Artículos de revistas sobre el tema "Eutrophication – Control"

Siga este enlace para ver otros tipos de publicaciones sobre el tema: Eutrophication – Control.

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "Eutrophication – Control".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.

1

Tang, Xianqiang, Min Wu, Wenjun Yang, Wei Yin, Feng Jin, Min Ye, Neil Currie y Miklas Scholz. "Ecological Strategy for Eutrophication Control". Water, Air, & Soil Pollution 223, n.º 2 (2 de agosto de 2011): 723–37. http://dx.doi.org/10.1007/s11270-011-0897-3.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Martínez, Aurea, Francisco J. Fernández y Lino J. Alvarez-Vázquez. "Water artificial circulation for eutrophication control". Mathematical Control & Related Fields 8, n.º 1 (2018): 277–313. http://dx.doi.org/10.3934/mcrf.2018012.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Carpenter, Stephen R., David L. Christensen, Jonathan J. Cole, Kathryn L. Cottingham, Xi He, James R. Hodgson, James F. Kitchell, Susan E. Knight, Michael L. Pace y et al. "Biological Control of Eutrophication in Lakes". Environmental Science & Technology 29, n.º 3 (marzo de 1995): 784–86. http://dx.doi.org/10.1021/es00003a028.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Pelley, Janet. "Is Coastal Eutrophication Out of Control?" Environmental Science & Technology 32, n.º 19 (octubre de 1998): 462A—466A. http://dx.doi.org/10.1021/es983777p.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Sala, L. y R. Mujeriego. "Cultural eutrophication control through water reuse". Water Science and Technology 43, n.º 10 (1 de mayo de 2001): 109–16. http://dx.doi.org/10.2166/wst.2001.0595.

Texto completo
Resumen
The increasing use of mineral fertilisers over the last decades has contributed to the appearance of numerous cases of water eutrophication, a new form of water pollution. The starting point of eutrophication is the increase of nutrient concentration (nitrogen and phosphorus) in a water mass, which is subsequently followed by an uncontrolled growth of primary producers and episodes of oxygen depletion due to microbial decomposition of algal organic matter. The excess nutrient loads reaching surface waters are usually associated to discharges from anthropogenic activities, which normally involve direct water usage instead of reuse of reclaimed effluents. Agriculture activities and livestock breeding are two of the main nutrient sources responsible for water eutrophication, as well as human - urban and industrial - wastewater discharges. Wastewater reclamation and reuse can be a suitable strategy for preserving the quality of natural waters, by suppressing effluent discharges and the associated nutrient contributions to receiving waters. Reuse of reclaimed water for agricultural and landscape irrigation as well as for environmental enhancement offers an adequate strategy for preserving natural water systems from eutrophication.
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Ormerod, S. J. "Control of eutrophication in inland waters". Environmental Pollution 80, n.º 3 (1993): 309. http://dx.doi.org/10.1016/0269-7491(93)90057-u.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Qin, Boqiang, Liuyan Yang, Feizhou Chen, Guangwei Zhu, Lu Zhang y Yiyu Chen. "Mechanism and control of lake eutrophication". Chinese Science Bulletin 51, n.º 19 (octubre de 2006): 2401–12. http://dx.doi.org/10.1007/s11434-006-2096-y.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Francko, David A. "Control of Eutrophication in Inland Waters". Aquatic Toxicology 26, n.º 1-2 (junio de 1993): 152–53. http://dx.doi.org/10.1016/0166-445x(93)90012-p.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Rast, Walter y Jeffrey A. Thornton. "Trends in eutrophication research and control". Hydrological Processes 10, n.º 2 (febrero de 1996): 295–313. http://dx.doi.org/10.1002/(sici)1099-1085(199602)10:2<295::aid-hyp360>3.0.co;2-f.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Peimin, PU, WANG Guoxiang, HU Chunhua, HU Weiping y FAN Chengxin. "Can We Control Lake Eutrophication by Dredging?" Journal of Lake Sciences 12, n.º 3 (2000): 269–79. http://dx.doi.org/10.18307/2000.0312.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
11

Petersen, Jens Kjerulf, Camille Saurel, Pernille Nielsen y Karen Timmermann. "The use of shellfish for eutrophication control". Aquaculture International 24, n.º 3 (9 de octubre de 2015): 857–78. http://dx.doi.org/10.1007/s10499-015-9953-0.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
12

