Artículos de revistas sobre el tema "Exact and approximate inferences"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "Exact and approximate inferences".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.
Wu, Lang. "Exact and Approximate Inferences for Nonlinear Mixed-Effects Models With Missing Covariates". Journal of the American Statistical Association 99, n.º 467 (septiembre de 2004): 700–709. http://dx.doi.org/10.1198/016214504000001006.
Texto completoMekhnacha, Kamel, Juan-Manuel Ahuactzin, Pierre Bessière, Emmanuel Mazer y Linda Smail. "Exact and approximate inference in ProBT". Revue d'intelligence artificielle 21, n.º 3 (12 de junio de 2007): 295–332. http://dx.doi.org/10.3166/ria.21.295-332.
Texto completoAkagi, Yasunori, Takuya Nishimura, Yusuke Tanaka, Takeshi Kurashima y Hiroyuki Toda. "Exact and Efficient Inference for Collective Flow Diffusion Model via Minimum Convex Cost Flow Algorithm". Proceedings of the AAAI Conference on Artificial Intelligence 34, n.º 04 (3 de abril de 2020): 3163–70. http://dx.doi.org/10.1609/aaai.v34i04.5713.
Texto completoAbe, Takayuki y Manabu Iwasaki. "EXACT AND APPROXIMATE INFERENCES FOR AN EXPONENTIAL MEAN FROM TYPE I CENSORED DATA". Bulletin of informatics and cybernetics 37 (diciembre de 2005): 31–39. http://dx.doi.org/10.5109/12589.
Texto completoYANG, HANN-PYI JAMES y WEI-KEI SHIUE. "COMPARISON OF FAILURE INTENSITIES FROM TWO POISSON PROCESSES". International Journal of Reliability, Quality and Safety Engineering 02, n.º 03 (septiembre de 1995): 235–43. http://dx.doi.org/10.1142/s0218539395000186.
Texto completoKarami, Md Jamil Hasan. "Assessing Goodness of Approximate Distributions for Inferences about Parameters in Nonlinear Regression Model". Dhaka University Journal of Science 71, n.º 1 (29 de mayo de 2023): 13–16. http://dx.doi.org/10.3329/dujs.v71i1.65267.
Texto completoEl-Sagheer, Rashad M., Taghreed M. Jawa y Neveen Sayed-Ahmed. "Inferences for Generalized Pareto Distribution Based on Progressive First-Failure Censoring Scheme". Complexity 2021 (7 de diciembre de 2021): 1–11. http://dx.doi.org/10.1155/2021/9325928.
Texto completoLintusaari, Jarno, Paul Blomstedt, Tuomas Sivula, Michael U. Gutmann, Samuel Kaski y Jukka Corander. "Resolving outbreak dynamics using approximate Bayesian computation for stochastic birth-death models". Wellcome Open Research 4 (25 de enero de 2019): 14. http://dx.doi.org/10.12688/wellcomeopenres.15048.1.
Texto completoLintusaari, Jarno, Paul Blomstedt, Brittany Rose, Tuomas Sivula, Michael U. Gutmann, Samuel Kaski y Jukka Corander. "Resolving outbreak dynamics using approximate Bayesian computation for stochastic birth–death models". Wellcome Open Research 4 (30 de agosto de 2019): 14. http://dx.doi.org/10.12688/wellcomeopenres.15048.2.
Texto completoShapovalova, Yuliya. "“Exact” and Approximate Methods for Bayesian Inference: Stochastic Volatility Case Study". Entropy 23, n.º 4 (15 de abril de 2021): 466. http://dx.doi.org/10.3390/e23040466.
Texto completoFioretto, Ferdinando, Enrico Pontelli, William Yeoh y Rina Dechter. "Accelerating exact and approximate inference for (distributed) discrete optimization with GPUs". Constraints 23, n.º 1 (18 de agosto de 2017): 1–43. http://dx.doi.org/10.1007/s10601-017-9274-1.
Texto completoTarvirdizade, Bahman y Hossein Kazemzadeh Garehchobogh. "Interval Estimation of Stress-Strength Reliability Based on Lower Record Values from Inverse Rayleigh Distribution". Journal of Quality and Reliability Engineering 2014 (16 de noviembre de 2014): 1–8. http://dx.doi.org/10.1155/2014/192072.
