Siga este enlace para ver otros tipos de publicaciones sobre el tema: Explicability.

Tesis sobre el tema "Explicability"

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte los 18 mejores tesis para su investigación sobre el tema "Explicability".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Explore tesis sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.

1

Bettinger, Alexandre. "Influence indépendante et explicabilité de l’exploration et de l’exploitation dans les métaheuristiques". Electronic Thesis or Diss., Université de Lorraine, 2022. http://www.theses.fr/2022LORR0190.

Texto completo
Resumen
La recommandation est le fait de filtrer des informations afin de cibler des éléments (items, ressources) susceptibles d'intéresser un ou plusieurs utilisateurs. Dans le cadre des manuels scolaires numériques, les items sont des ressources éducatives (leçon, exercice, chapitre, vidéo et autres). Cette tâche peut être vue comme le traitement d'un vaste espace de recherche qui représente l'ensemble des recommandations possibles. Selon le contexte de la recommandation, une recommandation peut prendre différentes formes telles que des items, des ensembles d'items (itemsets) ou des séquences d'items. Notons que les environnements de recommandation peuvent être soumis à de nombreux aléas et contraintes de recommandation. Dans ce travail de thèse, nous nous intéressons à la recommandation d'itemsets (également appelés vecteurs ou solutions) par les métaheuristiques. Les problématiques de cette thèse s'intéressent à l'influence de l'exploration et de l'exploitation, à la réduction de données ainsi qu'à l'explicabilité de l'exploration et de l'exploitation
Recommendation is the act of filtering information to target items (resources) that may be of interest to one or more users. In the context of digital textbooks, items are educational resources (lesson, exercise, chapter, video and others). This task can be seen as processing a large search space that represents the set of possible recommendations. Depending on the context of the recommendation, a recommendation can take different forms such as items, itemsets or item sequences.Note that recommender environments can be subject to a number of randomness and recommendation constraints.In this thesis, we are interested in the recommendation of itemsets (also called vectors or solutions) by metaheuristics.The issues of this thesis are interested in the influence of exploration and exploitation, in data reduction and in the explicability of exploration and exploitation
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Risser-Maroix, Olivier. "Similarité visuelle et apprentissage de représentations". Electronic Thesis or Diss., Université Paris Cité, 2022. http://www.theses.fr/2022UNIP7327.

Texto completo
Resumen
L’objectif de cette thèse CIFRE est de développer un moteur de recherche par image, basé sur la vision par ordinateur, afin d’assister les officiers des douanes. En effet, nous constatons, paradoxalement, une augmentation des menaces sécuritaires (terrorisme, trafic, etc.) couplée d’une diminution des effectifs en Douane. Les images de cargos acquises par des scanners à rayons X permettent déjà l’inspection d’un chargement sans nécessiter l’ouverture et la fouille complète d’un chargement contrôlé. En proposant automatiquement des images similaires, un tel moteur de recherche permettrait d’aider le douanier dans sa prise de décision face à des signatures visuelles de produits peu fréquents ou suspects. Grâce à l’essor des techniques modernes en intelligence artificielle (IA), notre époque subit de grands changements : l’IA transforme tous les secteurs de l’économie. Certains voient dans cet avènement de la "robotisation" la déshumanisation de la force de travail, voire son remplacement. Cependant, réduire l’utilisation de l’IA à la simple recherche de gains de productivité serait réducteur. En réalité, l’IA pourrait permettre d’augmenter la capacité de travail des humains et non à les concurrencer en vue de les remplacer. C’est dans ce contexte, la naissance de l’Intelligence Augmentée, que s’inscrit cette thèse. Ce manuscrit consacré à la question de la similarité visuelle se décompose en deux parties. Deux cas pratiques où la collaboration entre l’Homme et l’IA est bénéfique sont ainsi proposés. Dans la première partie, le problème de l’apprentissage de représentations pour la recherche d’images similaires fait encore l’objet d’investigations approfondies. Après avoir implémenté un premier système semblable à ceux proposés par l’état de l’art, l’une des principales limitations est pointée du doigt : le biais sémantique. En effet, les principales méthodes contemporaines utilisent des jeux de données d’images couplées de labels sémantiques uniquement. Les travaux de la littérature considèrent que deux images sont similaires si elles partagent le même label. Cette vision de la notion de similarité, pourtant fondamentale en IA, est réductrice. Elle sera donc remise en question à la lumière des travaux en psychologie cognitive afin de proposer une amélioration : la prise en compte de la similarité visuelle. Cette nouvelle définition permet une meilleure synergie entre le douanier et la machine. Ces travaux font l’objet de publications scientifiques et d’un brevet. Dans la seconde partie, après avoir identifié les composants clefs permettant d’améliorer les performances du système précédemment proposé, une approche mêlant recherche empirique et théorique est proposée. Ce second cas, l’intelligence augmentée est inspirée des développements récents en mathématiques et physique. D’abord appliquée à la com- préhension d’un hyperparamètre important (la température), puis à une tâche plus large (la classification), la méthode proposée permet de fournir une intuition sur l’importance et le rôle de facteurs corrélés à la variable étudiée (ex. hyperparamètre, score, etc.). La chaîne de traitement ainsi mise en place a démontré son efficacité en fournissant une solution hautement explicable et en adéquation avec des décennies de recherches en apprentissage automatique. Ces découvertes permettront l’amélioration des solutions précédemment développées
The objective of this CIFRE thesis is to develop an image search engine, based on computer vision, to assist customs officers. Indeed, we observe, paradoxically, an increase in security threats (terrorism, trafficking, etc.) coupled with a decrease in the number of customs officers. The images of cargoes acquired by X-ray scanners already allow the inspection of a load without requiring the opening and complete search of a controlled load. By automatically proposing similar images, such a search engine would help the customs officer in his decision making when faced with infrequent or suspicious visual signatures of products. Thanks to the development of modern artificial intelligence (AI) techniques, our era is undergoing great changes: AI is transforming all sectors of the economy. Some see this advent of "robotization" as the dehumanization of the workforce, or even its replacement. However, reducing the use of AI to the simple search for productivity gains would be reductive. In reality, AI could allow to increase the work capacity of humans and not to compete with them in order to replace them. It is in this context, the birth of Augmented Intelligence, that this thesis takes place. This manuscript devoted to the question of visual similarity is divided into two parts. Two practical cases where the collaboration between Man and AI is beneficial are proposed. In the first part, the problem of learning representations for the retrieval of similar images is still under investigation. After implementing a first system similar to those proposed by the state of the art, one of the main limitations is pointed out: the semantic bias. Indeed, the main contemporary methods use image datasets coupled with semantic labels only. The literature considers that two images are similar if they share the same label. This vision of the notion of similarity, however fundamental in AI, is reductive. It will therefore be questioned in the light of work in cognitive psychology in order to propose an improvement: the taking into account of visual similarity. This new definition allows a better synergy between the customs officer and the machine. This work is the subject of scientific publications and a patent. In the second part, after having identified the key components allowing to improve the performances of thepreviously proposed system, an approach mixing empirical and theoretical research is proposed. This secondcase, augmented intelligence, is inspired by recent developments in mathematics and physics. First applied tothe understanding of an important hyperparameter (temperature), then to a larger task (classification), theproposed method provides an intuition on the importance and role of factors correlated to the studied variable(e.g. hyperparameter, score, etc.). The processing chain thus set up has demonstrated its efficiency byproviding a highly explainable solution in line with decades of research in machine learning. These findings willallow the improvement of previously developed solutions
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Bourgeade, Tom. "Interprétabilité a priori et explicabilité a posteriori dans le traitement automatique des langues". Thesis, Toulouse 3, 2022. http://www.theses.fr/2022TOU30063.

