Artículos de revistas sobre el tema "Explainability of machine learning models"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "Explainability of machine learning models".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.
S, Akshay y Manu Madhavan. "COMPARISON OF EXPLAINABILITY OF MACHINE LEARNING BASED MALAYALAM TEXT CLASSIFICATION". ICTACT Journal on Soft Computing 15, n.º 1 (1 de julio de 2024): 3386–91. http://dx.doi.org/10.21917/ijsc.2024.0476.
Texto completoPark, Min Sue, Hwijae Son, Chongseok Hyun y Hyung Ju Hwang. "Explainability of Machine Learning Models for Bankruptcy Prediction". IEEE Access 9 (2021): 124887–99. http://dx.doi.org/10.1109/access.2021.3110270.
Texto completoCheng, Xueyi y Chang Che. "Interpretable Machine Learning: Explainability in Algorithm Design". Journal of Industrial Engineering and Applied Science 2, n.º 6 (1 de diciembre de 2024): 65–70. https://doi.org/10.70393/6a69656173.323337.
Texto completoBozorgpanah, Aso, Vicenç Torra y Laya Aliahmadipour. "Privacy and Explainability: The Effects of Data Protection on Shapley Values". Technologies 10, n.º 6 (1 de diciembre de 2022): 125. http://dx.doi.org/10.3390/technologies10060125.
Texto completoZhang, Xueting. "Traffic Flow Prediction Based on Explainable Machine Learning". Highlights in Science, Engineering and Technology 56 (14 de julio de 2023): 56–64. http://dx.doi.org/10.54097/hset.v56i.9816.
Texto completoPendyala, Vishnu y Hyungkyun Kim. "Assessing the Reliability of Machine Learning Models Applied to the Mental Health Domain Using Explainable AI". Electronics 13, n.º 6 (8 de marzo de 2024): 1025. http://dx.doi.org/10.3390/electronics13061025.
Texto completoKim, Dong-sup y Seungwoo Shin. "THE ECONOMIC EXPLAINABILITY OF MACHINE LEARNING AND STANDARD ECONOMETRIC MODELS-AN APPLICATION TO THE U.S. MORTGAGE DEFAULT RISK". International Journal of Strategic Property Management 25, n.º 5 (13 de julio de 2021): 396–412. http://dx.doi.org/10.3846/ijspm.2021.15129.
Texto completoTOPCU, Deniz. "How to explain a machine learning model: HbA1c classification example". Journal of Medicine and Palliative Care 4, n.º 2 (27 de marzo de 2023): 117–25. http://dx.doi.org/10.47582/jompac.1259507.
Texto completoRodríguez Mallma, Mirko Jerber, Luis Zuloaga-Rotta, Rubén Borja-Rosales, Josef Renato Rodríguez Mallma, Marcos Vilca-Aguilar, María Salas-Ojeda y David Mauricio. "Explainable Machine Learning Models for Brain Diseases: Insights from a Systematic Review". Neurology International 16, n.º 6 (29 de octubre de 2024): 1285–307. http://dx.doi.org/10.3390/neurolint16060098.
Texto completoBhagyashree D Shendkar. "Explainable Machine Learning Models for Real-Time Threat Detection in Cybersecurity". Panamerican Mathematical Journal 35, n.º 1s (13 de noviembre de 2024): 264–75. http://dx.doi.org/10.52783/pmj.v35.i1s.2313.
Texto completoChen, Yinhe. "Enhancing stability and explainability in reinforcement learning with machine learning". Applied and Computational Engineering 101, n.º 1 (8 de noviembre de 2024): 25–34. http://dx.doi.org/10.54254/2755-2721/101/20240943.
Texto completoBorch, Christian y Bo Hee Min. "Toward a sociology of machine learning explainability: Human–machine interaction in deep neural network-based automated trading". Big Data & Society 9, n.º 2 (julio de 2022): 205395172211113. http://dx.doi.org/10.1177/20539517221111361.
Texto completoKolarik, Michal, Martin Sarnovsky, Jan Paralic y Frantisek Babic. "Explainability of deep learning models in medical video analysis: a survey". PeerJ Computer Science 9 (14 de marzo de 2023): e1253. http://dx.doi.org/10.7717/peerj-cs.1253.