Texto completoGuo, Yuanzhen, Hao Xiong y Nicholas Ruozzi. "Marginal Inference in Continuous Markov Random Fields Using Mixtures". Proceedings of the AAAI Conference on Artificial Intelligence 33 (17 de julio de 2019): 7834–41. http://dx.doi.org/10.1609/aaai.v33i01.33017834.
Texto completoKenig, Batya y Benny Kimelfeld. "Approximate Inference of Outcomes in Probabilistic Elections". Proceedings of the AAAI Conference on Artificial Intelligence 33 (17 de julio de 2019): 2061–68. http://dx.doi.org/10.1609/aaai.v33i01.33012061.
Texto completoSeridi, Hamid, Herman Akdag, Rachid Mansouri y Mohamed Nemissi. "Approximate Reasoning in Supervised Classification Systems". Journal of Advanced Computational Intelligence and Intelligent Informatics 10, n.º 4 (20 de julio de 2006): 586–93. http://dx.doi.org/10.20965/jaciii.2006.p0586.
Texto completoTucci, Beatriz y Fabian Schmidt. "EFTofLSS meets simulation-based inference: σ 8 from biased tracers". Journal of Cosmology and Astroparticle Physics 2024, n.º 05 (1 de mayo de 2024): 063. http://dx.doi.org/10.1088/1475-7516/2024/05/063.
Texto completoDomínguez, E. y H. J. Kappen. "Efficient inference in the transverse field Ising model". Journal of Statistical Mechanics: Theory and Experiment 2023, n.º 3 (1 de marzo de 2023): 033301. http://dx.doi.org/10.1088/1742-5468/acba02.
Texto completoAtkinson, Eric, Charles Yuan, Guillaume Baudart, Louis Mandel y Michael Carbin. "Semi-symbolic inference for efficient streaming probabilistic programming". Proceedings of the ACM on Programming Languages 6, OOPSLA2 (31 de octubre de 2022): 1668–96. http://dx.doi.org/10.1145/3563347.
Texto completoDemidenko, Eugene. "Exact and Approximate Statistical Inference for Nonlinear Regression and the Estimating Equation Approach". Scandinavian Journal of Statistics 44, n.º 3 (29 de marzo de 2017): 636–65. http://dx.doi.org/10.1111/sjos.12269.
Texto completoÇakmak, Burak, Yue M. Lu y Manfred Opper. "Analysis of random sequential message passing algorithms for approximate inference". Journal of Statistical Mechanics: Theory and Experiment 2022, n.º 7 (1 de julio de 2022): 073401. http://dx.doi.org/10.1088/1742-5468/ac764a.
Texto completoRandone, Francesca, Luca Bortolussi, Emilio Incerto y Mirco Tribastone. "Inference of Probabilistic Programs with Moment-Matching Gaussian Mixtures". Proceedings of the ACM on Programming Languages 8, POPL (5 de enero de 2024): 1882–912. http://dx.doi.org/10.1145/3632905.
Texto completoDe Santis, Fulvio y Stefania Gubbiotti. "Sample Size Requirements for Calibrated Approximate Credible Intervals for Proportions in Clinical Trials". International Journal of Environmental Research and Public Health 18, n.º 2 (12 de enero de 2021): 595. http://dx.doi.org/10.3390/ijerph18020595.
Texto completoCANO, ANDRÉS, MANUEL GÓMEZ-OLMEDO, CORA B. PÉREZ-ARIZA y ANTONIO SALMERÓN. "FAST FACTORISATION OF PROBABILISTIC POTENTIALS AND ITS APPLICATION TO APPROXIMATE INFERENCE IN BAYESIAN NETWORKS". International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 20, n.º 02 (abril de 2012): 223–43. http://dx.doi.org/10.1142/s0218488512500110.
Texto completoSchälte, Yannik y Jan Hasenauer. "Efficient exact inference for dynamical systems with noisy measurements using sequential approximate Bayesian computation". Bioinformatics 36, Supplement_1 (1 de julio de 2020): i551—i559. http://dx.doi.org/10.1093/bioinformatics/btaa397.
