Artículos de revistas sobre el tema "Expanding laminar flames"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "Expanding laminar flames".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.
Tran, Vu Manh. "USING EXPANDING SPHERICAL FLAMES METHOD TO MEASURE THE UNSTRETCHED LAMINAR BURNING VELOCITIES OF LPG-AIR MIXTURES". Science and Technology Development Journal 12, n.º 8 (28 de abril de 2009): 5–14. http://dx.doi.org/10.32508/stdj.v12i8.2270.
Texto completoYousif, Alaeldeen Altag y Shaharin Anwar Sulaiman. "Experimental Study on Laminar Flame Speeds and Markstein Length of Methane-Air Mixtures at Atmospheric Conditions". Applied Mechanics and Materials 699 (noviembre de 2014): 714–19. http://dx.doi.org/10.4028/www.scientific.net/amm.699.714.
Texto completoJOMAAS, G., C. K. LAW y J. K. BECHTOLD. "On transition to cellularity in expanding spherical flames". Journal of Fluid Mechanics 583 (4 de julio de 2007): 1–26. http://dx.doi.org/10.1017/s0022112007005885.
Texto completoZhao, Haoran, Chunmiao Yuan, Gang Li y Fuchao Tian. "The Propagation Characteristics of Turbulent Expanding Flames of Methane/Hydrogen Blending Gas". Energies 17, n.º 23 (28 de noviembre de 2024): 5997. http://dx.doi.org/10.3390/en17235997.
Texto completoHuo, Jialong, Sheng Yang, Zhuyin Ren, Delin Zhu y Chung K. Law. "Uncertainty reduction in laminar flame speed extrapolation for expanding spherical flames". Combustion and Flame 189 (marzo de 2018): 155–62. http://dx.doi.org/10.1016/j.combustflame.2017.10.032.
Texto completoWu, Fujia, Wenkai Liang, Zheng Chen, Yiguang Ju y Chung K. Law. "Uncertainty in stretch extrapolation of laminar flame speed from expanding spherical flames". Proceedings of the Combustion Institute 35, n.º 1 (2015): 663–70. http://dx.doi.org/10.1016/j.proci.2014.05.065.
Texto completoВолодин, В. В., В. В. Голуб y А. Е. Ельянов. "Влияние начальных условий на скорость фронта ламинарного пламени в газовых смесях". Журнал технической физики 91, n.º 2 (2021): 247. http://dx.doi.org/10.21883/jtf.2021.02.50358.215-20.
Texto completoShu, Tao, Yuan Xue, Wenkai Liang y Zhuyin Ren. "Extrapolations of laminar flame speeds from expanding spherical flames based on the finite-structure stretched flames". Combustion and Flame 226 (abril de 2021): 445–54. http://dx.doi.org/10.1016/j.combustflame.2020.12.037.
Texto completoYang, Sheng, Abhishek Saha, Zirui Liu y Chung K. Law. "Role of Darrieus–Landau instability in propagation of expanding turbulent flames". Journal of Fluid Mechanics 850 (10 de julio de 2018): 784–802. http://dx.doi.org/10.1017/jfm.2018.426.
Texto completoLiao, S. Y., D. L. Zhong, C. Yang, X. B. Pan, C. Yuan y Q. Cheng. "The Temperature and Pressure Dependencies of Propagation Characteris-tics for Premixed Laminar Ethanol-Air Flames". Open Civil Engineering Journal 6, n.º 1 (10 de agosto de 2012): 55–64. http://dx.doi.org/10.2174/1874149501206010055.
Texto completoKelley, A. P. y C. K. Law. "Nonlinear effects in the extraction of laminar flame speeds from expanding spherical flames". Combustion and Flame 156, n.º 9 (septiembre de 2009): 1844–51. http://dx.doi.org/10.1016/j.combustflame.2009.04.004.
Texto completoYang, Sheng, Abhishek Saha, Fujia Wu y Chung K. Law. "Morphology and self-acceleration of expanding laminar flames with flame-front cellular instabilities". Combustion and Flame 171 (septiembre de 2016): 112–18. http://dx.doi.org/10.1016/j.combustflame.2016.05.017.
Texto completoShu, Tao, Yuan Xue, Zijun Zhou y Zhuyin Ren. "An experimental study of laminar ammonia/methane/air premixed flames using expanding spherical flames". Fuel 290 (abril de 2021): 120003. http://dx.doi.org/10.1016/j.fuel.2020.120003.