Kwon, Hyok-Bo, Chan-Won Lee, Byung-Sei Jun, Jon-do Yun, Seung-Yeon Weon y Ben Koopman. "Recycling waste oyster shells for eutrophication control". Resources, Conservation and Recycling 41, n.º 1 (abril de 2004): 75–82. http://dx.doi.org/10.1016/j.resconrec.2003.08.005.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
13

Hansen, Anne M., Claudia Hernández-Martínez y Axel Falcón-Rojas. "Evaluation of Eutrophication Control Through Hypolimnetic Oxygenation". Procedia Earth and Planetary Science 17 (2017): 598–601. http://dx.doi.org/10.1016/j.proeps.2016.12.159.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
14

Carpenter, S. R. "Phosphorus control is critical to mitigating eutrophication". Proceedings of the National Academy of Sciences 105, n.º 32 (6 de agosto de 2008): 11039–40. http://dx.doi.org/10.1073/pnas.0806112105.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
15

Qin, Boqiang. "Lake eutrophication: Control countermeasures and recycling exploitation". Ecological Engineering 35, n.º 11 (noviembre de 2009): 1569–73. http://dx.doi.org/10.1016/j.ecoleng.2009.04.003.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
16

Gao, Yang Jun, Yong Cao, Zhen Zhao y Cong Jun Sun. "Eutrophication Control Standard for Eastern Lake Region, China Basing on the Comprehensive Trophic Level Indexes Classification". Advanced Materials Research 518-523 (mayo de 2012): 2117–20. http://dx.doi.org/10.4028/www.scientific.net/amr.518-523.2117.

Texto completo
Resumen
Basing on water quality and aquatic ecological data of 142 lakes in eastern region of China, the article selected causal variable (TN, TP, CODMn) and response variable (Chl-a, SD), used Comprehensive Trophic Level Indexes (TLI) classification method and got the eutrophication control standards of five factors. The result showed that the eutrophication control standards were in excess of values of III water standard in GB3838-2002. The result could provide scientific conference for lake eutrophication control standard.
Los estilos APA, Harvard, Vancouver, ISO, etc.
17

He, Jia, Jiping Yao, Aihua Li, Zhongxin Tan, Gang Xie, Huijian Shi, Xuan Zhang, Wenchao Sun y Peng Du. "Potential impact of water transfer policy implementation on lake eutrophication on the Shandong Peninsula: a difference-in-differences approach". Hydrology Research 51, n.º 5 (31 de julio de 2020): 1063–76. http://dx.doi.org/10.2166/nh.2020.047.

Texto completo
Resumen
Abstract Traditional research on lake eutrophication has failed to consider the effect of the South-to-North Water Transfer Project (SNWTP) policy; thus, the difference-in-differences (DID) model, which is usually applied to economic factors, was innovatively introduced to evaluate the effect of such policies on lake eutrophication. Nansi Lake and Dongping Lake in the Shandong Peninsula were selected as the experimental group, and Daming Lake and Mata Lake were selected as the control group. The eutrophication indices of the experimental group and the control group were calculated by the measured chlorophyll-a, total phosphorus, total nitrogen, water transparency and chemical oxygen demand data and used as the explanatory variables of the DID model. Nine environmental and socio-economic factors, such as dissolved oxygen and rural population, were selected as the control variables of the DID model to analyze the impact of the SNWTP policy on lake eutrophication. A joint consideration of environmental and socio-economic factors showed that the eutrophication degree of the experimental lakes deteriorated by 7.10% compared with the control under the influence of the implemented policy. Dissolved oxygen is the main factor affecting the eutrophication of the Shandong Peninsula. This study verifies that the DID model has the potential for use in quantitative analyses of the effect of the SNWTP policy on lake eutrophication.
Los estilos APA, Harvard, Vancouver, ISO, etc.
18

Guoxiang, WANG, CHENG Xiaoying y PU Peimin. "Lake Eutrophication Control in Technology, Theory and Application". Journal of Lake Sciences 14, n.º 3 (2002): 273–82. http://dx.doi.org/10.18307/2002.0313.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
19