Texto completo
Resumen
Avec l'avènement des architectures Transformer en Traitement Automatique des Langues il y a quelques années, nous avons observé des progrès sans précédents dans diverses tâches de classification ou de génération de textes. Cependant, l'explosion du nombre de paramètres et de la complexité de ces modèles "boîte noire" de l'état de l'art, rendent de plus en plus évident le besoin désormais urgent de transparence dans les approches d'apprentissage automatique. La capacité d'expliquer, d'interpréter et de comprendre les décisions algorithmiques deviendra primordiale à mesure que les modèles informatiques deviennent de plus en plus présents dans notre vie quotidienne. En utilisant les méthodes de l'IA eXplicable (XAI), nous pouvons par exemple diagnostiquer les biais dans des ensembles de données, des corrélations erronées qui peuvent au final entacher le processus d'apprentissage des modèles, les conduisant à apprendre des raccourcis indésirables, ce qui pourrait conduire à des décisions algorithmiques injustes, incompréhensibles, voire risquées. Ces modes d'échec de l'IA peuvent finalement éroder la confiance que les humains auraient pu placer dans des applications bénéfiques. Dans ce travail, nous explorons plus spécifiquement deux aspects majeurs de l'XAI, dans le contexte des tâches et des modèles de Traitement Automatique des Langues : dans la première partie, nous abordons le sujet de l'interprétabilité intrinsèque, qui englobe toutes les méthodes qui sont naturellement faciles à expliquer. En particulier, nous nous concentrons sur les représentations de plongement de mots, qui sont une composante essentielle de pratiquement toutes les architectures de TAL, permettant à ces modèles mathématiques de manipuler le langage humain d'une manière plus riche sur le plan sémantique. Malheureusement, la plupart des modèles qui génèrent ces représentations les produisent d'une manière qui n'est pas interprétable par les humains. Pour résoudre ce problème, nous expérimentons la construction et l'utilisation de modèles de plongement de mots interprétables, qui tentent de corriger ce problème, en utilisant des contraintes qui imposent l'interprétabilité de ces représentations. Nous utilisons ensuite ces modèles, dans une configuration nouvelle, simple mais efficace, pour tenter de détecter des corrélations lexicales, erronées ou non, dans certains ensembles de données populaires en TAL. Dans la deuxième partie, nous explorons les méthodes d'explicabilité post-hoc, qui peuvent cibler des modèles déjà entraînés, et tenter d'extraire diverses formes d'explications de leurs décisions. Ces méthodes peuvent aller du diagnostic des parties d'une entrée qui étaient les plus pertinentes pour une décision particulière, à la génération d'exemples adversariaux, qui sont soigneusement conçus pour aider à révéler les faiblesses d'un modèle. Nous explorons un nouveau type d'approche, en partie permis par les architectures Transformer récentes, très performantes mais opaques : au lieu d'utiliser une méthode distincte pour produire des explications des décisions d'un modèle, nous concevons et mettons au point une configuration qui apprend de manière jointe à exécuter sa tâche, tout en produisant des explications en langage naturel en forme libre de ses propres résultats. Nous évaluons notre approche sur un ensemble de données de grande taille annoté avec des explications humaines, et nous jugeons qualitativement certaines des explications générées par notre approche
With the advent of Transformer architectures in Natural Language Processing a few years ago, we have observed unprecedented progress in various text classification or generation tasks. However, the explosion in the number of parameters, and the complexity of these state-of-the-art blackbox models, is making ever more apparent the now urgent need for transparency in machine learning approaches. The ability to explain, interpret, and understand algorithmic decisions will become paramount as computer models start becoming more and more present in our everyday lives. Using eXplainable AI (XAI) methods, we can for example diagnose dataset biases, spurious correlations which can ultimately taint the training process of models, leading them to learn undesirable shortcuts, which could lead to unfair, incomprehensible, or even risky algorithmic decisions. These failure modes of AI, may ultimately erode the trust humans may have otherwise placed in beneficial applications. In this work, we more specifically explore two major aspects of XAI, in the context of Natural Language Processing tasks and models: in the first part, we approach the subject of intrinsic interpretability, which encompasses all methods which are inherently easy to produce explanations for. In particular, we focus on word embedding representations, which are an essential component of practically all NLP architectures, allowing these mathematical models to process human language in a more semantically-rich way. Unfortunately, many of the models which generate these representations, produce them in a way which is not interpretable by humans. To address this problem, we experiment with the construction and usage of Interpretable Word Embedding models, which attempt to correct this issue, by using constraints which enforce interpretability on these representations. We then make use of these, in a simple but effective novel setup, to attempt to detect lexical correlations, spurious or otherwise, in some popular NLP datasets. In the second part, we explore post-hoc explainability methods, which can target already trained models, and attempt to extract various forms of explanations of their decisions. These can range from diagnosing which parts of an input were the most relevant to a particular decision, to generating adversarial examples, which are carefully crafted to help reveal weaknesses in a model. We explore a novel type of approach, in parts allowed by the highly-performant but opaque recent Transformer architectures: instead of using a separate method to produce explanations of a model's decisions, we design and fine-tune an architecture which jointly learns to both perform its task, while also producing free-form Natural Language Explanations of its own outputs. We evaluate our approach on a large-scale dataset annotated with human explanations, and qualitatively judge some of our approach's machine-generated explanations
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Raizonville, Adrien. "Regulation and competition policy of the digital economy : essays in industrial organization". Electronic Thesis or Diss., Institut polytechnique de Paris, 2021. http://www.theses.fr/2021IPPAT028.

Texto completo
Resumen
Cette thèse aborde deux enjeux auxquels les régulateurs doivent faire face dans l’économie numérique : le défi informationnel généré par l'utilisation de nouvelles technologies d'intelligence artificielle et la problématique du pouvoir de marché des grandes plateformes numériques. Le premier chapitre de cette thèse étudie la mise en place d’un système d’audit (coûteux et imparfait) par un régulateur cherchant à réduire le risque de dommage généré par les technologies d’intelligence artificielle, tout en limitant le coût de la régulation. Les entreprises peuvent investir dans l'explicabilité de leurs technologies pour mieux comprendre leurs algorithmes et réduire leur coût de conformité à la réglementation. Lorsque l’explicabilité n’affecte pas l’efficacité des audits, la prise en compte du niveau d'explicabilité de la technologie dans la politique d’audit du régulateur induit davantage d'investissement en explicabilité et une conformité plus forte de la part des entreprises en comparaison d’une politique neutre à l’explicabilité. Si, au contraire, l'explicabilité facilite la détection d'une mauvaise conduite par le régulateur, les entreprises peuvent s’engager dans une stratégie d’opacification de leur technologie. Un comportement opportuniste de la part du régulateur décourage l'investissement dans l'explicabilité. Pour promouvoir l'explicabilité et la conformité, il peut être nécessaire de mettre en œuvre une réglementation de type "commande et contrôle" avec des normes d'explicabilité minimales. Le deuxième chapitre explore les effets de la coopétition entre deux plateformes bifaces sur les prix de souscription des utilisateurs. Plus spécifiquement, les plateformes fixent les prix de souscription d’un groupe d’utilisateurs (par exemple, les vendeurs) de manière coopérative et les prix de l’autre groupe (par exemple, les acheteurs) de manière non coopérative. En coopérant pour fixer le prix de souscription des vendeurs, chaque plateforme internalise l’externalité négative qu’elle exerce sur l’autre plateforme lorsqu’elle réduit son prix. Cela conduit les plateformes à augmenter le prix de souscription pour les vendeurs par rapport à la situation de concurrence. Dans le même temps, à mesure que la valeur économique des vendeurs augmente, comme les acheteurs exercent un effet de réseau positif sur les vendeurs, la concurrence entre plateformes pour attirer les acheteurs s'intensifie, ce qui conduit à une baisse du prix de souscription pour les acheteurs. Nous considérons deux scénarios : un marché en croissance (dans lequel de nouveaux utilisateurs peuvent rejoindre la plateforme) et un marché mature. Le surplus total augmente uniquement dans le premier cas, lorsque de nouveaux acheteurs peuvent rejoindre le marché. Enfin, le troisième chapitre s’intéresse à l'interopérabilité entre une plateforme en place et un nouvel entrant comme instrument de régulation pour améliorer la contestabilité du marché et limiter le pouvoir de marché de la plateforme en place. L'interopérabilité permet de partager les effets de réseau entre les deux plateformes, ce qui réduit leur importance dans le choix de souscription des utilisateurs à une plateforme. L'introduction de l'interopérabilité entraîne une réduction de la demande pour la plateforme en place, qui réduit le prix de son tarif de souscription. En revanche, pour des niveaux d'interopérabilité relativement faibles, la demande pour le nouvel entrant augmente (de même que son prix et son profit), puis celle-ci diminue pour des niveaux d'interopérabilité plus élevés. Dans tous les cas, les utilisateurs bénéficient de la mise en place de l’interopérabilité
This thesis addresses two issues facing regulators in the digital economy: the informational challenge generated by the use of new artificial intelligence technologies and the problem of the market power of large digital platforms. The first chapter of this thesis explores the implementation of a (costly and imperfect) audit system by a regulator seeking to limit the risk of damage generated by artificial intelligence technologies as well as its cost of regulation. Firms may invest in explainability to better understand their technologies and, thus, reduce their cost of compliance. When audit efficacy is not affected by explainability, firms invest voluntarily in explainability. Technology-specific regulation induces greater explainability and compliance than technology-neutral regulation. If, instead, explainability facilitates the regulator's detection of misconduct, a firm may hide its misconduct behind algorithmic opacity. Regulatory opportunism further deters investment in explainability. To promote explainability and compliance, command-and-control regulation with minimum explainability standards may be needed. The second chapter studies the effects of implementing a coopetition strategy between two two-sided platforms on the subscription prices of their users, in a growing market (i.e., in which new users can join the platform) and in a mature market. More specifically, the platforms cooperatively set the subscription prices of one group of users (e.g., sellers) and the prices of the other group (e.g., buyers) non-cooperatively. By cooperating on the subscription price of sellers, each platform internalizes the negative externality it exerts on the other platform when it reduces its price. This leads the platforms to increase the subscription price for sellers relative to the competitive situation. At the same time, as the economic value of sellers increases and as buyers exert a positive cross-network effect on sellers, competition between platforms to attract buyers intensifies, leading to a lower subscription price for buyers. The increase in total surplus only occurs when new buyers can join the market. Finally, the third chapter examines interoperability between an incumbent platform and a new entrant as a regulatory tool to improve market contestability and limit the market power of the incumbent platform. Interoperability allows network effects to be shared between the two platforms, thereby reducing the importance of network effects in users' choice of subscription to a platform. The preference to interact with exclusive users of the other platform leads to multihoming when interoperability is not perfect. Interoperability leads to a reduction in demand for the incumbent platform, which reduces its subscription price. In contrast, for relatively low levels of interoperability, demand for the entrant platform increases, as does its price and profit, before decreasing for higher levels of interoperability. Users always benefit from the introduction of interoperability
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Parekh, Jayneel. "A Flexible Framework for Interpretable Machine Learning : application to image and audio classification". Electronic Thesis or Diss., Institut polytechnique de Paris, 2023. http://www.theses.fr/2023IPPAT032.