Texto completoDemidenko, Eugene, Benjamin B. Williams, Ann Barry Flood y Harold M. Swartz. "Standard error of inverse prediction for dose-response relationship: approximate and exact statistical inference". Statistics in Medicine 32, n.º 12 (5 de noviembre de 2012): 2048–61. http://dx.doi.org/10.1002/sim.5668.
Texto completoVan den Broek, B., W. Wiegerinck y B. Kappen. "Graphical Model Inference in Optimal Control of Stochastic Multi-Agent Systems". Journal of Artificial Intelligence Research 32 (16 de mayo de 2008): 95–122. http://dx.doi.org/10.1613/jair.2473.
Texto completoDaly, Aidan C., Jonathan Cooper, David J. Gavaghan y Chris Holmes. "Comparing two sequential Monte Carlo samplers for exact and approximate Bayesian inference on biological models". Journal of The Royal Society Interface 14, n.º 134 (septiembre de 2017): 20170340. http://dx.doi.org/10.1098/rsif.2017.0340.
Texto completoCabañas, Rafael, Manuel Gómez-Olmedo y Andrés Cano. "Using Binary Trees for the Evaluation of Influence Diagrams". International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 24, n.º 01 (febrero de 2016): 59–89. http://dx.doi.org/10.1142/s0218488516500045.
Texto completoNAMPALLY, ARUN, TIMOTHY ZHANG y C. R. RAMAKRISHNAN. "Constraint-Based Inference in Probabilistic Logic Programs". Theory and Practice of Logic Programming 18, n.º 3-4 (julio de 2018): 638–55. http://dx.doi.org/10.1017/s1471068418000273.
Texto completoEnsinger, Katharina, Nicholas Tagliapietra, Sebastian Ziesche y Sebastian Trimpe. "Exact Inference for Continuous-Time Gaussian Process Dynamics". Proceedings of the AAAI Conference on Artificial Intelligence 38, n.º 11 (24 de marzo de 2024): 11883–91. http://dx.doi.org/10.1609/aaai.v38i11.29074.
Texto completoCano, Andrés, Manuel Gómez, Serafín Moral y Joaquín Abellán. "Hill-climbing and branch-and-bound algorithms for exact and approximate inference in credal networks". International Journal of Approximate Reasoning 44, n.º 3 (marzo de 2007): 261–80. http://dx.doi.org/10.1016/j.ijar.2006.07.020.
Texto completoDrovandi, Christopher C., Anthony N. Pettitt y Roy A. McCutchan. "Exact and Approximate Bayesian Inference for Low Integer-Valued Time Series Models with Intractable Likelihoods". Bayesian Analysis 11, n.º 2 (junio de 2016): 325–52. http://dx.doi.org/10.1214/15-ba950.
Texto completoFeldman, A., G. Provan y A. Van Gemund. "Approximate Model-Based Diagnosis Using Greedy Stochastic Search". Journal of Artificial Intelligence Research 38 (27 de julio de 2010): 371–413. http://dx.doi.org/10.1613/jair.3025.
Texto completoTaghipour, N., D. Fierens, J. Davis y H. Blockeel. "Lifted Variable Elimination: Decoupling the Operators from the Constraint Language". Journal of Artificial Intelligence Research 47 (8 de julio de 2013): 393–439. http://dx.doi.org/10.1613/jair.3793.
Texto completovan Lieshout, M. N. M. y E. W. van Zwet. "Exact sampling from conditional Boolean models with applications to maximum likelihood inference". Advances in Applied Probability 33, n.º 2 (junio de 2001): 339–53. http://dx.doi.org/10.1017/s000186780001082x.
Texto completoAlnosaier, Waseem. "Comparisons of the Satterthwaite Approaches for Fixed Effects in Linear Mixed Models". International Journal of Statistics and Probability 13, n.º 1 (28 de febrero de 2024): 22. http://dx.doi.org/10.5539/ijsp.v13n1p22.
Texto completoMasegosa, Andrés R., Rafael Cabañas, Helge Langseth, Thomas D. Nielsen y Antonio Salmerón. "Probabilistic Models with Deep Neural Networks". Entropy 23, n.º 1 (18 de enero de 2021): 117. http://dx.doi.org/10.3390/e23010117.