Texto completoPezoa, R., L. Salinas y C. Torres. "Explainability of High Energy Physics events classification using SHAP". Journal of Physics: Conference Series 2438, n.º 1 (1 de febrero de 2023): 012082. http://dx.doi.org/10.1088/1742-6596/2438/1/012082.
Texto completoMukendi, Christian Mulomba, Asser Kasai Itakala y Pierrot Muteba Tibasima. "Beyond Accuracy: Building Trustworthy Extreme Events Predictions Through Explainable Machine Learning". European Journal of Theoretical and Applied Sciences 2, n.º 1 (1 de enero de 2024): 199–218. http://dx.doi.org/10.59324/ejtas.2024.2(1).15.
Texto completoWang, Liyang, Yu Cheng, Ningjing Sang y You Yao. "Explainability and Stability of Machine Learning Applications — A Financial Risk Management Perspective". Modern Economics & Management Forum 5, n.º 5 (6 de noviembre de 2024): 956. http://dx.doi.org/10.32629/memf.v5i5.2902.
Texto completoGupta, Gopal, Huaduo Wang, Kinjal Basu, Farahad Shakerin, Parth Padalkar, Elmer Salazar, Sarat Chandra Varanasi y Sopam Dasgupta. "Logic-Based Explainable and Incremental Machine Learning". Proceedings of the AAAI Symposium Series 2, n.º 1 (22 de enero de 2024): 230–32. http://dx.doi.org/10.1609/aaaiss.v2i1.27678.
Texto completoCollin, Adele, Adrián Ayuso-Muñoz, Paloma Tejera-Nevado, Lucía Prieto-Santamaría, Antonio Verdejo-García, Carmen Díaz-Batanero, Fermín Fernández-Calderón, Natalia Albein-Urios, Óscar M. Lozano y Alejandro Rodríguez-González. "Analyzing Dropout in Alcohol Recovery Programs: A Machine Learning Approach". Journal of Clinical Medicine 13, n.º 16 (15 de agosto de 2024): 4825. http://dx.doi.org/10.3390/jcm13164825.
Texto completoAas, Kjersti, Arthur Charpentier, Fei Huang y Ronald Richman. "Insurance analytics: prediction, explainability, and fairness". Annals of Actuarial Science 18, n.º 3 (noviembre de 2024): 535–39. https://doi.org/10.1017/s1748499524000289.
Texto completoTocchetti, Andrea y Marco Brambilla. "The Role of Human Knowledge in Explainable AI". Data 7, n.º 7 (6 de julio de 2022): 93. http://dx.doi.org/10.3390/data7070093.
Texto completoKeçeli, Tarık, Nevruz İlhanlı y Kemal Hakan Gülkesen. "Prediction of retinopathy through machine learning in diabetes mellitus". Journal of Health Sciences and Medicine 7, n.º 4 (30 de julio de 2024): 467–71. http://dx.doi.org/10.32322/jhsm.1502050.
Texto completoBurkart, Nadia y Marco F. Huber. "A Survey on the Explainability of Supervised Machine Learning". Journal of Artificial Intelligence Research 70 (19 de enero de 2021): 245–317. http://dx.doi.org/10.1613/jair.1.12228.
Texto completoKulaklıoğlu, Duru. "Explainable AI: Enhancing Interpretability of Machine Learning Models". Human Computer Interaction 8, n.º 1 (6 de diciembre de 2024): 91. https://doi.org/10.62802/z3pde490.
Texto completoNagahisarchoghaei, Mohammad, Nasheen Nur, Logan Cummins, Nashtarin Nur, Mirhossein Mousavi Karimi, Shreya Nandanwar, Siddhartha Bhattacharyya y Shahram Rahimi. "An Empirical Survey on Explainable AI Technologies: Recent Trends, Use-Cases, and Categories from Technical and Application Perspectives". Electronics 12, n.º 5 (22 de febrero de 2023): 1092. http://dx.doi.org/10.3390/electronics12051092.
Texto completoPrzybył, Krzysztof. "Explainable AI: Machine Learning Interpretation in Blackcurrant Powders". Sensors 24, n.º 10 (17 de mayo de 2024): 3198. http://dx.doi.org/10.3390/s24103198.
Texto completoZubair, Md, Helge Janicke, Ahmad Mohsin, Leandros Maglaras y Iqbal H. Sarker. "Automated Sensor Node Malicious Activity Detection with Explainability Analysis". Sensors 24, n.º 12 (7 de junio de 2024): 3712. http://dx.doi.org/10.3390/s24123712.
