Libros sobre el tema "Explainability of machine learning models"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte los 50 mejores mejores libros para su investigación sobre el tema "Explainability of machine learning models".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Explore libros sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.
Nandi, Anirban y Aditya Kumar Pal. Interpreting Machine Learning Models. Berkeley, CA: Apress, 2022. http://dx.doi.org/10.1007/978-1-4842-7802-4.
Texto completoBolc, Leonard. Computational Models of Learning. Berlin, Heidelberg: Springer Berlin Heidelberg, 1987.
Buscar texto completoGalindez Olascoaga, Laura Isabel, Wannes Meert y Marian Verhelst. Hardware-Aware Probabilistic Machine Learning Models. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-74042-9.
Texto completoSingh, Pramod. Deploy Machine Learning Models to Production. Berkeley, CA: Apress, 2021. http://dx.doi.org/10.1007/978-1-4842-6546-8.
Texto completoZhang, Zhihua. Statistical Machine Learning: Foundations, Methodologies and Models. UK: John Wiley & Sons, Limited, 2017.
Buscar texto completoRendell, Larry. Representations and models for concept learning. Urbana, IL (1304 W. Springfield Ave., Urbana 61801): Dept. of Computer Science, University of Illinois at Urbana-Champaign, 1987.
Buscar texto completoEhteram, Mohammad, Zohreh Sheikh Khozani, Saeed Soltani-Mohammadi y Maliheh Abbaszadeh. Estimating Ore Grade Using Evolutionary Machine Learning Models. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-8106-7.
Texto completoBisong, Ekaba. Building Machine Learning and Deep Learning Models on Google Cloud Platform. Berkeley, CA: Apress, 2019. http://dx.doi.org/10.1007/978-1-4842-4470-8.
Texto completoGupta, Punit, Mayank Kumar Goyal, Sudeshna Chakraborty y Ahmed A. Elngar. Machine Learning and Optimization Models for Optimization in Cloud. Boca Raton: Chapman and Hall/CRC, 2022. http://dx.doi.org/10.1201/9781003185376.
Texto completoSuthaharan, Shan. Machine Learning Models and Algorithms for Big Data Classification. Boston, MA: Springer US, 2016. http://dx.doi.org/10.1007/978-1-4899-7641-3.
Texto completoNaidenova, Xenia. Machine learning methods for commonsense reasoning processes: Interactive models. Hershey, PA: Information Science Reference, 2010.
Buscar texto completoNaidenova, Xenia. Machine learning methods for commonsense reasoning processes: Interactive models. Hershey, PA: Information Science Reference, 2010.
Buscar texto completoRasmussen, Carl Edward. Gaussian processes for machine learning. Cambridge, MA: MIT Press, 2005.
Buscar texto completoNandi, Anirban y Aditya Kumar Pal. Interpreting Machine Learning Models: Learn Model Interpretability and Explainability Methods. Apress L. P., 2022.
Buscar texto completoBhattacharya, Aditya. Applied Machine Learning Explainability Techniques: Make ML Models Explainable and Trustworthy for Practical Applications Using LIME, SHAP, and More. Packt Publishing, Limited, 2022.
Buscar texto completoBolc, Leonard. Computational Models of Learning. Springer, 2011.
Buscar texto completoCroman, Chasity. Tutorials on Machine Learning: Start Learning Machine Learning and Build Your Own Models. Independently Published, 2022.
Buscar texto completoXin, Liu, Ee-Peng Lim y Anwitaman Datta. Computational Trust Models and Machine Learning. Taylor & Francis Group, 2014.
Buscar texto completoXin, Liu, Ee-Peng Lim y Anwitaman Datta. Computational Trust Models and Machine Learning. Taylor & Francis Group, 2020.
Buscar texto completoN, Ambika. Building Business Models with Machine Learning. IGI Global, 2024.
Buscar texto completoAdversarial Robustness for Machine Learning Models. Elsevier Science & Technology Books, 2022.
Buscar texto completoExplainable Machine Learning Models and Architectures. Wiley & Sons, Incorporated, John, 2023.