Texto completo
Resumen
Les systèmes d'apprentissage automatique, et en particulier les réseaux de neurones, ont rapidement développé leur capacité à résoudre des problèmes d'apprentissage complexes. Par conséquent, ils sont intégrés dans la société avec une influence de plus en plus grande sur tous les niveaux de l'expérience humaine. Cela a entraîné la nécessité d'acquérir des informations compréhensibles par l'homme dans leur processus de prise de décision pour s'assurer que les décisions soient prises de manière éthique et fiable. L'étude et le développement de méthodes capables de générer de telles informations constituent de manière générale le domaine de l'apprentissage automatique interprétable.Cette thèse vise à développer un nouveau cadre pour aborder deux problématiques majeures dans ce domaine, l'interprétabilité post-hoc et par conception. L'interprétabilité post-hoc conçoit des méthodes pour analyser les décisions d'un modèle prédictif pré-entraîné, tandis que l'interprétabilité par conception vise à apprendre un modèle unique capable à la fois de prédiction et d'interprétation. Pour ce faire, nous étendons la formulation traditionnelle de l'apprentissage supervisé pour inclure l'interprétation en tant que tâche supplémentaire en plus de la prédiction, chacune étant traitée par des modèles distincts, mais liés, un prédicteur et un interpréteur. Fondamentalement, l'interpréteur dépend du prédicteur à travers ses couches cachées et utilise un dictionnaire de concepts comme représentation pour l'interprétation avec la capacité de générer des interprétations locales et globales.Le cadre est instancié séparément pour résoudre les problèmes d'interprétation dans le contexte de la classification d'images et de sons. Les deux systèmes ont fait l'objet d'une évaluation approfondie de leurs interprétations sur de multiples ensembles de données publics. Dans les deux cas, nous démontrons des performances de prédiction élevées, ainsi qu'une haute fidélité des interprétations. Bien qu'ils adhèrent à la même structure sous-jacente, les deux systèmes sont distinctement conçus pour l'interprétation. Le système d'interprétabilité des images fait avancer le protocole de découverte des concepts appris pour une meilleure compréhension, laquelle est évaluée qualitativement. De plus, il inclut un nouveau critère pour rendre les interprétations plus concises. Le système d'interprétabilité audio est, quant à lui, conçu avec une nouvelle représentation basée sur une factorisation matricielle non-négative pour faciliter les interprétations écoutables, tout en modélisant les objets audio composant une scène
Machine learning systems and specially neural networks, have rapidly grown in their ability to address complex learning problems. Consequently, they are being integrated into society with an ever-rising influence on all levels of human experience. This has resulted in a need to gain human-understandable insights in their decision making process to ensure the decisions are being made ethically and reliably. The study and development of methods which can generate such insightsbroadly constitutes the field of interpretable machine learning. This thesis aims to develop a novel framework that can tackle two major problem settings in this field, post-hoc and by-design interpretation. Posthoc interpretability devises methods to interpret decisionsof a pre-trained predictive model, while by-design interpretability targets to learn a single model capable of both prediction and interpretation. To this end, we extend the traditional supervised learning formulation to include interpretation as an additional task besides prediction,each addressed by separate but related models, a predictor and an interpreter. Crucially, the interpreter is dependent on the predictor through its hidden layers and utilizes a dictionary of concepts as its representation for interpretation with the capacity to generate local and globalinterpretations. The framework is separately instantiated to address interpretability problems in the context of image and audio classification. Both systems are extensively evaluated for their interpretations on multiple publicly available datasets. We demonstrate high predictiveperformance and fidelity of interpretations in both cases. Despite adhering to the same underlying structure the two systems are designed differently for interpretations.The image interpretability system advances the pipeline for discovering learnt concepts for improvedunderstandability that is qualitatively evaluated. The audio interpretability system instead is designed with a novel representation based on non-negative matrix factorization to facilitate listenable interpretations whilst modeling audio objects composing a scene
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Fauvel, Kevin. "Enhancing performance and explainability of multivariate time series machine learning methods : applications for social impact in dairy resource monitoring and earthquake early warning". Thesis, Rennes 1, 2020. http://www.theses.fr/2020REN1S043.

Texto completo
Resumen
Le déploiement massif de capteurs couplé à leur exploitation dans de nombreux secteurs génère une masse considérable de données multivariées qui se sont révélées clés pour la recherche scientifique, les activités des entreprises et la définition de politiques publiques. Plus spécifiquement, les données multivariées qui intègrent une évolution temporelle, c’est-à-dire des séries temporelles, ont reçu une attention toute particulière ces dernières années, notamment grâce à des applications critiques de monitoring (e.g. mobilité, santé) et l’apprentissage automatique. Cependant, pour de nombreuses applications, l’adoption d’algorithmes d’apprentissage automatique ne peut se reposer uniquement sur la performance. Par exemple, le règlement général sur la protection des données de l’Union européenne, entré en application le 25 Mai 2018, introduit un droit à l’explication pour tous les individus afin qu’ils obtiennent des « meaningful explanations of the logic involved » lorsque la prise de décision automatisée a des « legal effects » sur les individus ou les affecte significativement. Les modèles d’apprentissage automatique de séries temporelles multivariées de l’état de l’art les plus performants sont des modèles difficiles à comprendre (« black-box »), qui se reposent sur des méthodes d’explicabilité applicables à n’importe quel modèle d’apprentissage automatique (post-hoc modèle-agnostique). L’axe de travail principal au sein des méthodes d’explicabilité post-hoc modèle-agnostique consiste à approximer la surface de décision d’un modèle en utilisant un modèle de remplacement explicable. Cependant, les explications du modèle de remplacement ne peuvent pas être parfaitement exactes au regard du modèle original, ce qui constitue un prérequis pour de nombreuses applications. L’exactitude est cruciale car elle correspond au niveau de confiance que l’utilisateur peut porter aux explications relatives aux prédictions du modèle, c’est-à-dire à quel point les explications reflètent ce que le modèle calcule.Cette thèse propose de nouvelles approches pour améliorer la performance et l’explicabilité des méthodes d’apprentissage automatique de séries temporelles multivariées, et établit de nouvelles connaissances concernant deux applications réelles
The prevalent deployment and usage of sensors in a wide range of sectors generate an abundance of multivariate data which has proven to be instrumental for researches, businesses and policies. More specifically, multivariate data which integrates temporal evolution, i.e. Multivariate Time Series (MTS), has received significant interests in recent years, driven by high resolution monitoring applications (e.g. healthcare, mobility) and machine learning. However, for many applications, the adoption of machine learning methods cannot rely solely on their prediction performance. For example, the European Union’s General Data Protection Regulation, which became enforceable on 25 May 2018, introduces a right to explanation for all individuals so that they can obtain “meaningful explanations of the logic involved” when automated decision-making has “legal effects” on individuals or similarly “significantly affecting” them. The current best performing state-of-the-art MTS machine learning methods are “black-box” models, i.e. complicated-to-understand models, which rely on explainability methods providing explanations from any machine learning model to support their predictions (post-hoc model-agnostic). The main line of work in post-hoc model-agnostic explainability methods approximates the decision surface of a model using an explainable surrogate model. However, the explanations from the surrogate models cannot be perfectly faithful with respect to the original model, which is a prerequisite for numerous applications. Faithfulness is critical as it corresponds to the level of trust an end-user can have in the explanations of model predictions, i.e. the level of relatedness of the explanations to what the model actually computes. This thesis introduces new approaches to enhance both performance and explainability of MTS machine learning methods, and derive insights from the new methods about two real-world applications
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Radulovic, Nedeljko. "Post-hoc Explainable AI for Black Box Models on Tabular Data". Electronic Thesis or Diss., Institut polytechnique de Paris, 2023. http://www.theses.fr/2023IPPAT028.

