Literatura académica sobre el tema "Explainable fact checking"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Explainable fact checking".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Explainable fact checking"
Zeng, Fengzhu y Wei Gao. "JustiLM: Few-shot Justification Generation for Explainable Fact-Checking of Real-world Claims". Transactions of the Association for Computational Linguistics 12 (2024): 334–54. http://dx.doi.org/10.1162/tacl_a_00649.
Texto completoAugenstein, Isabelle. "Habilitation Abstract: Towards Explainable Fact Checking". KI - Künstliche Intelligenz, 13 de septiembre de 2022. http://dx.doi.org/10.1007/s13218-022-00774-6.
Texto completoLinder, Rhema, Sina Mohseni, Fan Yang, Shiva K. Pentyala, Eric D. Ragan y Xia Ben Hu. "How level of explanation detail affects human performance in interpretable intelligent systems: A study on explainable fact checking". Applied AI Letters 2, n.º 4 (26 de noviembre de 2021). http://dx.doi.org/10.1002/ail2.49.
Texto completoTesis sobre el tema "Explainable fact checking"
Ahmadi, Naser. "A framework for the continuous curation of a knowledge base system". Electronic Thesis or Diss., Sorbonne université, 2021. http://www.theses.fr/2021SORUS320.
Texto completoEntity-centric knowledge graphs (KGs) are becoming increasingly popular for gathering information about entities. The schemas of KGs are semantically rich, with many different types and predicates to define the entities and their relationships. These KGs contain knowledge that requires understanding of the KG’s structure and patterns to be exploited. Their rich data structure can express entities with semantic types and relationships, oftentimes domain-specific, that must be made explicit and understood to get the most out of the data. Although different applications can benefit from such rich structure, this comes at a price. A significant challenge with KGs is the quality of their data. Without high-quality data, the applications cannot use the KG. However, as a result of the automatic creation and update of KGs, there are a lot of noisy and inconsistent data in them and, because of the large number of triples in a KG, manual validation is impossible. In this thesis, we present different tools that can be utilized in the process of continuous creation and curation of KGs. We first present an approach designed to create a KG in the accounting field by matching entities. We then introduce methods for the continuous curation of KGs. We present an algorithm for conditional rule mining and apply it on large graphs. Next, we describe RuleHub, an extensible corpus of rules for public KGs which provides functionalities for the archival and the retrieval of rules. We also report methods for using logical rules in two different applications: teaching soft rules to pre-trained language models (RuleBert) and explainable fact checking (ExpClaim)
"Explainable Fact Checking by Combining Automated Rule Discovery with Probabilistic Answer Set Programming". Master's thesis, 2018. http://hdl.handle.net/2286/R.I.50443.
Texto completoDissertation/Thesis
Masters Thesis Computer Science 2018
Capítulos de libros sobre el tema "Explainable fact checking"
Atanasova, Pepa. "Generating Fact Checking Explanations". En Accountable and Explainable Methods for Complex Reasoning over Text, 83–103. Cham: Springer Nature Switzerland, 2020. http://dx.doi.org/10.1007/978-3-031-51518-7_4.
Texto completoAtanasova, Pepa. "Fact Checking with Insufficient Evidence". En Accountable and Explainable Methods for Complex Reasoning over Text, 39–64. Cham: Springer Nature Switzerland, 2022. http://dx.doi.org/10.1007/978-3-031-51518-7_2.
Texto completoAtanasova, Pepa. "Multi-Hop Fact Checking of Political Claims". En Accountable and Explainable Methods for Complex Reasoning over Text, 131–51. Cham: Springer Nature Switzerland, 2022. http://dx.doi.org/10.1007/978-3-031-51518-7_6.
Texto completoAtanasova, Pepa. "Generating Fluent Fact Checking Explanations with Unsupervised Post-Editing". En Accountable and Explainable Methods for Complex Reasoning over Text, 105–30. Cham: Springer Nature Switzerland, 2022. http://dx.doi.org/10.1007/978-3-031-51518-7_5.
Texto completoAlthabiti, Saud, Mohammad Ammar Alsalka y Eric Atwell. "Generative AI for Explainable Automated Fact Checking on the FactEx: A New Benchmark Dataset". En Disinformation in Open Online Media, 1–13. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-47896-3_1.
Texto completoActas de conferencias sobre el tema "Explainable fact checking"
Kotonya, Neema y Francesca Toni. "Explainable Automated Fact-Checking: A Survey". En Proceedings of the 28th International Conference on Computational Linguistics. Stroudsburg, PA, USA: International Committee on Computational Linguistics, 2020. http://dx.doi.org/10.18653/v1/2020.coling-main.474.
Texto completoKotonya, Neema y Francesca Toni. "Explainable Automated Fact-Checking: A Survey". En Proceedings of the 28th International Conference on Computational Linguistics. Stroudsburg, PA, USA: International Committee on Computational Linguistics, 2020. http://dx.doi.org/10.18653/v1/2020.coling-main.474.
Texto completoYang, Jing, Didier Vega-Oliveros, Tais Seibt y Anderson Rocha. "Explainable Fact-Checking Through Question Answering". En ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2022. http://dx.doi.org/10.1109/icassp43922.2022.9747214.
Texto completoSamarinas, Chris, Wynne Hsu y Mong Li Lee. "Improving Evidence Retrieval for Automated Explainable Fact-Checking". En Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies: Demonstrations. Stroudsburg, PA, USA: Association for Computational Linguistics, 2021. http://dx.doi.org/10.18653/v1/2021.naacl-demos.10.
Texto completoAhmadi, Naser, Joohyung Lee, Paolo Papotti y Mohammed Saeed. "Explainable Fact Checking with Probabilistic Answer Set Programming". En Conference for Truth and Trust Online 2019. TTO Conference Ltd., 2019. http://dx.doi.org/10.36370/tto.2019.15.
Texto completoKotonya, Neema y Francesca Toni. "Explainable Automated Fact-Checking for Public Health Claims". En Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP). Stroudsburg, PA, USA: Association for Computational Linguistics, 2020. http://dx.doi.org/10.18653/v1/2020.emnlp-main.623.
Texto completoNikopensius, Gustav, Mohit Mayank, Orchid Chetia Phukan y Rajesh Sharma. "Reinforcement Learning-based Knowledge Graph Reasoning for Explainable Fact-checking". En ASONAM '23: International Conference on Advances in Social Networks Analysis and Mining. New York, NY, USA: ACM, 2023. http://dx.doi.org/10.1145/3625007.3627593.
Texto completoLourenco, Vitor y Aline Paes. "A Modality-level Explainable Framework for Misinformation Checking in Social Networks". En LatinX in AI at Neural Information Processing Systems Conference 2022. Journal of LatinX in AI Research, 2022. http://dx.doi.org/10.52591/lxai202211283.
Texto completoAlthabiti, Saud, Mohammad Ammar Alsalka y Eric Atwell. "TA’KEED the First Generative Fact-Checking System for Arabic Claims". En 11th International Conference on Artificial Intelligence and Applications. Academy & Industry Research Collaboration Center, 2024. http://dx.doi.org/10.5121/csit.2024.140103.
Texto completo