Buscar texto completoComputational trust models and machine learning. Boca Raton: Taylor & Francis, 2014.
Buscar texto completoExplainable Machine Learning Models and Architectures. Wiley & Sons, Incorporated, John, 2023.
Buscar texto completoMehtab, Sidra y Jaydip Sen. Machine Learning: Algorithms, Models and Applications. IntechOpen, 2021.
Buscar texto completoXin, Liu, Ee-Peng Lim y Anwitaman Datta. Computational Trust Models and Machine Learning. Taylor & Francis Group, 2014.
Buscar texto completoXin, Liu, Ee-Peng Lim y Anwitaman Datta. Computational Trust Models and Machine Learning. Taylor & Francis Group, 2014.
Buscar texto completoChen, Gang. Machine Learning: Basics, Models and Trends. Independently Published, 2017.
Buscar texto completoN, Ambika. Building Business Models with Machine Learning. IGI Global, 2024.
Buscar texto completoPractical MLOps: Operationalizing Machine Learning Models. O'Reilly Media, Incorporated, 2021.
Buscar texto completoN, Ambika. Building Business Models with Machine Learning. IGI Global, 2024.
Buscar texto completoExplainable Machine Learning Models and Architectures. Wiley & Sons, Incorporated, John, 2023.
Buscar texto completoN, Ambika. Building Business Models with Machine Learning. IGI Global, 2024.
Buscar texto completoN, Ambika. Building Business Models with Machine Learning. IGI Global, 2024.
Buscar texto completoAdversarial Robustness for Machine Learning Models. Elsevier Science & Technology, 2022.
Buscar texto completoWineinger, Hubert. Python Book : How to Build Predictive Machine Learning Models Step by Step: Machine Learning Models. Independently Published, 2021.
Buscar texto completoGeneralized Low Rank Models. 2016.
Buscar texto completoGeneralized Low Rank Models. Now Publishers, 2016.
Buscar texto completoYeaman, Kym. Machine Learning for Beginners : Code Basic Machine Learning Models Using Python: Introduction to Machine Learning with Python. Independently Published, 2021.
Buscar texto completoComputational models of learning. Berlin: Springer-Verlag, 1987.
Buscar texto completoMadani, Ali. Debugging Machine Learning Models with Python: Develop High-Performance, Low-bias, and Explainable Machine Learning and Deep Learning Models. de Gruyter GmbH, Walter, 2023.
Buscar texto completoStatistical Machine Learning: Foundations, Methodologies and Models. UK: Wiley-Blackwell (an imprint of John Wiley & Sons Ltd), 2020.
Buscar texto completoExplainable Machine Learning Models and Architectu Res. Wiley & Sons, Limited, John, 2023.
Buscar texto completoAgrawal, Tanay. Hyperparameter Optimization in Machine Learning: Make Your Machine Learning and Deep Learning Models More Efficient. Apress L. P., 2020.
Buscar texto completoSammons, Mark, Dan Roth, Fabio Zanzotto y Ido Dagan. Recognizing Textual Entailment: Models and Applications. Springer International Publishing AG, 2013.
Buscar texto completoSammons, Mark, Dan Roth, Fabio Zanzotto y Ido Dagan. Recognizing Textual Entailment: Models and Applications. Morgan & Claypool Publishers, 2013.
Buscar texto completoSammons, Mark, Dan Roth, Fabio Zanzotto y Ido Dagan. Recognizing Textual Entailment: Models and Applications. Morgan & Claypool Publishers, 2013.
Buscar texto completoMachine Learning with Pytorch and Scikit-Learn: Develop Machine Learning and Deep Learning Models with Python. Packt Publishing, Limited, 2022.
Buscar texto completoMachine Learning with Pytorch and Scikit-Learn: Develop Machine Learning and Deep Learning Models with Python. de Gruyter GmbH, Walter, 2022.
Buscar texto completoVidales, A. Machine Learning with Matlab: Supervised Learning Using Predictive Models. Regression. Independently Published, 2019.
Buscar texto completo