Texto completoUllah, Ihsan, Andre Rios, Vaibhav Gala y Susan Mckeever. "Explaining Deep Learning Models for Tabular Data Using Layer-Wise Relevance Propagation". Applied Sciences 12, n.º 1 (23 de diciembre de 2021): 136. http://dx.doi.org/10.3390/app12010136.
Texto completoAlsubhi, Bashayer, Basma Alharbi, Nahla Aljojo, Ameen Banjar, Araek Tashkandi, Abdullah Alghoson y Anas Al-Tirawi. "Effective Feature Prediction Models for Student Performance". Engineering, Technology & Applied Science Research 13, n.º 5 (13 de octubre de 2023): 11937–44. http://dx.doi.org/10.48084/etasr.6345.
Texto completoBARAJAS ARANDA, DANIEL ALEJANDRO, MIGUEL ANGEL SICILIA URBAN, MARIA DOLORES TORRES SOTO y AURORA TORRES SOTO. "COMPARISON AND EXPLANABILITY OF MACHINE LEARNING MODELS IN PREDICTIVE SUICIDE ANALYSIS". DYNA NEW TECHNOLOGIES 11, n.º 1 (28 de febrero de 2024): [10P.]. http://dx.doi.org/10.6036/nt11028.
Texto completoChen, Tianjie y Md Faisal Kabir. "Explainable machine learning approach for cancer prediction through binarilization of RNA sequencing data". PLOS ONE 19, n.º 5 (10 de mayo de 2024): e0302947. http://dx.doi.org/10.1371/journal.pone.0302947.
Texto completoVan Der Laan, Jake. "Explainability of Artificial Intelligence Models: Technical Foundations and Legal Principles". Vietnamese Journal of Legal Sciences 7, n.º 2 (1 de diciembre de 2022): 1–38. http://dx.doi.org/10.2478/vjls-2022-0006.
Texto completoKong, Weihao, Jianping Chen y Pengfei Zhu. "Machine Learning-Based Uranium Prospectivity Mapping and Model Explainability Research". Minerals 14, n.º 2 (24 de enero de 2024): 128. http://dx.doi.org/10.3390/min14020128.
Texto completoPathan, Refat Khan, Israt Jahan Shorna, Md Sayem Hossain, Mayeen Uddin Khandaker, Huda I. Almohammed y Zuhal Y. Hamd. "The efficacy of machine learning models in lung cancer risk prediction with explainability". PLOS ONE 19, n.º 6 (13 de junio de 2024): e0305035. http://dx.doi.org/10.1371/journal.pone.0305035.
Texto completoSatoni Kurniawansyah, Arius. "EXPLAINABLE ARTIFICIAL INTELLIGENCE THEORY IN DECISION MAKING TREATMENT OF ARITHMIA PATIENTS WITH USING DEEP LEARNING MODELS". Jurnal Rekayasa Sistem Informasi dan Teknologi 1, n.º 1 (29 de agosto de 2022): 26–41. http://dx.doi.org/10.59407/jrsit.v1i1.75.
Texto completoChen, Xingqian, Honghui Fan, Wenhe Chen, Yaoxin Zhang, Dingkun Zhu y Shuangbao Song. "Explaining a Logic Dendritic Neuron Model by Using the Morphology of Decision Trees". Electronics 13, n.º 19 (3 de octubre de 2024): 3911. http://dx.doi.org/10.3390/electronics13193911.
Texto completoSarder Abdulla Al Shiam, Md Mahdi Hasan, Md Jubair Pantho, Sarmin Akter Shochona, Md Boktiar Nayeem, M Tazwar Hossain Choudhury y Tuan Ngoc Nguyen. "Credit Risk Prediction Using Explainable AI". Journal of Business and Management Studies 6, n.º 2 (18 de marzo de 2024): 61–66. http://dx.doi.org/10.32996/jbms.2024.6.2.6.
Texto completoHong, Xianbin, Sheng-Uei Guan, Nian Xue, Zhen Li, Ka Lok Man, Prudence W. H. Wong y Dawei Liu. "Dual-Track Lifelong Machine Learning-Based Fine-Grained Product Quality Analysis". Applied Sciences 13, n.º 3 (17 de enero de 2023): 1241. http://dx.doi.org/10.3390/app13031241.