Texto completo
Resumen
Les modèles d'intelligence artificielle (IA) actuels ont fait leurs preuves dans la résolution de diverses tâches, telles que la classification, la régression, le traitement du langage naturel (NLP) et le traitement d'images. Les ressources dont nous disposons aujourd'hui nous permettent d'entraîner des modèles d'IA très complexes pour résoudre différents problèmes dans presque tous les domaines : médecine, finance, justice, transport, prévisions, etc. Avec la popularité et l'utilisation généralisée des modèles d'IA, la nécessite d'assurer la confiance dans ces modèles s'est également accrue. Aussi complexes soient-ils aujourd'hui, ces modèles d'IA sont impossibles à interpréter et à comprendre par les humains. Dans cette thèse nous nous concentrons sur un domaine de recherche spécifique, à savoir l'intelligence artificielle explicable (xAI), qui vise à fournir des approches permettant d'interpréter les modèles d'IA complexes et d'expliquer leurs décisions. Nous présentons deux approches, STACI et BELLA, qui se concentrent sur les tâches de classification et de régression, respectivement, pour les données tabulaires. Les deux méthodes sont des approches post-hoc agnostiques au modèle déterministe, ce qui signifie qu'elles peuvent être appliquées à n'importe quel modèle boîte noire après sa création. De cette manière, l'interopérabilité présente une valeur ajoutée sans qu'il soit nécessaire de faire des compromis sur les performances du modèle de boîte noire. Nos méthodes fournissent des interprétations précises, simples et générales à la fois de l'ensemble du modèle boîte noire et de ses prédictions individuelles. Nous avons confirmé leur haute performance par des expériences approfondies et étude d'utilisateurs
Current state-of-the-art Artificial Intelligence (AI) models have been proven to be verysuccessful in solving various tasks, such as classification, regression, Natural Language Processing(NLP), and image processing. The resources that we have at our hands today allow us to trainvery complex AI models to solve different problems in almost any field: medicine, finance, justice,transportation, forecast, etc. With the popularity and widespread use of the AI models, the need toensure the trust in them also grew. Complex as they come today, these AI models are impossible to be interpreted and understood by humans. In this thesis, we focus on the specific area of research, namely Explainable Artificial Intelligence (xAI), that aims to provide the approaches to interpret the complex AI models and explain their decisions. We present two approaches STACI and BELLA which focus on classification and regression tasks, respectively, for tabular data. Both methods are deterministic model-agnostic post-hoc approaches, which means that they can be applied to any black-box model after its creation. In this way, interpretability presents an added value without the need to compromise on black-box model's performance. Our methods provide accurate, simple and general interpretations of both the whole black-box model and its individual predictions. We confirmed their high performance through extensive experiments and a user study
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Bennetot, Adrien. "A Neural-Symbolic learning framework to produce interpretable predictions for image classification". Electronic Thesis or Diss., Sorbonne université, 2022. http://www.theses.fr/2022SORUS418.

Texto completo
Resumen
L'intelligence artificielle s'est développée de manière exponentielle au cours de la dernière décennie. Son évolution est principalement liée aux progrès des processeurs des cartes graphiques des ordinateurs, permettant d'accélérer le calcul des algorithmes d'apprentissage, et à l'accès à des volumes massifs de données. Ces progrès ont été principalement motivés par la recherche de modèles de prédiction de qualité, rendant ces derniers extrêmement précis mais opaques. Leur adoption à grande échelle est entravée par leur manque de transparence, ce qui provoque l'émergence de l'intelligence artificielle eXplainable (XAI). Ce nouvel axe de recherche vise à favoriser l'utilisation de modèles d'apprentissage basés sur des données de masse en fournissant des méthodes et des concepts pour obtenir des éléments explicatifs sur leur fonctionnement. Cependant, la jeunesse de ce domaine entraîne un manque de consensus et de cohésion autour des définitions et objectifs clés qui le régissent. Cette thèse contribue au domaine à travers deux perspectives, l'une théorique de ce qu'est XAI et comment l'atteindre, l'autre pratique. La première est basée sur un examen approfondi de la littérature, aboutissant à deux contributions : 1) la proposition d'une nouvelle définition de l'intelligence artificielle explicable et 2) la création d'une nouvelle taxonomie des méthodes d'explicabilité existantes. La contribution pratique consiste en deux cadres d'apprentissage, tous deux basés sur un principe visant à relier les paradigmes connexionniste et symbolique
Artificial Intelligence has been developing exponentially over the last decade. Its evolution is mainly linked to the progress of computer graphics card processors, allowing to accelerate the calculation of learning algorithms, and to the access to massive volumes of data. This progress has been principally driven by a search for quality prediction models, making them extremely accurate but opaque. Their large-scale adoption is hampered by their lack of transparency, thus causing the emergence of eXplainable Artificial Intelligence (XAI). This new line of research aims at fostering the use of learning models based on mass data by providing methods and concepts to obtain explanatory elements concerning their functioning. However, the youth of this field causes a lack of consensus and cohesion around the key definitions and objectives governing it. This thesis contributes to the field through two perspectives, one through a theory of what is XAI and how to achieve it and one practical. The first is based on a thorough review of the literature, resulting in two contributions: 1) the proposal of a new definition for Explainable Artificial Intelligence and 2) the creation of a new taxonomy of existing explainability methods. The practical contribution consists of two learning frameworks, both based on a paradigm aiming at linking the connectionist and symbolic paradigms
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Bove, Clara. "Conception et évaluation d’interfaces utilisateur explicatives pour systèmes complexes en apprentissage automatique". Electronic Thesis or Diss., Sorbonne université, 2023. https://accesdistant.sorbonne-universite.fr/login?url=https://theses-intra.sorbonne-universite.fr/2023SORUS247.pdf.

Texto completo
Resumen
Cette thèse se place dans le domaine de l’IA eXplicable (XAI) centrée sur l’humain, et plus particulièrement sur l’intelligibilité des explications pour les utilisateurs non-experts. Le contexte technique est le suivant : d’un côté, un classificateur ou un régresseur opaque fournit une prédiction, et une approche XAI post-hoc génère des informations qui agissent comme des explications ; de l’autre côté, l’ utilisateur reçoit à la fois la prédiction et ces explications. Dans ce contexte, plusieurs problèmes peuvent limiter la qualité des explications. Ceux sur lesquels nous nous concentrons sont : le manque d’informations contextuelles dans les explications, le manque d’orientation pour la conception de fonctionnalités pour permettre à l’utilisateur d’explorer et la confusion potentielle qui peut être générée par la quantité d’informations. Nous développons une procédure expérimentale pour concevoir des interfaces utilisateur explicatives et évaluer leur intelligibilité pour les utilisateurs non- experts. Nous étudions des opportunités d’amélioration XAI sur deux types types d’explications locales : l’importance des variables et les exemples contre- factuels. Aussi, nous proposons des principes XAI génériques pour contextualiser et permettre l’exploration sur l’importance des variables; ainsi que pour guider les utilisateurs dans l’analyse comparative des explications contrefactuelles avec plusieurs exemples. Nous proposons une application de ces principes pro- posés dans deux interfaces utilisateur explicatives distinctes, respectivement pour un scénario d’assurance et un scénario financier. Enfin, nous utilisons ces interfaces améliorées pour mener des études utilisateurs en laboratoire et nous mesurons deux dimensions de l’intelligibilité, à savoir la compréhension objective et la satisfaction subjective. Pour l’importance des variables locales, nous montrons que la contextualisation et l’exploration améliorent l’intelligibilité de ces explications. De même, pour les exemples contrefactuels, nous montrons qu’avoir plusieurs exemples plutôt qu’un améliore également l’intelligibilité, et que l’analyse comparative est un outil prometteur pour la satisfaction des utilisateurs. À un niveau fondamental, nous considérons la question théorique des incohérences éventuelles de ces explications. Dans le contexte considéré dans cette thèse, la qualité d’une explication repose à la fois sur la capacité du système d’apprentissage automatique à générer une explication cohérente et sur la capacité de l’utilisateur final à interpréter correctement ces explications. Cependant, il peut y avoir plusieurs limitations: d’un côté, la littérature a rapporté plusieurs limitations techniques de ces systèmes, rendant les explications potentiellement incohérentes ; de l’autre, des études utilisateurs ont montré que les interprétations des utilisateurs ne sont pas toujours exactes, même si des explications cohérentes leur ont été présentées. Nous étudions donc ces incohérences et proposons une ontologie pour structurer les incohérences les plus courantes de la littérature. Cette ontologie constitue un outil pour comprendre les limites actuelles en XAI pour éviter les pièges des explications
This thesis focuses on human-centered eXplainable AI (XAI) and more specif- ically on the intelligibility of Machine Learning (ML) explanations for non-expert users. The technical context is as follows: on one side, either an opaque classifier or regressor provides a prediction, with an XAI post-hoc approach that generates pieces of information as explanations; on the other side, the user receives both the prediction and the explanations. Within this XAI technical context, several is- sues might lessen the quality of explanations. The ones we focus on are: the lack of contextual information in ML explanations, the unguided design of function- alities or the user’s exploration, as well as confusion that could be caused when delivering too much information. To solve these issues, we develop an experimental procedure to design XAI functional interfaces and evaluate the intelligibility of ML explanations by non-expert users. Doing so, we investigate the XAI enhancements provided by two types of local explanation components: feature importance and counterfac- tual examples. Thus, we propose generic XAI principles for contextualizing and allowing exploration on feature importance; and for guiding users in their com- parative analysis of counterfactual explanations with plural examples. We pro- pose an implementation of such principles into two distinct explanation-based user interfaces, respectively for an insurance and a financial scenarios. Finally, we use the enhanced interfaces to conduct users studies in lab settings and to measure two dimensions of intelligibility, namely objective understanding and subjective satisfaction. For local feature importance, we demonstrate that con- textualization and exploration improve the intelligibility of such explanations. Similarly for counterfactual examples, we demonstrate that the plural condition improve the intelligibility as well, and that comparative analysis appears to be a promising tool for users’ satisfaction. At a fundamental level, we consider the issue of inconsistency within ML explanations from a theoretical point of view. In the explanation process consid- ered for this thesis, the quality of an explanation relies both on the ability of the Machine Learning system to generate a coherent explanation and on the ability of the end user to make a correct interpretation of these explanations. Thus, there can be limitations: on one side, as reported in the literature, technical limitations of ML systems might produce potentially inconsistent explanations; on the other side, human inferences can be inaccurate, even if users are presented with con- sistent explanations. Investigating such inconsistencies, we propose an ontology to structure the most common ones from the literature. We advocate that such an ontology can be useful to understand current XAI limitations for avoiding explanations pitfalls
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Faille, Juliette. "Data-Based Natural Language Generation : Evaluation and Explainability". Electronic Thesis or Diss., Université de Lorraine, 2023. http://www.theses.fr/2023LORR0305.