Texto completoZhang, Yakun, Stephanie A. Coronel y Rémy Mével. "Numerical study of synthetic spherically expanding flames for optimization of laminar flame speed experiments". Fuel 310 (febrero de 2022): 122367. http://dx.doi.org/10.1016/j.fuel.2021.122367.
Texto completoHuo, Jialong, Abhishek Saha, Zhuyin Ren y Chung K. Law. "Self-acceleration and global pulsation in hydrodynamically unstable expanding laminar flames". Combustion and Flame 194 (agosto de 2018): 419–25. http://dx.doi.org/10.1016/j.combustflame.2018.05.025.
Texto completoAnggono, Willyanto, I. N. G. Wardana, M. Lawes, K. J. Hughes, Slamet Wahyudi y Nurkholis Hamidi. "Laminar Burning Velocity and Flammability Characteristics of Biogas in Spark Ignited Premix Combustion at Reduced Pressure". Applied Mechanics and Materials 376 (agosto de 2013): 79–85. http://dx.doi.org/10.4028/www.scientific.net/amm.376.79.
Texto completoKarpov, Vladimir P., Andrei N. Lipatnikov y Piotr Wolanski. "Finding the markstein number using the measurements of expanding spherical laminar flames". Combustion and Flame 109, n.º 3 (mayo de 1997): 436–48. http://dx.doi.org/10.1016/s0010-2180(96)00166-6.
Texto completoZhao, Haoran, Jinhua Wang, Xiao Cai, Hongchao Dai, Xiao Liu, Gang Li y Zuohua Huang. "On accelerative propagation of premixed hydrogen/air laminar and turbulent expanding flames". Energy 283 (noviembre de 2023): 129106. http://dx.doi.org/10.1016/j.energy.2023.129106.
Texto completoDuva, Berk Can, Lauren Elizabeth Chance y Elisa Toulson. "The critical lower radius limit approach for laminar flame speed measurement from spherically expanding stretched flames". Experimental Thermal and Fluid Science 121 (febrero de 2021): 110284. http://dx.doi.org/10.1016/j.expthermflusci.2020.110284.
Texto completoJayachandran, Jagannath, Runhua Zhao y Fokion N. Egolfopoulos. "Determination of laminar flame speeds using stagnation and spherically expanding flames: Molecular transport and radiation effects". Combustion and Flame 161, n.º 9 (septiembre de 2014): 2305–16. http://dx.doi.org/10.1016/j.combustflame.2014.03.009.
Texto completoHaq, M. Z. "Correlations for the Onset of Instabilities of Spherical Laminar Premixed Flames". Journal of Heat Transfer 127, n.º 12 (25 de enero de 2005): 1410–15. http://dx.doi.org/10.1115/1.2098867.
Texto completoMovaghar, Ashkan, Robert Lawson y Fokion N. Egolfopoulos. "Confined spherically expanding flame method for measuring laminar flame speeds: Revisiting the assumptions and application to C1C4 hydrocarbon flames". Combustion and Flame 212 (febrero de 2020): 79–92. http://dx.doi.org/10.1016/j.combustflame.2019.10.023.
Texto completoBerger, Lukas, Raik Hesse, Konstantin Kleinheinz, Michael J. Hegetschweiler, Antonio Attili, Joachim Beeckmann, Gregory T. Linteris y Heinz Pitsch. "A DNS study of the impact of gravity on spherically expanding laminar premixed flames". Combustion and Flame 216 (junio de 2020): 412–25. http://dx.doi.org/10.1016/j.combustflame.2020.01.036.
Texto completoMoccia, V., J. D’Alessio y N. Rispoli. "Inferring laminar burning properties from spherical expanding flames: the pitfalls of an established approach". Journal of Physics: Conference Series 1589 (julio de 2020): 012015. http://dx.doi.org/10.1088/1742-6596/1589/1/012015.
Texto completoTurner, Mattias A., Tyler T. Paschal, Pradeep Parajuli, Waruna D. Kulatilaka y Eric L. Petersen. "Application of high-speed, species-specific chemiluminescence imaging for laminar flame speed and Markstein length measurements in spherically expanding flames". Experimental Thermal and Fluid Science 129 (noviembre de 2021): 110477. http://dx.doi.org/10.1016/j.expthermflusci.2021.110477.
Texto completoZhang, Yakun, Marine Jeanson, Rémy Mével, Zheng Chen y Nabiha Chaumeix. "Tailored mixture properties for accurate laminar flame speed measurement from spherically expanding flames: Application to H2/O2/N2/He mixtures". Combustion and Flame 231 (septiembre de 2021): 111487. http://dx.doi.org/10.1016/j.combustflame.2021.111487.