Brenner, Mark. "The Control of Eutrophication of Lakes and Reservoirs". Journal of Environmental Quality 20, n.º 2 (abril de 1991): 498. http://dx.doi.org/10.2134/jeq1991.00472425002000020030x.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
20

Green, J. "The Control of Eutrophication of Lakes and Reservoirs". Journal of Arid Environments 20, n.º 2 (marzo de 1991): 252. http://dx.doi.org/10.1016/s0140-1963(18)30714-6.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
21

Herodek, Sándor, Vera Istvánovics y János Zlinszky. "Phosphorus metabolism and eutrophication control of Lake Balaton". SIL Proceedings, 1922-2010 23, n.º 1 (enero de 1988): 517–21. http://dx.doi.org/10.1080/03680770.1987.11897973.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
22

Arheimer, B., L. Andersson, M. Larsson, G. Lindström, J. Olsson y B. C. Pers. "Modelling diffuse nutrient flow in eutrophication control scenarios". Water Science and Technology 49, n.º 3 (1 de febrero de 2004): 37–45. http://dx.doi.org/10.2166/wst.2004.0158.

Texto completo
Resumen
The Swedish Water Management Research Programme (VASTRA) focuses on the development and demonstration of tools for more efficient eutrophication control when implementing the EU water framework directive in Sweden. During the first half of the programme, models for nitrogen flow were developed, and at present, similar models for phosphorus are under construction (e.g. HBV-P). The programme is interdisciplinary, and scientists are collaborating in actor-games and focus group evaluations including scenario analysis. The scenarios modelled in VASTRA phase I, show that (i) changed agricultural practices can be the most effective and least expensive way to reduce nitrogen transport from land to the sea; (ii) constructed agricultural wetlands may only have small impact on riverine nitrogen transport in some regions, due to natural hydrometeorological dynamics; (iii) removing planktivorous fish may be an efficient way of reducing the algal concentrations in lakes without the undesired side-effect of increased nutrient load to the down-stream river system. In VASTRA phase II, one of the highlights will be interdisciplinary scenario-modelling of different measure strategies in a pilot catchment of southern Sweden (Rönne å).
Los estilos APA, Harvard, Vancouver, ISO, etc.
23

Zhang, Limin, Minfang Xia, Lei Zhang, Chun Wang y Jilai Lu. "Eutrophication status and control strategy of Taihu Lake". Frontiers of Environmental Science & Engineering in China 2, n.º 3 (6 de agosto de 2008): 280–90. http://dx.doi.org/10.1007/s11783-008-0062-4.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
24

Ekholm, Petri y Jouni Lehtoranta. "Does control of soil erosion inhibit aquatic eutrophication?" Journal of Environmental Management 93, n.º 1 (enero de 2012): 140–46. http://dx.doi.org/10.1016/j.jenvman.2011.09.010.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
25

Vinçonneau, J. C., F. Schaack, A. F. Boschet, D. Chevalier, D. Villesot, M. Jaubert, Ch Laval y S. Lambert. "The Problem of Phosphorus in France – Its Presence in Natural Waters and Biological Phosphorus Removal". Water Science and Technology 17, n.º 11-12 (1 de noviembre de 1985): 1–9. http://dx.doi.org/10.2166/wst.1985.0217.

Texto completo
Resumen
The problem of nutrient inputs to surface waters is reviewed. These inputs lead to eutrophication and an undesirable decrease in water quality. The origin and effects of eutrophication, and the principles of its control are described. The preferred method of control is through the reduction of phosphorus inputs. The origins of phosphorus inputs and methods of limiting these are considered, in particular through physico-chemical and biological treatment processes in sewage treatment plants. It is concluded that efficient control of eutrophication through reduction of phosphorus inputs is possible.
Los estilos APA, Harvard, Vancouver, ISO, etc.
26

Žilinskaitė, Emilija, Malgorzata Blicharska y Martyn Futter. "Stakeholder Perspectives on Blue Mussel Farming to Mitigate Baltic Sea Eutrophication". Sustainability 13, n.º 16 (16 de agosto de 2021): 9180. http://dx.doi.org/10.3390/su13169180.