Texto completo
Resumen
Les modèles de génération de langage naturel (NLG) ont récemment atteint de très hautes performances. Les textes qu'ils produisent sont généralement corrects sur le plan grammatical et syntaxique, ce qui les rend naturels. Bien que leur sens soit correct dans la grande majorité des cas, même les modèles de NLG les plus avancés produisent encore des textes avec des significations partiellement inexactes. Dans cette thèse, en nous concentrons sur le cas particulier des problèmes liés au contenu des textes générés, nous proposons d'évaluer et d'analyser les modèles utilisés dans les tâches de verbalisation de graphes RDF (Resource Description Framework) et de génération de questions conversationnelles. Tout d'abord, nous étudions la tâche de verbalisation des graphes RDF et en particulier les omissions et hallucinations d'entités RDF, c'est-à-dire lorsqu'un texte généré automatiquement ne mentionne pas toutes les entités du graphe RDF d'entrée ou mentionne d'autres entités que celles du graphe d'entrée. Nous évaluons 25 modèles de verbalisation de graphes RDF sur les données WebNLG. Nous développons une méthode pour détecter automatiquement les omissions et les hallucinations d'entités RDF dans les sorties de ces modèles. Nous proposons une métrique basée sur le nombre d'omissions ou d'hallucinations pour quantifier l'adéquation sémantique des modèles NLG avec l'entrée. Nous constatons que cette métrique est corrélée avec ce que les annotateurs humains considèrent comme sémantiquement correct et nous montrons que même les modèles les plus globalement performants sont sujets à des omissions et à des hallucinations. Suite à cette observation sur la tendance des modèles de verbalisation RDF à générer des textes avec des problèmes liés au contenu, nous proposons d'analyser l'encodeur de deux de ces modèles, BART et T5. Nous utilisons une méthode d'explicabilité par sondage et introduisons deux sondes de classification, l'une paramétrique et l'autre non paramétrique, afin de détecter les omissions et les déformations des entités RDF dans les plongements lexicaux des modèles encodeur-décodeur. Nous constatons que ces classifieurs sont capables de détecter ces erreurs dans les encodages, ce qui suggère que l'encodeur des modèles est responsable d'une certaine perte d'informations sur les entités omises et déformées. Enfin, nous proposons un modèle de génération de questions conversationnelles basé sur T5 qui, en plus de générer une question basée sur un graphe RDF d'entrée et un contexte conversationnel, génère à la fois une question et le triplet RDF correspondant. Ce modèle nous permet d'introduire une procédure d'évaluation fine évaluant automatiquement la cohérence avec le contexte de la conversation et l'adéquation sémantique avec le graphe RDF d'entrée. Nos contributions s'inscrivent dans les domaines de l'évaluation en NLG et de l'explicabilité. Nous empruntons des techniques et des méthodologies à ces deux domaines de recherche afin d'améliorer la fiabilité des modèles de génération de texte
Recent Natural Language Generation (NLG) models achieve very high average performance. Their output texts are generally grammatically and syntactically correct which makes them sound natural. Though the semantics of the texts are right in most cases, even the state-of-the-art NLG models still produce texts with partially incorrect meanings. In this thesis, we propose evaluating and analyzing content-related issues of models used in the NLG tasks of Resource Description Framework (RDF) graphs verbalization and conversational question generation. First, we focus on the task of RDF verbalization and the omissions and hallucinations of RDF entities, i.e. when an automatically generated text does not mention all the input RDF entities or mentions other entities than those in the input. We evaluate 25 RDF verbalization models on the WebNLG dataset. We develop a method to automatically detect omissions and hallucinations of RDF entities in the outputs of these models. We propose a metric based on omissions or hallucination counts to quantify the semantic adequacy of the NLG models. We find that this metric correlates well with what human annotators consider to be semantically correct and show that even state-of-the-art models are subject to omissions and hallucinations. Following this observation about the tendency of RDF verbalization models to generate texts with content-related issues, we propose to analyze the encoder of two such state-of-the-art models, BART and T5. We use the probing explainability method and introduce two probing classifiers (one parametric and one non-parametric) to detect omissions and distortions of RDF input entities in the embeddings of the encoder-decoder models. We find that such probing classifiers are able to detect these mistakes in the encodings, suggesting that the encoder of the models is responsible for some loss of information about omitted and distorted entities. Finally, we propose a T5-based conversational question generation model that in addition to generating a question based on an input RDF graph and a conversational context, generates both a question and its corresponding RDF triples. This setting allows us to introduce a fine-grained evaluation procedure automatically assessing coherence with the conversation context and the semantic adequacy with the input RDF. Our contributions belong to the fields of NLG evaluation and explainability and use techniques and methodologies from these two research fields in order to work towards providing more reliable NLG models
Los estilos APA, Harvard, Vancouver, ISO, etc.
11

De, oliveira Hugo. "Modélisation prédictive des parcours de soins à l'aide de techniques de process mining et de deep learning". Thesis, Lyon, 2020. http://www.theses.fr/2020LYSEM021.

Texto completo
Resumen
Les bases de données médico-administratives sont des bases de données de santé particulièrement exhaustives. L’objectif de ce travail réside dans le développement d’algorithmes prédictifs à partir des données de parcours patients, considérant la complexité des données médico-administratives et produisant des résultats explicables. De nouveaux modèles de processus et un algorithme de process mining adapté sont présentés, modélisant les transitions et leurs temporalités. Une solution de prétraitement des journaux d’événements est également proposée, permettant une représentation des évènements complexes caractérisés par de multiples codes appartenant à différents systèmes de codage, organisés en structures hiérarchiques. Cette méthode de clustering par auto-encodage permet de regrouper dans l’espace latent les événements similaires et produit automatiquement des labels pertinents pour le process mining, explicables médicalement. Un premier algorithme de prédiction adapté aux parcours est alors proposé, produisant via une procédure d’optimisation un modèle de processus utilisé pour classifier les parcours directement à partir des données de journaux d’événements. Ce modèle de processus sert également de support pour expliquer les patterns de parcours distinctifs entre deux populations. Une seconde méthode de prédiction est présentée, avec un focus particulier sur les événements médicaux récurrents. En utilisant des images pour modéliser les parcours, et une architecture d’auto-encodage variationnel modifiée pour l’apprentissage prédictif, cette méthode permet de classifier tout en expliquant de manière globale, en visualisant une image des facteurs prédictifs identifiés
Initially created for a reimbursement purpose, non-clinical claim databases are exhaustive Electronic Health Records (EHRs) which are particularly valuable for evidence-based studies. The objective of this work is to develop predictive methods for patient pathways data, which leverage the complexity of non-clinical claims data and produce explainable results. Our first contribution focuses on the modeling of event logs extracted from such databases. New process models and an adapted process discovery algorithm are introduced, with the objective of accurately model characteristic transitions and time hidden in non-clinical claims data. The second contribution is a preprocessing solution to handle one complexity of such data, which is the representation of medical events by multiple codes belonging to different standard coding systems, organized in hierarchical structures. The proposed method uses auto-encoders and clustering in an adequate latent space to automatically produce relevant and explainable labels. From these contributions, an optimization-based predictive method is introduced, which uses a process model to perform binary classification from event logs and highlight distinctive patterns as a global explanation. A second predictive method is also proposed, which uses images to represent patient pathways and a modified Variational Auto-Encoders (VAE) to predict. This method globally explains predictions by showing an image of identified predictive factors which can be both frequent and infrequent
Los estilos APA, Harvard, Vancouver, ISO, etc.
12

Jeyasothy, Adulam. "Génération d'explications post-hoc personnalisées". Electronic Thesis or Diss., Sorbonne université, 2024. http://www.theses.fr/2024SORUS027.