Texto completoLipatnikov, Andrei N., Shenqyang S. Shy y Wun-yi Li. "Experimental assessment of various methods of determination of laminar flame speed in experiments with expanding spherical flames with positive Markstein lengths". Combustion and Flame 162, n.º 7 (julio de 2015): 2840–54. http://dx.doi.org/10.1016/j.combustflame.2015.04.003.
Texto completoJayachandran, Jagannath, Alexandre Lefebvre, Runhua Zhao, Fabien Halter, Emilien Varea, Bruno Renou y Fokion N. Egolfopoulos. "A study of propagation of spherically expanding and counterflow laminar flames using direct measurements and numerical simulations". Proceedings of the Combustion Institute 35, n.º 1 (2015): 695–702. http://dx.doi.org/10.1016/j.proci.2014.05.031.
Texto completoMoghaddas, Ali, Kian Eisazadeh-Far y Hameed Metghalchi. "Laminar burning speed measurement of premixed n-decane/air mixtures using spherically expanding flames at high temperatures and pressures". Combustion and Flame 159, n.º 4 (abril de 2012): 1437–43. http://dx.doi.org/10.1016/j.combustflame.2011.12.005.
Texto completoNawaz, Behlol, Md Nayer Nasim, Shubhra Kanti Das, Joshua Landis, Amina SubLaban, Juan Pablo Trelles, Dimitris Assanis, Noah Van Dam y J. Hunter Mack. "Combustion characteristics and emissions of nitrogen oxides (NO, NO2, N2O) from spherically expanding laminar flames of ammonia–hydrogen blends". International Journal of Hydrogen Energy 65 (mayo de 2024): 164–76. http://dx.doi.org/10.1016/j.ijhydene.2024.03.366.
Texto completoConcetti, Riccardo, Josef Hasslberger y Markus Klein. "Direct numerical simulations with multi-step chemistry of liquid water interaction with laminar spherically expanding premixed hydrogen/air flames". International Journal of Hydrogen Energy 115 (abril de 2025): 10–23. https://doi.org/10.1016/j.ijhydene.2025.02.286.
Texto completoKhan, A. R., S. Anbusaravanan, Lokesh Kalathi, Ratnakishore Velamati y C. Prathap. "Investigation of dilution effect with N2/CO2 on laminar burning velocity of premixed methane/oxygen mixtures using freely expanding spherical flames". Fuel 196 (mayo de 2017): 225–32. http://dx.doi.org/10.1016/j.fuel.2017.01.086.
Texto completoXiouris, Christodoulos, Tailai Ye, Jagannath Jayachandran y Fokion N. Egolfopoulos. "Laminar flame speeds under engine-relevant conditions: Uncertainty quantification and minimization in spherically expanding flame experiments". Combustion and Flame 163 (enero de 2016): 270–83. http://dx.doi.org/10.1016/j.combustflame.2015.10.003.
Texto completoEisazadeh-Far, Kian, Ali Moghaddas, Faranak Rahim y Hameed Metghalchi. "Burning Speed and Entropy Production Calculation of a Transient Expanding Spherical Laminar Flame Using a Thermodynamic Model". Entropy 12, n.º 12 (21 de diciembre de 2010): 2485–96. http://dx.doi.org/10.3390/e12122485.
Texto completoHelling, Tobias, Florian Reischl, Andreas Rosin, Thorsten Gerdes y Walter Krenkel. "Atomization of Borosilicate Glass Melts for the Fabrication of Hollow Glass Microspheres". Processes 11, n.º 9 (26 de agosto de 2023): 2559. http://dx.doi.org/10.3390/pr11092559.
Texto completoSawant, N., B. Dorschner y I. V. Karlin. "A lattice Boltzmann model for reactive mixtures". Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 379, n.º 2208 (30 de agosto de 2021): 20200402. http://dx.doi.org/10.1098/rsta.2020.0402.
Texto completoTindemans, Irma, Maria E. Joosse y Janneke N. Samsom. "Dissecting the Heterogeneity in T-Cell Mediated Inflammation in IBD". Cells 9, n.º 1 (2 de enero de 2020): 110. http://dx.doi.org/10.3390/cells9010110.
Texto completoAdamski, Robert, Dorota Siuta, Bożena Kukfisz, Michał Frydrysiak y Mirosława Prochoń. "Integration of Safety Aspects in Modeling of Superheated Steam Flash Drying of Tobacco". Energies 14, n.º 18 (18 de septiembre de 2021): 5927. http://dx.doi.org/10.3390/en14185927.
