Literatura académica sobre el tema "Explorable uncertainty"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Explorable uncertainty".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Explorable uncertainty"
Focke, Jacob, Nicole Megow y Julie Meißner. "Minimum Spanning Tree under Explorable Uncertainty in Theory and Experiments". ACM Journal of Experimental Algorithmics 25 (8 de noviembre de 2020): 1–20. http://dx.doi.org/10.1145/3422371.
Texto completoMansour, Yishay, Alex Slivkins, Vasilis Syrgkanis y Zhiwei Steven Wu. "Bayesian Exploration: Incentivizing Exploration in Bayesian Games". Operations Research 70, n.º 2 (marzo de 2022): 1105–27. http://dx.doi.org/10.1287/opre.2021.2205.
Texto completoMathwieser, Corinna y Eranda Çela. "Special cases of the minimum spanning tree problem under explorable edge and vertex uncertainty". Networks, 11 de enero de 2024. http://dx.doi.org/10.1002/net.22204.
Texto completoErlebach, Thomas, Michael Hoffmann y Murilo Santos de Lima. "Round-Competitive Algorithms for Uncertainty Problems with Parallel Queries". Algorithmica, 15 de septiembre de 2022. http://dx.doi.org/10.1007/s00453-022-01035-6.
Texto completoAnselmi, Jonatha y Josu Doncel. "Load Balancing with Job-Size Testing: Performance Improvement or Degradation?" ACM Transactions on Modeling and Performance Evaluation of Computing Systems, 4 de marzo de 2024. http://dx.doi.org/10.1145/3651154.
Texto completoTesis sobre el tema "Explorable uncertainty"
Dogeas, Konstantinos. "Energy Minimization, Data Movement and Uncertainty : Models and Algorithms". Electronic Thesis or Diss., Sorbonne université, 2022. https://accesdistant.sorbonne-universite.fr/login?url=https://theses-intra.sorbonne-universite.fr/2022SORUS070.pdf.
Texto completoHigh performance computers (HPCs) is the go-to solution for running computationally demanding applications. As the limit of energy consumption is already achieved, the need for more energy efficient algorithms is critical.Taking advantage of the core characteristics of an HPC, such as its network topology and the heterogeneity of the machines, could lead to better scheduling algorithms. In addition, designing more realistic models, that grasp the features of real-life applications, is a work in the same direction of achieving better performance. Allowing scheduling algorithms to decide either the amount of resources allocated to an application or the running speed of the resources can pave the path to new platform-aware implementations. In the first part of the thesis, we introduce a model which takes into account both the topology and the heterogeneity of a platform by introducing two kind of machines. We augment the scheduling problem with constraints whose purpose is to implicitly reduce data movement either during parallel execution or during the communication with the file system. We propose algorithms that can decide the number of resources allocated to an application taking into consideration the extra constraints.In the second part of the thesis, we deal with the uncertainty on part of the input and more specifically, the workload of an application, that is strictly related to the time needed for its completion. Most works in the literature consider this value known in advance. However, this is rarely the case in real-life systems.In our approach, the given workload is a worst case scenario for the execution of an application. We introduce application-specific tests that may decrease the workload of a task.Since the test (e.g. compression) takes some time, and since the amount of reduction (e.g. in size) is unknown before the completion of the test, the decision of running the test for a task or not has to be taken. We propose competitive algorithms for the problem of scheduling such tasks, in order to minimize the energy consumed in a set of speed-adjustable machines. In the third part of the thesis, we focus on a similar setting of uncertain input and we consider a model where the processing times are not known in advance. Here, we augment the input of the problem by introducing predicted values in place of the unknown processing times. We design algorithms that perform optimally when the predictions are accurate while remaining competitive to the best known ones otherwise
Capítulos de libros sobre el tema "Explorable uncertainty"
Megow, Nicole y Jens Schlöter. "Explorable Uncertainty Meets Decision-Making in Logistics". En Dynamics in Logistics, 35–56. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-88662-2_2.
Texto completoErlebach, Thomas. "Computing and Scheduling with Explorable Uncertainty". En Sailing Routes in the World of Computation, 156–60. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-94418-0_16.
Texto completoLiu, Alison Hsiang-Hsuan, Fu-Hong Liu, Prudence W. H. Wong y Xiao-Ou Zhang. "The Power of Amortization on Scheduling with Explorable Uncertainty". En Approximation and Online Algorithms, 90–103. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-49815-2_7.
Texto completoAlbers, Susanne y Alexander Eckl. "Explorable Uncertainty in Scheduling with Non-uniform Testing Times". En Approximation and Online Algorithms, 127–42. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-80879-2_9.
Texto completoMegow, Nicole y Jens Schlöter. "Set Selection Under Explorable Stochastic Uncertainty via Covering Techniques". En Integer Programming and Combinatorial Optimization, 319–33. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-32726-1_23.
Texto completoActas de conferencias sobre el tema "Explorable uncertainty"
Bampis, Evripidis, Konstantinos Dogeas, Alexander Kononov, Giorgio Lucarelli y Fanny Pascual. "Speed Scaling with Explorable Uncertainty". En SPAA '21: 33rd ACM Symposium on Parallelism in Algorithms and Architectures. New York, NY, USA: ACM, 2021. http://dx.doi.org/10.1145/3409964.3461812.
Texto completoErlebach, Thomas, Murilo de Lima, Nicole Megow y Jens Schlöter. "Sorting and Hypergraph Orientation under Uncertainty with Predictions". En Thirty-Second International Joint Conference on Artificial Intelligence {IJCAI-23}. California: International Joint Conferences on Artificial Intelligence Organization, 2023. http://dx.doi.org/10.24963/ijcai.2023/619.
Texto completoMauricio, Cristóbal Alfredo, Sebastian Davila-Gálvez y Óscar Carlos Vasquez. "When a test-taking strategy is better? An approach from the paradigm of scheduling under explorable uncertainty". En Ninth International Conference on Higher Education Advances. Valencia: Universitat Politècnica de València, 2023. http://dx.doi.org/10.4995/head23.2023.16371.
Texto completo