Texto completo
Resumen
La thèse se place dans le domaine de l'IA explicable (XAI, eXplainable AI). Nous nous concentrons sur les méthodes d'interprétabilité post-hoc qui visent à expliquer à un utilisateur la prédiction pour une donnée d'intérêt spécifique effectuée par un modèle de décision entraîné. Pour augmenter l'interprétabilité des explications, cette thèse étudie l'intégration de connaissances utilisateur dans ces méthodes, et vise ainsi à améliorer la compréhensibilité de l'explication en générant des explications personnalisées adaptées à chaque utilisateur. Pour cela, nous proposons un formalisme général qui intègre explicitement la connaissance via un nouveau critère dans les objectifs d'interprétabilité. Ce formalisme est ensuite décliné pour différents types connaissances et différents types d'explications, particulièrement les exemples contre-factuels, conduisant à la proposition de plusieurs algorithmes (KICE, Knowledge Integration in Counterfactual Explanation, rKICE pour sa variante incluant des connaissances exprimées par des règles et KISM, Knowledge Integration in Surrogate Models). La question de l'agrégation des contraintes de qualité classique et de compatibilité avec les connaissances est également étudiée et nous proposons d'utiliser l'intégrale de Gödel comme opérateur d'agrégation. Enfin nous discutons de la difficulté à générer une unique explication adaptée à tous types d'utilisateurs et de la notion de diversité dans les explications
This thesis is in the field of eXplainable AI (XAI). We focus on post-hoc interpretability methods that aim to explain to a user the prediction for a specific data made by a trained decision model. To increase the interpretability of explanations, this thesis studies the integration of user knowledge into these methods, and thus aims to improve the understandability of the explanation by generating personalized explanations tailored to each user. To this end, we propose a general formalism that explicitly integrates knowledge via a new criterion in the interpretability objectives. This formalism is then declined for different types of knowledge and different types of explanations, particularly counterfactual examples, leading to the proposal of several algorithms (KICE, Knowledge Integration in Counterfactual Explanation, rKICE for its variant including knowledge expressed by rules and KISM, Knowledge Integration in Surrogate Models). The issue of aggregating classical quality and knowledge compatibility constraints is also studied, and we propose to use Gödel's integral as an aggregation operator. Finally, we discuss the difficulty of generating a single explanation suitable for all types of users and the notion of diversity in explanations
Los estilos APA, Harvard, Vancouver, ISO, etc.
13

Afchar, Darius. "Interpretable Music Recommender Systems". Electronic Thesis or Diss., Sorbonne université, 2023. http://www.theses.fr/2023SORUS608.

Texto completo
Resumen
« Pourquoi est-ce qu’on me recommande toujours les même musiques ? » « Pourquoi notre système recommande-t’il cela aux utilisateurs ? » De nos jours, les plateformes de streaming sont le moyen le plus courant d'écouter de la musique enregistrée. Pourtant, les recommandations musicales — au cœur de ces plateformes — sont loin d’être une mince affaire. Il arrive parfois qu’utilisateurs et ingénieurs soient tout aussi perplexes du comportement d’un système de recommandation musicale (SRM). Les SRM ont été utilisés avec succès pour aider à explorer des catalogues comptant des dizaines de millions de titres musicaux. Construits et optimisés pour la précision, les SRM industriels sont souvent assez complexes. Ils peuvent en outre dépendre de nombreux modules interconnectés qui, notamment, analysent les signaux audio, récupèrent les métadonnées d’albums et artistes et les interactions des utilisateurs du service, et estiment des similarités basées sur du filtrage collaboratif. Cette complexité va en l’encontre de la capacité d'expliquer les recommandations et, plus généralement, ces systèmes. Pourtant, les explications sont essentielles pour fidéliser des utilisateurs sur le long termes avec un système qu'ils peuvent comprendre (et pardonner), et pour les propriétaires du système pour rationaliser les erreurs dudit système. L'interprétabilité peut également être nécessaire pour vérifier l'équité d'une décision ou peut être envisagées comme un moyen de rendre les recommandations plus contrôlables. Nous pouvons également récursivement demander : pourquoi une méthode d'explication explique-t-elle d'une certaine manière ? Cette explication est-elle pertinente ? Quelle pourrait être une meilleure explication ? Toutes ces questions sont liées à l'interprétabilité des SRM. Dans une première partie, nous explorons les multiples visages de l'interprétabilité dans diverses tâches de recommandation. En effet, puisqu'il n'y a pas une seule tâche de recommandation mais plusieurs (e.g., recommandation séquentielle, continuation de playlists, similarité artistes), ainsi que de nombreuses modalités de représentation de la musique (e.g., métadonnées, signaux audio, plongements), il y a autant de tâches possibles d’explications nécessitant des ajustements. Notre étude a été guidée par l’exploration des modalités sus-mentionnées : l'interprétation des signaux implicites utilisateurs, des caractéristiques, des signaux audio, et des inter-similarités. Notre thèse présente plusieurs nouvelles méthodes pour l'IA explicable (XAI) et plusieurs résultats théoriques, portant un nouvel éclairage sur notre compréhension des méthodes passées. Néanmoins, les méthodes d’explications peuvent à leur tour manquer d'interprétabilité. C'est pourquoi, une deuxième partie, nous avons jugé essentiel de prendre du recul par rapport aux discours habituels de l’IA et d'essayer de répondre à une question paradoxalement peu claire pour l’XAI : « Qu'est-ce que l'interprétabilité ? » En s'appuyant sur des concepts issus des sciences sociales, nous soulignons qu'il existe un décalage entre la manière dont les explications de l'XAI sont générées et la manière dont les humains expliquent réellement. Nous suggérons que la recherche actuelle a tendance à trop s'appuyer sur des intuitions et des réductions hâtive de réalités complexes en termes mathématiques commodes, conduisant à ériger des hypothèses en normes discutables (e.g., la parcimonie entraîne l'interprétabilité). Nous avons pensé cette partie comme un tutoriel destiné aux chercheurs en IA afin de renforcer leur connaissance des explications avec un vocabulaire précis et une perspective plus large. Nous résumons des conseils pratiques et mettons en évidence des branches moins populaires de l'XAI mieux alignées avec l’humain. Cela nous permet de formuler une perspective globale pour notre domaine de l'XAI, y compris ses prochaines étapes les plus critiques et prometteuses ainsi que ses lacunes à surmonter
‘‘Why do they keep recommending me this music track?’’ ‘‘Why did our system recommend these tracks to users?’’ Nowadays, streaming platforms are the most common way to listen to recorded music. Still, music recommendations — at the heart of these platforms — are not an easy feat. Sometimes, both users and engineers may be equally puzzled about the behaviour of a music recommendation system (MRS). MRS have been successfully employed to help explore catalogues that may be as large as tens of millions of music tracks. Built and optimised for accuracy, real-world MRS often end up being quite complex. They may further rely on a range of interconnected modules that, for instance, analyse audio signals, retrieve metadata about albums and artists, collect and aggregate user feedbacks on the music service, and compute item similarities with collaborative filtering. All this complexity hinders the ability to explain recommendations and, more broadly, explain the system. Yet, explanations are essential for users to foster a long-term engagement with a system that they can understand (and forgive), and for system owners to rationalise failures and improve said system. Interpretability may also be needed to check the fairness of a decision or can be framed as a means to control the recommendations better. Moreover, we could also recursively question: Why does an explanation method explain in a certain way? Is this explanation relevant? What could be a better explanation? All these questions relate to the interpretability of MRSs. In the first half of this thesis, we explore the many flavours that interpretability can have in various recommendation tasks. Indeed, since there is not just one recommendation task but many (e.g., sequential recommendation, playlist continuation, artist similarity), as well as many angles through which music may be represented and processed (e.g., metadata, audio signals, embeddings computed from listening patterns), there are as many settings that require specific adjustments to make explanations relevant. A topic like this one can never be exhaustively addressed. This study was guided along some of the mentioned modalities of musical objects: interpreting implicit user logs, item features, audio signals and similarity embeddings. Our contribution includes several novel methods for eXplainable Artificial Intelligence (XAI) and several theoretical results, shedding new light on our understanding of past methods. Nevertheless, similar to how recommendations may not be interpretable, explanations about them may themselves lack interpretability and justifications. Therefore, in the second half of this thesis, we found it essential to take a step back from the rationale of ML and try to address a (perhaps surprisingly) understudied question in XAI: ‘‘What is interpretability?’’ Introducing concepts from philosophy and social sciences, we stress that there is a misalignment in the way explanations from XAI are generated and unfold versus how humans actually explain. We highlight that current research tends to rely too much on intuitions or hasty reduction of complex realities into convenient mathematical terms, which leads to the canonisation of assumptions into questionable standards (e.g., sparsity entails interpretability). We have treated this part as a comprehensive tutorial addressed to ML researchers to better ground their knowledge of explanations with a precise vocabulary and a broader perspective. We provide practical advice and highlight less popular branches of XAI better aligned with human cognition. Of course, we also reflect back and recontextualise our methods proposed in the previous part. Overall, this enables us to formulate some perspective for our field of XAI as a whole, including its more critical and promising next steps as well as its shortcomings to overcome
Los estilos APA, Harvard, Vancouver, ISO, etc.
14

El, Qadi El Haouari Ayoub. "An EXplainable Artificial Intelligence Credit Rating System". Electronic Thesis or Diss., Sorbonne université, 2023. http://www.theses.fr/2023SORUS486.

