryptosystem over optimal extension fields for computationally constrained devices". Diss., University of Pretoria, 2004. http://hdl.handle.net/2263/25330.
Texto completoDissertation (MEng (Computer Engineering))--University of Pretoria, 2006.
Electrical, Electronic and Computer Engineering
unrestricted
Chakraborty, Olive. "Design and Cryptanalysis of Post-Quantum Cryptosystems". Electronic Thesis or Diss., Sorbonne université, 2020. http://www.theses.fr/2020SORUS283.
Texto completoPolynomial system solving is one of the oldest and most important problems incomputational mathematics and has many applications in computer science. Itis intrinsically a hard problem with complexity at least single exponential in the number of variables. In this thesis, we focus on cryptographic schemes based on the hardness of this problem. In particular, we give the first known cryptanalysis of the Extension Field Cancellation cryptosystem. We work on the scheme from two aspects, first we show that the challenge parameters don’t satisfy the 80 bits of security claimed by using Gröbner basis techniques to solve the underlying algebraic system. Secondly, using the structure of the public keys, we develop a new technique to show that even altering the parameters of the scheme still keeps the scheme vulnerable to attacks for recovering the hidden secret. We show that noisy variant of the problem of solving a system of equations is still hard to solve. Finally, using this new problem to design a new multivariate key-exchange scheme as a candidate for NIST Post Quantum Cryptographic Standards
Abu, Mahfouz Adnan Mohammed I. "Elliptic curve cryptosystem over optimal extension fields for computationally constrained devices". Pretoria : [s.n.], 2004. http://upetd.up.ac.za/thesis/available/etd-06082005-144557.
Texto completoCapítulos de libros sobre el tema "Extension field cryptosystem"
Zhiyong, Zheng, Liu Fengxia y Chen Man. "On the High Dimensional RSA Algorithm—A Public Key Cryptosystem Based on Lattice and Algebraic Number Theory". En Financial Mathematics and Fintech, 169–89. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-2366-3_9.
Texto completoActas de conferencias sobre el tema "Extension field cryptosystem"
Guimarães, Antonio, Diego Aranha y Edson Borin. "Secure and efficient software implementation of QC-MDPC code-based cryptography". En XX Simpósio em Sistemas Computacionais de Alto Desempenho. Sociedade Brasileira de Computação - SBC, 2019. http://dx.doi.org/10.5753/wscad_estendido.2019.8710.
Texto completo