Texto completoAlahmadi, Amani A., Jennifer A. Flegg, Davis G. Cochrane, Christopher C. Drovandi y Jonathan M. Keith. "A comparison of approximate versus exact techniques for Bayesian parameter inference in nonlinear ordinary differential equation models". Royal Society Open Science 7, n.º 3 (marzo de 2020): 191315. http://dx.doi.org/10.1098/rsos.191315.
Texto completoSeo, Jung-In, Jae-Woo Jeon y Suk-Bok Kang. "Exact Interval Inference for the Two-Parameter Rayleigh Distribution Based on the Upper Record Values". Journal of Probability and Statistics 2016 (2016): 1–5. http://dx.doi.org/10.1155/2016/8246390.
Texto completoVolaufová, Júlia y Viktor Witkovský. "On exact inference in linear models with two variance-covariance components". Tatra Mountains Mathematical Publications 51, n.º 1 (1 de noviembre de 2012): 173–81. http://dx.doi.org/10.2478/v10127-012-0017-9.
Texto completoGHAHRAMANI, ZOUBIN. "AN INTRODUCTION TO HIDDEN MARKOV MODELS AND BAYESIAN NETWORKS". International Journal of Pattern Recognition and Artificial Intelligence 15, n.º 01 (febrero de 2001): 9–42. http://dx.doi.org/10.1142/s0218001401000836.
Texto completoFriston, Karl J., Lancelot Da Costa y Thomas Parr. "Some Interesting Observations on the Free Energy Principle". Entropy 23, n.º 8 (19 de agosto de 2021): 1076. http://dx.doi.org/10.3390/e23081076.
Texto completoUllah, Insha, Sudhir Paul, Zhenjie Hong y You-Gan Wang. "Significance tests for analyzing gene expression data with small sample sizes". Bioinformatics 35, n.º 20 (15 de marzo de 2019): 3996–4003. http://dx.doi.org/10.1093/bioinformatics/btz189.
Texto completoHuang, Kai y Jie Mi. "Inference about Weibull Distribution Using Upper Record Values". International Journal of Reliability, Quality and Safety Engineering 22, n.º 04 (agosto de 2015): 1550016. http://dx.doi.org/10.1142/s0218539315500163.
Texto completoJaakkola, T. S. y M. I. Jordan. "Variational Probabilistic Inference and the QMR-DT Network". Journal of Artificial Intelligence Research 10 (1 de mayo de 1999): 291–322. http://dx.doi.org/10.1613/jair.583.
Texto completoJiao, Jiajia. "HEAP: A Holistic Error Assessment Framework for Multiple Approximations Using Probabilistic Graphical Models". Electronics 9, n.º 2 (22 de febrero de 2020): 373. http://dx.doi.org/10.3390/electronics9020373.
Texto completoMiller, David J. y Lian Yan. "Approximate Maximum Entropy Joint Feature Inference Consistent with Arbitrary Lower-Order Probability Constraints: Application to Statistical Classification". Neural Computation 12, n.º 9 (1 de septiembre de 2000): 2175–207. http://dx.doi.org/10.1162/089976600300015105.
Texto completoLin, Peng, Martin Neil y Norman Fenton. "Improved High Dimensional Discrete Bayesian Network Inference using Triplet Region Construction". Journal of Artificial Intelligence Research 69 (27 de septiembre de 2020): 231–95. http://dx.doi.org/10.1613/jair.1.12198.
Texto completoMozer, Reagan, Luke Miratrix, Aaron Russell Kaufman y L. Jason Anastasopoulos. "Matching with Text Data: An Experimental Evaluation of Methods for Matching Documents and of Measuring Match Quality". Political Analysis 28, n.º 4 (17 de marzo de 2020): 445–68. http://dx.doi.org/10.1017/pan.2020.1.
Texto completoZhu, Jianping, Hua Xin, Chenlu Zheng y Tzong-Ru Tsai. "Inference for the Process Performance Index of Products on the Basis of Power-Normal Distribution". Mathematics 10, n.º 1 (23 de diciembre de 2021): 35. http://dx.doi.org/10.3390/math10010035.
Texto completo