Texto completo
Resumen
Au cours des dernières années, le déficit de financement du commerce a atteint le chiffre alarmant de 1 500 milliards de dollars, soulignant une crise croissante dans le commerce mondial. Ce déficit est particulièrement préjudiciable aux petites et moyennes entreprises (PME), qui éprouvent souvent des difficultés à accéder au financement du commerce. Les systèmes traditionnels d'évaluation du crédit, qui constituent l'épine dorsale du finance-ment du commerce, ne sont pas toujours adaptés pour évaluer correctement la solvabilité des PME. Le terme "credit scoring" désigne les méthodes et techniques utilisées pour évaluer la solvabilité des individus ou des entreprises. Le score généré est ensuite utilisé par les institutions financières pour prendre des décisions sur l'approbation des prêts, les taux d'intérêt et les limites de crédit. L'évaluation du crédit présente plusieurs caractéristiques qui en font une tâche difficile. Tout d'abord, le manque d'explicabilité des modèles complexes d'apprentissage automatique entraîne souvent une moindre acceptation des évaluations de crédit, en particulier parmi les parties prenantes qui exigent un processus décisionnel transparent. Cette opacité peut constituer un obstacle à l'adoption généralisée de techniques d'évaluation avancées. Un autre défi important est la variabilité de la disponibilité des données entre les pays et les dossiers financiers souvent incomplets des PME, ce qui rend difficile le développement de modèles universellement applicables. Dans cette thèse, nous avons d'abord abordé la question de l'explicabilité en utilisant des techniques de pointe dans le domaine de l'intelligence artificielle explicable (XAI). Nous avons introduit une nouvelle stratégie consistant à comparer les explications générées par les modèles d'apprentissage automatique avec les critères utilisés par les experts en crédit. Cette analyse comparative a révélé une divergence entre le raisonnement du modèle et le jugement de l'expert, soulignant la nécessité d'incorporer les critères de l'expert dans la phase de formation du modèle. Les résultats suggèrent que l'alignement des explications générées par la machine sur l'expertise humaine pourrait être une étape cruciale dans l'amélioration de l'acceptation et de la fiabilité du modèle.Par la suite, nous nous sommes concentrés sur le défi que représentent les don-nées financières éparses ou incomplètes. Nous avons incorporé des évaluations de crédit textuelles dans le modèle d'évaluation du crédit en utilisant des techniques de pointe de traitement du langage naturel (NLP). Nos résultats ont démontré que les modèles formés à la fois avec des données financières et des évaluations de crédit textuelles étaient plus performants que ceux qui s'appuyaient uniquement sur des données financières. En outre, nous avons montré que notre approche pouvait effectivement générer des scores de crédit en utilisant uniquement des évaluations de risque textuelles, offrant ainsi une solution viable pour les scénarios dans lesquels les mesures financières traditionnelles ne sont pas disponibles ou insuffisantes
Over the past few years, the trade finance gap has surged to an alarming 1.5 trillion dollars, underscoring a growing crisis in global commerce. This gap is particularly detrimental tosmall and medium-sized enterprises (SMEs), which often find it difficult to access trade finance. Traditional credit scoring systems, which are the backbone of trade finance, are not always tailored to assess the credit worthiness of SMEs adequately. The term credit scoring stands for the methods and techniques used to evaluate the credit worthiness of individuals or business. The score generated is then used by financial institutions to make decisions on loan approvals, interest rates, and credit limits. Credit scoring present several characteristics that makes it a challenging task. First, the lack of explainability in complex machine learning models often results in less acceptance of credit assessments, particulary among stakeholders who require transparent decision-making process. This opacity can be an obstacle in the widespread adoption of advanced scoring techniques. Another significant challenge is the variability in data availability across countries and the often incomplete financial records of SME's which makes it difficult to develop universally applicable models.In this thesis, we initially tackled the issue of explainability by employing state-of-the-art techniques in Explainable Artificial Intelligence (XAI). We introduced a novel strategy that involved comparing the explanations generated by machine learning models with the criteria used by credit experts. This comparative analysis revealed a divergence between the model's reasoning and the expert's judgment, underscoring the necessity of incorporating expert criteria into the training phase of the model. The findings suggest that aligning machine-generated explanations with human expertise could be a pivotal step in enhancing the model's acceptance and trustworthiness. Subsequently, we shifted our focus to address the challenge of sparse or incomplete financial data. We incorporated textual credit assessments into the credit scoring model using cutting-edge Natural Language Processing (NLP) techniques. Our results demon-strated that models trained with both financial data and textual credit assessments out-performed those relying solely on financial data. Moreover, we showed that our approach could effectively generate credit scores using only textual risk assessments, thereby offer-ing a viable solution for scenarios where traditional financial metrics are unavailable or insufficient
Los estilos APA, Harvard, Vancouver, ISO, etc.
15

Ayats, H. Ambre. "Construction de graphes de connaissances à partir de textes avec une intelligence artificielle explicable et centrée-utilisateur·ice". Electronic Thesis or Diss., Université de Rennes (2023-....), 2023. http://www.theses.fr/2023URENS095.

Texto completo
Resumen
Avec les progrès récents dans le domaine de l'intelligence artificielle, la question du contrôle humain est devenu centrale. Aujourd'hui, cela passe à la fois par des recherches en explicabilité et des systèmes centrés autour de l'interaction avec l'utilisateur·ice. De plus, avec l'expansion du web sémantique et des méthodes de traitement automatique du langage naturelle, la tâche de construction de graphes de connaissances à partir de textes est devenu un enjeu important. Cette thèse présente un système centré-utilisateur·ice pour la construction de graphes de connaissances à partir de textes. Cette thèse présente plusieurs contributions. Tout d'abord, nous introduisons un workflow centré-utilisateur·ice pour la tâche sus-citée, ayant la propriété d'automatiser progressivement les actions de l'utilisateur·ice tout en lui laissant un contrôle fin du résultat. Ensuite, nous présentons nos apports dans le domaine de l'analyse de concepts formels, utilisés afin de concevoir un module d'apprentissage fainéant et explicable pour la tâche de classification de relations. Enfin, nous présentons nos apports dans le domaine de l'extraction de relations, et comment ces apports s'inscrivent dans le workflow présenté précédemment
With recent advances in artificial intelligence, the question of human control has become central. Today, this involves both research into explainability and designs centered around interaction with the user. What's more, with the expansion of the semantic web and automatic natural language processing methods, the task of constructing knowledge graphs from texts has become an important issue. This thesis presents a user-centered system for the construction of knowledge graphs from texts. This thesis presents several contributions. First, we introduce a user-centered workflow for the aforementioned task, having the property of progressively automating the user's actions while leaving them a fine-grained control over the outcome. Next, we present our contributions in the field of formal concept analysis, used to design an explainable instance-based learning module for relation classification. Finally, we present our contributions in the field of relation extraction, and how these fit into the presented workflow
Los estilos APA, Harvard, Vancouver, ISO, etc.
16

Li, Honghao. "Interpretable biological network reconstruction from observational data". Electronic Thesis or Diss., Université Paris Cité, 2021. http://www.theses.fr/2021UNIP5207.

Texto completo
Resumen
Cette thèse porte sur les méthodes basées sur des contraintes. Nous présentons comme exemple l’algorithme PC, pour lequel nous proposons une modification qui garantit la cohérence des ensembles de séparation, utilisés pendant l’étape de reconstruction du squelette pour supprimer les arêtes entre les variables conditionnellement indépendantes, par rapport au graphe final. Elle consiste à itérer l’algorithme d’apprentissage de structure tout en limitant la recherche des ensembles de séparation à ceux qui sont cohérents par rapport au graphe obtenu à la fin de l’itération précédente. La contrainte peut être posée avec une complexité de calcul limitée à l’aide de la décomposition en block-cut tree du squelette du graphe. La modification permet d’augmenter le rappel au prix de la précision des méthodes basées sur des contraintes, tout en conservant une performance globale similaire ou supérieure. Elle améliore également l’interprétabilité et l’explicabilité du modèle graphique obtenu. Nous présentons ensuite la méthode basée sur des contraintes MIIC, récemment développée, qui adopte les idées du cadre du maximum de vraisemblance pour améliorer la robustesse et la performance du graphe obtenu. Nous discutons les caractéristiques et les limites de MIIC, et proposons plusieurs modifications qui mettent l’accent sur l’interprétabilité du graphe obtenu et l’extensibilité de l’algorithme. En particulier, nous mettons en œuvre l’approche itérative pour renforcer la cohérence de l’ensemble de séparation, nous optons pour une règle d’orientation conservatrice et nous utilisons la probabilité d’orientation de MIIC pour étendre la notation des arêtes dans le graphe final afin d’illustrer différentes relations causales. L’algorithme MIIC est appliqué à un ensemble de données d’environ 400 000 dossiers de cancer du sein provenant de la base de données SEER, comme benchmark à grande échelle dans la vie réelle
This thesis is focused on constraint-based methods, one of the basic types of causal structure learning algorithm. We use PC algorithm as a representative, for which we propose a simple and general modification that is applicable to any PC-derived methods. The modification ensures that all separating sets used during the skeleton reconstruction step to remove edges between conditionally independent variables remain consistent with respect to the final graph. It consists in iterating the structure learning algorithm while restricting the search of separating sets to those that are consistent with respect to the graph obtained at the end of the previous iteration. The restriction can be achieved with limited computational complexity with the help of block-cut tree decomposition of the graph skeleton. The enforcement of separating set consistency is found to increase the recall of constraint-based methods at the cost of precision, while keeping similar or better overall performance. It also improves the interpretability and explainability of the obtained graphical model. We then introduce the recently developed constraint-based method MIIC, which adopts ideas from the maximum likelihood framework to improve the robustness and overall performance of the obtained graph. We discuss the characteristics and the limitations of MIIC, and propose several modifications that emphasize the interpretability of the obtained graph and the scalability of the algorithm. In particular, we implement the iterative approach to enforce separating set consistency, and opt for a conservative rule of orientation, and exploit the orientation probability feature of MIIC to extend the edge notation in the final graph to illustrate different causal implications. The MIIC algorithm is applied to a dataset of about 400 000 breast cancer records from the SEER database, as a large-scale real-life benchmark
Los estilos APA, Harvard, Vancouver, ISO, etc.
17

Cárdenas, Chapellín Julio José. "Inversion of geophysical data by deep learning". Electronic Thesis or Diss., Sorbonne université, 2022. http://www.theses.fr/2022SORUS185.

