Artículos de revistas sobre el tema "Explicable Machine Learning"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte los 44 mejores artículos de revistas para su investigación sobre el tema "Explicable Machine Learning".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.
FOMICHEVA, S. G. "INFLUENCE OF ATTACK INDICATOR RANKING ON THE QUALITY OF MACHINE LEARNING MODELS IN AGENT-BASED CONTINUOUS AUTHENTICATION SYSTEMS". T-Comm 17, n.º 8 (2023): 45–55. http://dx.doi.org/10.36724/2072-8735-2023-17-8-45-55.
Texto completoAbrahamsen, Nils-Gunnar Birkeland, Emil Nylén-Forthun, Mats Møller, Petter Eilif de Lange y Morten Risstad. "Financial Distress Prediction in the Nordics: Early Warnings from Machine Learning Models". Journal of Risk and Financial Management 17, n.º 10 (27 de septiembre de 2024): 432. http://dx.doi.org/10.3390/jrfm17100432.
Texto completoFomicheva, Svetlana y Sergey Bezzateev. "Modification of the Berlekamp-Massey algorithm for explicable knowledge extraction by SIEM-agents". Journal of Physics: Conference Series 2373, n.º 5 (1 de diciembre de 2022): 052033. http://dx.doi.org/10.1088/1742-6596/2373/5/052033.
Texto completoAlharbi, Abdulrahman, Ivan Petrunin y Dimitrios Panagiotakopoulos. "Assuring Safe and Efficient Operation of UAV Using Explainable Machine Learning". Drones 7, n.º 5 (19 de mayo de 2023): 327. http://dx.doi.org/10.3390/drones7050327.
Texto completoFujii, Keisuke. "Understanding of social behaviour in human collective motions with non-trivial rule of control". Impact 2019, n.º 10 (30 de diciembre de 2019): 84–86. http://dx.doi.org/10.21820/23987073.2019.10.84.
Texto completoWang, Chen, Lin Liu, Chengcheng Xu y Weitao Lv. "Predicting Future Driving Risk of Crash-Involved Drivers Based on a Systematic Machine Learning Framework". International Journal of Environmental Research and Public Health 16, n.º 3 (25 de enero de 2019): 334. http://dx.doi.org/10.3390/ijerph16030334.
Texto completoValladares-Rodríguez, Sonia, Manuel J. Fernández-Iglesias, Luis E. Anido-Rifón y Moisés Pacheco-Lorenzo. "Evaluation of the Predictive Ability and User Acceptance of Panoramix 2.0, an AI-Based E-Health Tool for the Detection of Cognitive Impairment". Electronics 11, n.º 21 (22 de octubre de 2022): 3424. http://dx.doi.org/10.3390/electronics11213424.
Texto completoHermitaño Castro, Juler Anderson. "Aplicación de Machine Learning en la Gestión de Riesgo de Crédito Financiero: Una revisión sistemática". Interfases, n.º 015 (11 de agosto de 2022): e5898. http://dx.doi.org/10.26439/interfases2022.n015.5898.
Texto completoUmar, Muhammad, Ashish Shiwlani, Fiza Saeed, Ahsan Ahmad, Masoomi Hifazat Ali Shah y Anoosha Tahir. "Role of Deep Learning in Diagnosis, Treatment, and Prognosis of Oncological Conditions". International Journal of Membrane Science and Technology 10, n.º 5 (15 de noviembre de 2023): 1059–71. http://dx.doi.org/10.15379/ijmst.v10i5.3695.
Texto completoValdivieso-Ros, Carmen, Francisco Alonso-Sarria y Francisco Gomariz-Castillo. "Effect of the Synergetic Use of Sentinel-1, Sentinel-2, LiDAR and Derived Data in Land Cover Classification of a Semiarid Mediterranean Area Using Machine Learning Algorithms". Remote Sensing 15, n.º 2 (5 de enero de 2023): 312. http://dx.doi.org/10.3390/rs15020312.