Texto completo
Resumen
Here, we present an application of systems thinking to controlling Baltic Sea eutrophication—a wicked environmental problem characterized by multiple stakeholder perspectives and no single, agreed upon solution. The Baltic Sea is one of the most polluted waterbodies in the world. More than 40 years of land-based (linear) measures have failed to adequately control eutrophication, yet internal (circular) measures are rarely used. Farming native blue mussels for nutrient capture has been proposed as one measure for eutrophication control, but the relevant stakeholders disagree as to its environmental, social and economic benefits. Here, we present the views of four Swedish stakeholder groups—academics, entrepreneurs, municipal government employees and representatives of non-governmental organizations (NGOs)—on the sustainability of native blue mussel farming, a circular measure for eutrophication control. Using semi-structured interviews, we elicited stakeholder perspectives on the environmental, economic and social dimensions of blue mussel farming. The interviewees generally agreed that blue mussel farming is not currently economically sustainable, but that it can contribute to the social sustainability of coastal regions. Academics were skeptical of the environmental benefits, claiming that farms could reinforce eutrophication, whereas the remaining stakeholder groups argued for its potential to mitigate eutrophication. In a roundtable discussion conducted one year after the original interviews, all stakeholder groups agreed that blue mussel farming alone will not fix Baltic Sea eutrophication, but can be part of the solution together with land-based measures. All groups also agreed on the need for cautious upscaling, continuous environmental monitoring and constant improvement if blue mussel farms are to be part of a “toolkit” for eutrophication control. Our results highlight the fact that wicked environmental problems can be addressed when multiple stakeholder groups with differing perspectives have the opportunity to achieve consensus through dialog.
Los estilos APA, Harvard, Vancouver, ISO, etc.
27

Somlyódy, L. "A Lake Eutrophication Management Model". Water Science and Technology 19, n.º 5-6 (1 de mayo de 1987): 711–19. http://dx.doi.org/10.2166/wst.1987.0250.

Texto completo
Resumen
An eutrophication management optimization model (EMOM) was developed and applied for Lake Balaton - a typical shallow water body - in order to establish a short term control strategy. It incorporates a stochastic load response model which was derived from the Monte Carlo type usage of a four-compartment, four-box dynamic lake eutrophication model after developing synthetic time series generators for forcing functions. EMOM also includes a planning mode nutrient loading model which accounts for various uncertainties and stochastic effects. Major control options are phosphorus precipitation on existing sewage treatment plants and the construction of pre-reservoirs. Among alternative objective functions and models formulated, here a linearized expectation - variance model is discussed which captures the major stochastic features of the problem. The “optimal” short term strategy is worked out for Lake Balaton. In the frame of a sensitivity analysis the importance of various physical, chemical, biological and economic parameters is evaluated as regarding for eutrophication management.
Los estilos APA, Harvard, Vancouver, ISO, etc.
28

Leaf, S. S. y R. Chatterjee. "Developing a strategy on eutrophication". Water Science and Technology 39, n.º 12 (1 de junio de 1999): 307–14. http://dx.doi.org/10.2166/wst.1999.0560.

Texto completo
Resumen
Eutrophication of environmental waters is a complex process characterised by nutrient enrichment leading to increased production of algae and higher plants. This can result in undesirable effects on the quality, biodiversity and sustainable uses of our waters, in conflict with the objectives of the Agency's Environmental Strategy. Assessment and control of eutrophication in the UK have proceeded in a somewhat piecemeal fashion to date, focusing mainly on certain localised problems, or on the implementation of EC Directives, notably those relating to the control of urban waste water and agricultural nitrate, which provide only partial solutions to problems. The Environment Agency of England and Wales is developing a strategy on eutrophication, aimed at delivering a more coordinated and integrated approach. Key components of the strategy will be those relating to management, communication and R&D. Making best use of the regulatory framework is an important feature of the initiative, but equally so is the need to promote a partnership approach to the management of eutrophication. The Agency's work will also contribute to the development of broader UK nutrient strategies.
Los estilos APA, Harvard, Vancouver, ISO, etc.
29

Jing, Yuan Shu, Zhi Hao Jing, Jing Yuan Hu y Fei Chen. "Meteorological Conditions Influences on the Variability of Algae Bloom in Taihu Lake and its Risk Prediction". Applied Mechanics and Materials 253-255 (diciembre de 2012): 935–38. http://dx.doi.org/10.4028/www.scientific.net/amm.253-255.935.