Texto completo
Resumen
Cette thèse présente la caractérisation d’anomalies magnétiques par des réseaux de neurones convolutifs, et l’application d’outils de visualisation pour comprendre et valider leurs prédictions. L’approche développée permet la localisation de dipôles magnétiques, incluant le comptage dunombre de dipôles, leur position géographique, et la prédiction de leurs paramètres (moment magnétique, profondeur, et déclinaison). Nos résultats suggèrent que la combinaison de deux modèles d’apprentissage profond, "YOLO" et "DenseNet", est la plus performante pour atteindre nos objectifs de classification et de régression. De plus, nous avons appliqué des outils de visualisation pour comprendre les prédictions de notre modèle et son principe de fonctionnement. Nous avons constaté que l’outil Grad-CAM a amélioré les performances de prédiction en identifiant plusieurs couches qui n’avaient aucune influence sur la prédiction et l’outil t-SNE a confirmé la bonne capacité de notre modèle à différencier différentes combinaisons de paramètres. Ensuite, nous avons testé notre modèle avec des données réelles pour établir ses limites et son domaine d’application. Les résultats montrent que notre modèle détecte les anomalies dipolaires dans une carte magnétique réelle, même après avoir appris d’une base de données synthétique de moindre complexité, ce qui indique une capacité de généralisation significative. Nous avons également remarqué qu’il n’est pas capable d’identifier des anomalies dipolaires de formes et de tailles différentes de celles considérées pour la création de la base de données synthétique. Nos travaux actuels consistent à créer de nouvelles bases de données en combinant des données synthétiques et réelles afin de comparer leur influence potentielle dans l’amélioration des prédictions. Enfin, les perspectives de ce travail consistent à valider la pertinence opérationnelle et l’adaptabilité de notre modèle dans des conditions réalistes et à tester d’autres applications avec des méthodes géophysiques alternatives
This thesis presents the characterization ofmagnetic anomalies using convolutional neural networks, and the application of visualization tools to understand and validate their predictions. The developed approach allows the localization of magnetic dipoles, including counting the number of dipoles, their geographical position, and the prediction of their parameters (magnetic moment, depth, and declination). Our results suggest that the combination of two deep learning models, "YOLO" and "DenseNet", performs best in achieving our classification and regression goals. Additionally, we applied visualization tools to understand our model’s predictions and its working principle. We found that the Grad-CAM tool improved prediction performance by identifying several layers that had no influence on the prediction and the t-SNE tool confirmed the good ability of our model to differentiate among different parameter combinations. Then, we tested our model with real data to establish its limitations and application domain. Results demonstrate that our model detects dipolar anomalies in a real magnetic map even after learning from a synthetic database with a lower complexity, which indicates a significant generalization capability. We also noticed that it is not able to identify dipole anomalies of shapes and sizes different from those considered for the creation of the synthetic database. Our current work consists in creating new databases by combining synthetic and real data to compare their potential influence in improving predictions. Finally, the perspectives of this work consist in validating the operational relevance and adaptability of our model under realistic conditions and in testing other applications with alternative geophysical methods
Esta tesis presenta la caracterización de anomalías magnéticas mediante redes neuronales convolucionales, y la aplicación de herramientas de visualización para entender y validar sus predicciones. El enfoque desarrollado permite la localización de dipolos magnéticos, incluyendo el recuento delnúmero de dipolos, su posición geográfica y la predicción de sus parámetros (momento magnético, profundidad y declinación). Nuestros resultados sugieren que la combinación de dos modelos de aprendizaje profundo, "YOLO" y "DenseNet", es la que mejor se ajusta a nuestros objetivos de clasificación y regresión. Adicionalmente, aplicamos herramientas de visualización para entender las predicciones de nuestromodelo y su principio de funcionamiento. Descubrimos que la herramienta Grad-CAM mejoraba el rendimiento de la predicción al identificar varias capas que no influían enla predicción y la herramienta t-SNE confirmaba la buena capacidad de nuestro modelo para diferenciar entre distintas combinaciones de parámetros. Seguidamente, probamos nuestro modelo con datos reales para establecer sus limitaciones y su rango de aplicación. Los resultados demuestran quenuestro modelo detecta anomalías dipolares en unmapa magnético real incluso después de aprender de una base de datos sintética con una complejidad menor, lo que indica una capacidad de generalización significativa. También observamos que no es capaz de identificar anomalías dipolares de formas y tamaños diferentes a los considerados para la creación de la base de datos sintética. Nuestro trabajo actual consiste en crear nuevas bases de datos combinando datos sintéticos y reales para comparar su posible influencia en la mejora de las predicciones. Por último, las perspectivas de este trabajo consisten en validar la pertinencia operativa y la adaptabilidad de nuestro modelo en condiciones realistas y en probar otras aplicaciones con métodos geofísicos alternativos
Los estilos APA, Harvard, Vancouver, ISO, etc.
18

Barbieri, Emanuele. "Discrete Event Modeling and Simulation of Large Markov Decision Process : Application to the Leverage Effects in Financial Asset Optimization Processes". Electronic Thesis or Diss., Corte, 2023. http://hal-univ-corse.archives-ouvertes.fr/view_by_stamp.php?&action_todo=view&id.

Texto completo
Resumen
Les modèles de processus de décision de Markov (MDP) sont largement utilisés dans de nombreux domaines de recherche pour modéliser les problèmes de prise de décision. Les MDP peuvent être facilement conçus par modélisation et simulation (M&S) à travers le formalisme de spécification de système à événements discrets (DEVS) grâce à ses aspects modulaires et hiérarchiques qui améliorent entre autre l’explicabilité des modèles. En particulier, la séparation entre l’agent et les composants de l’environnement impliqués dans l’algorithme d’apprentissage par renforcement (RL)traditionnel, tel que Q-Learning, est clairement formalisé pour améliorer l’observabilité et envisager l’intégration des composants de l’IA dans le processus de prise de décision. Notre modèle DEVS renforce également la confiance des décideurs en atténuant le risque de délégation aux machines dans les processus de prise de décision. A cet effet, l’objectif principal de ce travail est de fournir la possibilité de concevoir avec une plus grande explicabilité un système Markovien à l’aide d’unformalisme de M&S pour optimiser, par simulation, un processus de prise de décision. En outre, le travail implique une étude de cas basée sur la gestion des processus financiers, sa spécification entant que système RL basé sur MDP, et sa M&S avec le formalisme DEVS. L’environnement de M&S DEVSimPy est utilisé pour implémenter le système Agent-Environnement RL en tant que librairie DEVS-RL composée de modèles DEVS intéragissant par événements discrets pour mettre en oeuvre l’apprentissage. Le travail de recherche proposé dans cette thèse porte sur un cas concret de gestion de portefeuille d’indices boursiers. Notre modèle DEVS-RL permet de produire un effet de levier trois fois supérieur à certains des indices de marché naïfs parmi les plus importants au monde sur une période de trente ans et peut contribuer à aborder la théorie moderne du portefeuille avec une approche novatrice. Les résultats du modèle DEVS-RL sont confrontés en termes de compatibilité et combinés avec les algorithmes d’optimisation les plus populaires tels que Efficient FrontierSemivariance et les modèles basés sur les réseaux de neurones tels que LSTM
Markov Decision Process (MDP) models are widely used to model decision-making problems in manyresearch fields. MDPs can be readily designed through modeling and simulation (M&S) using theDiscrete Event System Specification formalism (DEVS) due to its modular and hierarchical aspects,which improve the explainability of the models. In particular, the separation between the agent andthe environment components involved in the traditional reinforcement learning (RL) algorithm, suchas Q-Learning, is clearly formalized to enhance observability and envision the integration of AIcomponents in the decision-making process. Our proposed DEVS model also improves the trust ofdecision makers by mitigating the risk of delegation to machines in decision-making processes. Themain focus of this work is to provide the possibility of designing a Markovian system with a modelingand simulation formalism to optimize a decision-making process with greater explainability throughsimulation. Furthermore, the work involves an investigation based on financial process management,its specification as an MDP-based RL system, and its M&S with DEVS formalism. The DEVSimPyPython M&S environment is used to implement the Agent-Environment RL system as event-basedinteractions between Agent and Environment atomic models stored in a new DEVS-RL library. Theresearch work proposed in this thesis focused on a concrete case of portfolio management of stockmarket indices. Our DEVS-RL model allows for a leverage effect three times higher than some of themost important naive market indexes in the world over a thirty-year period and may contribute toaddressing the modern portfolio theory with a novel approach. The results of the DEVS-RL model arecompared in terms of compatibility and combined with popular optimization algorithms such asefficient frontier semivariance and neural network models like LSTM. This combination is used toaddress a decision-making management policy for complex systems evolving in highly volatileenvironments in which, the state evolution depends entirely on the occurrence of discreteasynchronous events over time
Los estilos APA, Harvard, Vancouver, ISO, etc.
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!

Pasar a la bibliografía