Texto completoPai, Kai-Chih, Wen-Cheng Chao, Yu-Len Huang, Ruey-Kai Sheu, Lun-Chi Chen, Min-Shian Wang, Shau-Hung Lin, Yu-Yi Yu, Chieh-Liang Wu y Ming-Cheng Chan. "Artificial intelligence–aided diagnosis model for acute respiratory distress syndrome combining clinical data and chest radiographs". DIGITAL HEALTH 8 (enero de 2022): 205520762211203. http://dx.doi.org/10.1177/20552076221120317.
Texto completoZhao, Ziting, Tong Liu y Xudong Zhao. "Variable Selection from Image Texture Feature for Automatic Classification of Concrete Surface Voids". Computational Intelligence and Neuroscience 2021 (6 de marzo de 2021): 1–10. http://dx.doi.org/10.1155/2021/5538573.
Texto completoRudas, Imre J. "Intelligent Engineering Systems". Journal of Advanced Computational Intelligence and Intelligent Informatics 4, n.º 4 (20 de julio de 2000): 237–39. http://dx.doi.org/10.20965/jaciii.2000.p0237.
Texto completoFazelpour, Sina y Maria De-Arteaga. "Diversity in sociotechnical machine learning systems". Big Data & Society 9, n.º 1 (enero de 2022): 205395172210820. http://dx.doi.org/10.1177/20539517221082027.
Texto completoSaladi, Saritha, Yepuganti Karuna, Srinivas Koppu, Gudheti Ramachandra Reddy, Senthilkumar Mohan, Saurav Mallik y Hong Qin. "Segmentation and Analysis Emphasizing Neonatal MRI Brain Images Using Machine Learning Techniques". Mathematics 11, n.º 2 (5 de enero de 2023): 285. http://dx.doi.org/10.3390/math11020285.
Texto completoMunk, Anders Kristian, Asger Gehrt Olesen y Mathieu Jacomy. "The Thick Machine: Anthropological AI between explanation and explication". Big Data & Society 9, n.º 1 (enero de 2022): 205395172110698. http://dx.doi.org/10.1177/20539517211069891.
Texto completoParker, J. Clint. "Below the Surface of Clinical Ethics". Journal of Medicine and Philosophy: A Forum for Bioethics and Philosophy of Medicine 48, n.º 1 (1 de febrero de 2023): 1–11. http://dx.doi.org/10.1093/jmp/jhac041.
Texto completoTay, Louis, Sang Eun Woo, Louis Hickman y Rachel M. Saef. "Psychometric and Validity Issues in Machine Learning Approaches to Personality Assessment: A Focus on Social Media Text Mining". European Journal of Personality 34, n.º 5 (septiembre de 2020): 826–44. http://dx.doi.org/10.1002/per.2290.
Texto completoHussain, Iqram, Rafsan Jany, Richard Boyer, AKM Azad, Salem A. Alyami, Se Jin Park, Md Mehedi Hasan y Md Azam Hossain. "An Explainable EEG-Based Human Activity Recognition Model Using Machine-Learning Approach and LIME". Sensors 23, n.º 17 (27 de agosto de 2023): 7452. http://dx.doi.org/10.3390/s23177452.
Texto completoMucha, Tomasz, Sijia Ma y Kaveh Abhari. "Riding a bicycle while building its wheels: the process of machine learning-based capability development and IT-business alignment practices". Internet Research 33, n.º 7 (18 de julio de 2023): 168–205. http://dx.doi.org/10.1108/intr-10-2022-0769.
Texto completoCalabuig, J. M., L. M. Garcia-Raffi y E. A. Sánchez-Pérez. "Aprender como una máquina: introduciendo la Inteligencia Artificial en la enseñanza secundaria". Modelling in Science Education and Learning 14, n.º 1 (27 de enero de 2021): 5. http://dx.doi.org/10.4995/msel.2021.15022.
Texto completoAhn, Yongsu, Muheng Yan, Yu-Ru Lin, Wen-Ting Chung y Rebecca Hwa. "Tribe or Not? Critical Inspection of Group Differences Using TribalGram". ACM Transactions on Interactive Intelligent Systems 12, n.º 1 (31 de marzo de 2022): 1–34. http://dx.doi.org/10.1145/3484509.