Texto completoBrito, João y Hugo Proença. "A Short Survey on Machine Learning Explainability: An Application to Periocular Recognition". Electronics 10, n.º 15 (3 de agosto de 2021): 1861. http://dx.doi.org/10.3390/electronics10151861.
Texto completoGhadge, Nikhil. "Leveraging Machine Learning to Enhance Information Exploration". Machine Learning and Applications: An International Journal 11, n.º 2 (28 de junio de 2024): 17–27. http://dx.doi.org/10.5121/mlaij.2024.11203.
Texto completoVilain, Matthieu y Stéphane Aris-Brosou. "Machine Learning Algorithms Associate Case Numbers with SARS-CoV-2 Variants Rather Than with Impactful Mutations". Viruses 15, n.º 6 (24 de mayo de 2023): 1226. http://dx.doi.org/10.3390/v15061226.
Texto completoCao, Xuenan y Roozbeh Yousefzadeh. "Extrapolation and AI transparency: Why machine learning models should reveal when they make decisions beyond their training". Big Data & Society 10, n.º 1 (enero de 2023): 205395172311697. http://dx.doi.org/10.1177/20539517231169731.
Texto completoSoliman, Amira, Björn Agvall, Kobra Etminani, Omar Hamed y Markus Lingman. "The Price of Explainability in Machine Learning Models for 100-Day Readmission Prediction in Heart Failure: Retrospective, Comparative, Machine Learning Study". Journal of Medical Internet Research 25 (27 de octubre de 2023): e46934. http://dx.doi.org/10.2196/46934.
Texto completoKim, Jaehun. "Increasing trust in complex machine learning systems". ACM SIGIR Forum 55, n.º 1 (junio de 2021): 1–3. http://dx.doi.org/10.1145/3476415.3476435.
Texto completoAdak, Anirban, Biswajeet Pradhan y Nagesh Shukla. "Sentiment Analysis of Customer Reviews of Food Delivery Services Using Deep Learning and Explainable Artificial Intelligence: Systematic Review". Foods 11, n.º 10 (21 de mayo de 2022): 1500. http://dx.doi.org/10.3390/foods11101500.
Texto completoKolluru, Vinothkumar, Yudhisthir Nuthakki, Sudeep Mungara, Sonika Koganti, Advaitha Naidu Chintakunta y Charan Sundar Telaganeni. "Healthcare Through AI: Integrating Deep Learning, Federated Learning, and XAI for Disease Management". International Journal of Soft Computing and Engineering 13, n.º 6 (30 de enero de 2024): 21–27. http://dx.doi.org/10.35940/ijsce.d3646.13060124.
Texto completoMatara, Caroline, Simpson Osano, Amir Okeyo Yusuf y Elisha Ochungo Aketch. "Prediction of Vehicle-induced Air Pollution based on Advanced Machine Learning Models". Engineering, Technology & Applied Science Research 14, n.º 1 (8 de febrero de 2024): 12837–43. http://dx.doi.org/10.48084/etasr.6678.
Texto completoRadiuk, Pavlo, Olexander Barmak, Eduard Manziuk y Iurii Krak. "Explainable Deep Learning: A Visual Analytics Approach with Transition Matrices". Mathematics 12, n.º 7 (29 de marzo de 2024): 1024. http://dx.doi.org/10.3390/math12071024.
Texto completoGao, Jingyue, Xiting Wang, Yasha Wang y Xing Xie. "Explainable Recommendation through Attentive Multi-View Learning". Proceedings of the AAAI Conference on Artificial Intelligence 33 (17 de julio de 2019): 3622–29. http://dx.doi.org/10.1609/aaai.v33i01.33013622.
Texto completoLohaj, Oliver, Ján Paralič, Peter Bednár, Zuzana Paraličová y Matúš Huba. "Unraveling COVID-19 Dynamics via Machine Learning and XAI: Investigating Variant Influence and Prognostic Classification". Machine Learning and Knowledge Extraction 5, n.º 4 (25 de septiembre de 2023): 1266–81. http://dx.doi.org/10.3390/make5040064.
Texto completoAkgüller, Ömer, Mehmet Ali Balcı y Gabriela Cioca. "Functional Brain Network Disruptions in Parkinson’s Disease: Insights from Information Theory and Machine Learning". Diagnostics 14, n.º 23 (4 de diciembre de 2024): 2728. https://doi.org/10.3390/diagnostics14232728.
Texto completo