Texto completo
Resumen
Lake eutrophication and algal bloom is one of the most important environmental problems facing China's lakes, and it is also the focus of lake eutrophication control of the world's attention. The monitoring data on chlorophyll concentration was analyzed every one month, combined with corresponding weather conditions from 2004 to 2006. According to the degree of eutrophication in Taihu Lake, it is divided into five Lakes: heavy eutrophication region V, eutrophication region IV, middle-level eutrophication region III, light eutrophication region II and nutrition region I. Based on fuzzy factor optimization method, the average wind speed, average pressure, average temperature and sunshine hours was selected to discuss the influence mechanism of meteorological factors on the algae bloom in Taihu Lake. Considered the four meteorological factors as the input layer nodes, BP neural network model was applied to build the zoning monitoring and early warning model of blue algae in Taihu Lake.
Los estilos APA, Harvard, Vancouver, ISO, etc.
30

Menzel, Ronald G. "Decaying Lakes: The Origins and Control of Cultural Eutrophication". Journal of Environmental Quality 18, n.º 1 (enero de 1989): 133. http://dx.doi.org/10.2134/jeq1989.00472425001800010030x.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
31

Karamouz, Mohammad, Masoud Taheriyoun, Akbar Baghvand, Hamed Tavakolifar y Farzad Emami. "Optimization of Watershed Control Strategies for Reservoir Eutrophication Management". Journal of Irrigation and Drainage Engineering 136, n.º 12 (diciembre de 2010): 847–61. http://dx.doi.org/10.1061/(asce)ir.1943-4774.0000261.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
32

Zhou, Yun, Linlin Wang, Yanyan Zhou y Xian-zhong Mao. "Eutrophication control strategies for highly anthropogenic influenced coastal waters". Science of The Total Environment 705 (febrero de 2020): 135760. http://dx.doi.org/10.1016/j.scitotenv.2019.135760.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
33

T�z�n, Ilhami y C. F. Mason. "Eutrophication and its control by biomanipulation: an enclosure experiment". Hydrobiologia 331, n.º 1-3 (septiembre de 1996): 79–95. http://dx.doi.org/10.1007/bf00025410.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
34

Alvarez-Vázquez, Lino J., Francisco J. Fernández y Aurea Martínez. "Optimal control of eutrophication processes in a moving domain". Journal of the Franklin Institute 351, n.º 8 (agosto de 2014): 4142–82. http://dx.doi.org/10.1016/j.jfranklin.2014.04.012.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
35

Wang, Haijun, Yi Wang y Wei Liu. "Study on eutrophication control for south lake in Changchun". Chinese Geographical Science 5, n.º 3 (septiembre de 1995): 265–74. http://dx.doi.org/10.1007/bf02665583.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
36

Goad, Linda. "Problem-Solving in Eutrophication The Control of Eutrophication of Lakes and Reservoirs S.-O. Ryding W. Rast". BioScience 40, n.º 11 (diciembre de 1990): 847–48. http://dx.doi.org/10.2307/1311492.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
37

Kalinichenko, Antonina, Pavlo Pisarenko y Maksym Kulyk. "Algae in urban water bodies - control of growth and use as a biomass". E3S Web of Conferences 45 (2018): 00028. http://dx.doi.org/10.1051/e3sconf/20184500028.

Texto completo
Resumen
Enhancing the ecology security of Ukraine and other developing countries is predetermined by the environmental problems of cities. It prompts studies on the contamination of city's and adjacent water bodies. The control of blue-green algae distribution and the use of its biomass for production of the biofuels, energy, oils, medicine, etc. is one of the contributing factors to the well-balanced development of infrastructure of cities. The intensity of the processes of eutrophication and the species composition of the algae, which cause algal blooming, was investigated based on data of the Vorskla River in Poltava city (Ukraine). Relevant methods, statistical data of Ukrainian Environmental Service, personal observations, laboratory analysis and analytical studies were applied for the study. The comparative estimation of influence of separate biogenic and chemical substances on eutrophication processes was carried out. The approaches for prevention of processes of water bloom have been presented. The mechanism of using the species composition of algae as an indicator of the state of eutrophication processes was studied.
Los estilos APA, Harvard, Vancouver, ISO, etc.
38

Yang, Huan, Rui Hong Yu, Rui Hong Guo, Yun Hao y Yu Jin Zhang. "Assessment of Eutrophication in Wuliangsuhai Lake". Advanced Materials Research 955-959 (junio de 2014): 1098–102. http://dx.doi.org/10.4028/www.scientific.net/amr.955-959.1098.