Texto completoTopper, Noah, George Atia, Ashutosh Trivedi y Alvaro Velasquez. "Active Grammatical Inference for Non-Markovian Planning". Proceedings of the International Conference on Automated Planning and Scheduling 32 (13 de junio de 2022): 647–51. http://dx.doi.org/10.1609/icaps.v32i1.19853.
Texto completoCantillo Romero, Janer Rafael, Javier Javier Estrada Romero y Carlos Henríquez Miranda. "APLICACIÓN DE ALGORITMOS DE APRENDIZAJE AUTOMÁTICO EN GEOCIENCIA: REVISIÓN INTEGRAL Y DESAFÍO FUTURO". REVISTA AMBIENTAL AGUA, AIRE Y SUELO 14, n.º 2 (30 de noviembre de 2023): 9–18. http://dx.doi.org/10.24054/raaas.v14i2.2783.
Texto completoBhattacharyya, Som Sekhar y Srikant Nair. "Explicating the future of work: perspectives from India". Journal of Management Development 38, n.º 3 (8 de abril de 2019): 175–94. http://dx.doi.org/10.1108/jmd-01-2019-0032.
Texto completoGe, Hanwen, Yuekun Bai, Rui Zhou, Yaoze Liu, Jiahui Wei, Shenglin Wang, Bin Li y Huanfei Xu. "Explicable Machine Learning for Predicting High-Efficiency Lignocellulose Pretreatment Solvents Based on Kamlet–Taft and Polarity Parameters". ACS Sustainable Chemistry & Engineering, 29 de abril de 2024. http://dx.doi.org/10.1021/acssuschemeng.4c01563.
Texto completoSun, Kun y Jiayi Pan. "Model of Storm Surge Maximum Water Level Increase in a Coastal Area Using Ensemble Machine Learning and Explicable Algorithm". Earth and Space Science 10, n.º 12 (diciembre de 2023). http://dx.doi.org/10.1029/2023ea003243.
Texto completoKim, Ho Heon, Dong-Wook Kim, Junwoo Woo y Kyoungyeul Lee. "Explicable prioritization of genetic variants by integration of rule-based and machine learning algorithms for diagnosis of rare Mendelian disorders". Human Genomics 18, n.º 1 (21 de marzo de 2024). http://dx.doi.org/10.1186/s40246-024-00595-8.
Texto completoClarke, Gerald P. y Adam Kapelner. "The Bayesian Additive Regression Trees Formula for Safe Machine Learning-Based Intraocular Lens Predictions". Frontiers in Big Data 3 (18 de diciembre de 2020). http://dx.doi.org/10.3389/fdata.2020.572134.
Texto completoKhan, Ijaz, Abdul Rahim Ahmad, Nafaa Jabeur y Mohammed Najah Mahdi. "An artificial intelligence approach to monitor student performance and devise preventive measures". Smart Learning Environments 8, n.º 1 (8 de septiembre de 2021). http://dx.doi.org/10.1186/s40561-021-00161-y.
Texto completoSiddique, Abu Bokkar, Eliyas Rayhan, Faisal Sobhan, Nabanita Das, Md Azizul Fazal, Shashowti Chowdhury Riya y Subrata Sarker. "Spatio-temporal analysis of land use and land cover changes in a wetland ecosystem of Bangladesh using a machine-learning approach". Frontiers in Water 6 (10 de julio de 2024). http://dx.doi.org/10.3389/frwa.2024.1394863.
Texto completoFuner, Florian. "Accuracy and Interpretability: Struggling with the Epistemic Foundations of Machine Learning-Generated Medical Information and Their Practical Implications for the Doctor-Patient Relationship". Philosophy & Technology 35, n.º 1 (29 de enero de 2022). http://dx.doi.org/10.1007/s13347-022-00505-7.