Texto completoRokni, Emad, Ali Moghaddas, Omid Askari y Hameed Metghalchi. "Measurement of Laminar Burning Speeds and Investigation of Flame Stability of Acetylene (C2H2)/Air Mixtures". Journal of Energy Resources Technology 137, n.º 1 (3 de septiembre de 2014). http://dx.doi.org/10.1115/1.4028363.
Texto completoLi, Hong-Meng, Guo-Xiu Li, Zuo-Yu Sun, Zi-Hang Zhou, Yuan Li y Ye Yuan. "Fundamental Combustion Characteristics of Lean and Stoichiometric Hydrogen Laminar Premixed Flames Diluted With Nitrogen or Carbon Dioxide". Journal of Engineering for Gas Turbines and Power 138, n.º 11 (24 de mayo de 2016). http://dx.doi.org/10.1115/1.4032315.
Texto completoCai, Xiao, Jinhua Wang, Zhijian Bian, Haoran Zhao, Zhongshan Li y Zuohua Huang. "Propagation of Darrieus–Landau unstable laminar and turbulent expanding flames". Proceedings of the Combustion Institute, septiembre de 2020. http://dx.doi.org/10.1016/j.proci.2020.06.247.
Texto completoBechtold, John K., Gautham Krishnan y Moshe Matalon. "Hydrodynamic theory of premixed flames propagating in closed vessels: flame speed and Markstein lengths". Journal of Fluid Mechanics 998 (4 de noviembre de 2024). http://dx.doi.org/10.1017/jfm.2024.919.
Texto completoLiu, Zirui, Vishnu R. Unni, Swetaprovo Chaudhuri, Chung K. Law y Abhishek Saha. "Local statistics of laminar expanding flames subjected to Darrieus–Landau instability". Proceedings of the Combustion Institute, agosto de 2020. http://dx.doi.org/10.1016/j.proci.2020.06.118.
Texto completoYin, Geyuan, Erjiang Hu, Xiaotian Li, Xin Lv y Zuohua Huang. "Laminar Flame Instability of n-Hexane, n-Octane, and n-Decane in Spherical Expanding Flames". Journal of Thermal Science, 11 de enero de 2024. http://dx.doi.org/10.1007/s11630-024-1844-0.
Texto completoZhao, Haoran, Jinhua Wang, Xiao Cai, Hongchao Dai, Xiao Liu y Zuohua Huang. "On Accelerative Propagation of Premixed Hydrogen/Air Laminar and Turbulent Expanding Flames". SSRN Electronic Journal, 2022. http://dx.doi.org/10.2139/ssrn.4183159.
Texto completoHuo, Jialong, Abhishek Saha, Tao Shu, Zhuyin Ren y Chung K. Law. "Self-acceleration and global pulsation in expanding laminar H2−O2−N2 flames". Physical Review Fluids 4, n.º 4 (16 de abril de 2019). http://dx.doi.org/10.1103/physrevfluids.4.043201.
Texto completoDuva, Berk, Yen-Cheng Wang, Lauren Chance y Elisa Toulson. "Laminar Flame Characteristics of Sequential Two-Stage Combustion of Premixed Methane/Air Flames". Journal of Engineering for Gas Turbines and Power, 15 de septiembre de 2020. http://dx.doi.org/10.1115/1.4048450.
Texto completoKutkan, Halit, Alberto Amato, Giovanni Campa, Giulio Ghirardo, Luis Tay Wo Chong Hilares y Eirik Æs⊘y. "Modelling of Turbulent Premixed CH4/H2/Air Flames Including the Influence of Stretch and Heat Losses". Journal of Engineering for Gas Turbines and Power, 3 de agosto de 2021. http://dx.doi.org/10.1115/1.4051989.
Texto completoTurner, Mattias y Eric Petersen. "High-Pressure Laminar Flame Speeds and Markstein Lengths of Syngas Flames Diluted in Carbon Dioxide and Helium". Journal of Engineering for Gas Turbines and Power, 27 de septiembre de 2022. http://dx.doi.org/10.1115/1.4055796.
Texto completoAmerighi, Matteo, Giada Senatori, Antonio Andreini, Thierry Schuller, Tarik Yahou y James Dawson. "Complete Dynamics from Ignition to Stabilization of a Lean Hydrogen Flame with Thickened Flame Model". Journal of Engineering for Gas Turbines and Power, 19 de septiembre de 2024, 1–13. http://dx.doi.org/10.1115/1.4066590.
Texto completo