Texto completoZhang, Jiahui, Wenjie Du, Xiaoting Yang, Di Wu, Jiahe Li, Kun Wang y Yang Wang. "SMG-BERT: integrating stereoscopic information and chemical representation for molecular property prediction". Frontiers in Molecular Biosciences 10 (30 de junio de 2023). http://dx.doi.org/10.3389/fmolb.2023.1216765.
Texto completoHu, Chang, Chao Gao, Tianlong Li, Chang Liu y Zhiyong Peng. "Explainable artificial intelligence model for mortality risk prediction in the intensive care unit: a derivation and validation study". Postgraduate Medical Journal, 19 de enero de 2024. http://dx.doi.org/10.1093/postmj/qgad144.
Texto completoMarey, Ahmed, Parisa Arjmand, Ameerh Dana Sabe Alerab, Mohammad Javad Eslami, Abdelrahman M. Saad, Nicole Sanchez y Muhammad Umair. "Explainability, transparency and black box challenges of AI in radiology: impact on patient care in cardiovascular radiology". Egyptian Journal of Radiology and Nuclear Medicine 55, n.º 1 (13 de septiembre de 2024). http://dx.doi.org/10.1186/s43055-024-01356-2.
Texto completoSmith, Matthew G., Jack Radford, Eky Febrianto, Jorge Ramírez, Helen O’Mahony, Andrew B. Matheson, Graham M. Gibson, Daniele Faccio y Manlio Tassieri. "Machine learning opens a doorway for microrheology with optical tweezers in living systems". AIP Advances 13, n.º 7 (1 de julio de 2023). http://dx.doi.org/10.1063/5.0161014.
Texto completoSun, Deliang, Yuekai Ding, Haijia Wen y Fengtai Zhang. "A novel QLattice‐based whitening machine learning model of landslide susceptibility mapping". Earth Surface Processes and Landforms, 6 de agosto de 2023. http://dx.doi.org/10.1002/esp.5675.
Texto completoAhn, Sungyong. "On That <em>Toy-Being</em> of Generative Art Toys". M/C Journal 26, n.º 2 (25 de abril de 2023). http://dx.doi.org/10.5204/mcj.2947.
Texto completoLuo, Hong, Jisong Yan, Dingyu Zhang y Xia Zhou. "Identification of cuproptosis-related molecular subtypes and a novel predictive model of COVID-19 based on machine learning". Frontiers in Immunology 14 (17 de julio de 2023). http://dx.doi.org/10.3389/fimmu.2023.1152223.
Texto completoMitchell, Shira, Eric Potash, Solon Barocas, Alexander D’Amour y Kristian Lum. "Algorithmic Fairness: Choices, Assumptions, and Definitions". Annual Review of Statistics and Its Application 8, n.º 1 (9 de noviembre de 2020). http://dx.doi.org/10.1146/annurev-statistics-042720-125902.
Texto completoTobing, Margaret BR, Fizri Ismaliana SNA, Nadya Risky Hayrunnisa, Nur Indah Tika Haswuri, Cucu Sutarsyah y Feni Munifatullah. "An Exploration of Artificial Intelligence in English Language Teaching As a Foreign Language". International Journal of Social Science and Human Research 06, n.º 06 (30 de junio de 2023). http://dx.doi.org/10.47191/ijsshr/v6-i6-78.
Texto completoGuest, Olivia. "What Makes a Good Theory, and How Do We Make a Theory Good?" Computational Brain & Behavior, 24 de enero de 2024. http://dx.doi.org/10.1007/s42113-023-00193-2.
Texto completoMaity, Sourav y Karan Veer. "An Approach for Evaluation and Recognition of Facial Emotions Using EMG Signal". International Journal of Sensors, Wireless Communications and Control 14 (5 de enero de 2024). http://dx.doi.org/10.2174/0122103279260571231213053403.
Texto completoP., Naachimuthu K. "Sustainable Agriculture - The Indian Way". Journal of Rural and Industrial Development 3, n.º 1 (2015). http://dx.doi.org/10.21863/jrid/2015.3.1.002.
Texto completo