Texto completo
Resumen
Eutrophication has led to severe water quality problems in aquatic ecosystems throughout the world. The assessment of trophic status for lakes may provide important and fundamental information for trophic state classification and eutrophication control. This paper assesses and analyzes the classification of eutrophication using three different methods in Wuliangsuhai Lake. The aim is to provide the reference for water quality improvement and aquatic environmental protection of the lake in arid area.
Los estilos APA, Harvard, Vancouver, ISO, etc.
39

Liu, Qing Guang, Zong Guang Diao y Jing Yu Sun. "Assessment and Mechanisms of Water Eutrophication in Chaohu Lake, China". Advanced Materials Research 113-116 (junio de 2010): 1433–38. http://dx.doi.org/10.4028/www.scientific.net/amr.113-116.1433.

Texto completo
Resumen
Water eutrophication has become one of the most serious problems in Chaohu Lake problem in recent years, and understanding the mechanisms of water eutrophication in Western Chaohu Lake will help for prevention and remediation of water eutrophication. In this paper, we selected 6 routine sampling sites in the water area of Chaohu Lake. TP, TN, CODMn and Chl-a are chosen to describe the eutrophication of the Study area. The influencing factors and major mechanisms of water eutrophication were discussed. The reasons of eutrophication changes in Western Chaohu Lake are very complicated; consist of the suitable natural condition, the built of Yuxi Gate, the deteriorated watershed ecological environment and a great amount of pollutants discharged. The treatment and control of the industrial and domestic wastewater from Hefei City are essential to the treatment. More attention should be paid to the treatment of non-point pollution.
Los estilos APA, Harvard, Vancouver, ISO, etc.
40

Li, Yong Qin, Chang Lai Xiao, Lin Lin Zhao, Xiu Juan Liang y Zhi Chao Jiang. "Assessment and Analysis of Eutrophication in Xinlicheng Reservoir". Advanced Materials Research 726-731 (agosto de 2013): 3376–80. http://dx.doi.org/10.4028/www.scientific.net/amr.726-731.3376.

Texto completo
Resumen
Water blooms occurred in Xinlicheng reservoir in 2007 and eutrophication was paid attention on. The method of comprehensive eutrophication state index was adopted to assess eutrophication state and change of TN, TP, CODMnand pH were analyzed based on water quality monitoring data of Xinlicheng reservoir from 2000 to 2010. From 2003 to 2007, degree of eutrphication changed from mesotrophication to light eutrohpication. Eutrophication of Xinlicheng reservoir was caused by the pollution of nitrogen and phosphorus and the pollutant sources include extraneous and endogenous sources. Extraneous sources come from upstream water and periphery of the reservoir, while endogenous sources come from sediments. Ecological wetland should be constructed in estuarine area, fish and bivalves should be put into the reservoir and other comprehensive measures should be taken to control nitrogen, phosphorous and algae. Obvious effect has been achieved by eutrophication treatment measures.
Los estilos APA, Harvard, Vancouver, ISO, etc.
41

Bogdanovic, Darinka. "The role of phosphorus in eutrophication". Zbornik Matice srpske za prirodne nauke, n.º 111 (2006): 75–86. http://dx.doi.org/10.2298/zmspn0611075b.

Texto completo
Resumen
Eutrophication is an increase in the biological productivity of water basins resulting from the accumulation of biogenic elements under the influence of anthropogenic factors. Natural eutrophication is a slow and inevitable process. Artifical eutrophica-tion is caused by human activity and it can be very rapid, especially in technologically developed countries. Eutrophication does not represent a mere change of water but a change in the metabolism of the entire ecosystem and hence a change of the ecosystem itself. In Serbia and Montenegro, all factors are present that promote eutrophication in both still (especially in lowland areas) and running waters. This paper deals with the results of eutrophication monitoring and prognostication for the DTD canal network and major rivers and lakes in Serbia, including a special review of the trophic status of lakes in the country's main lowland region, the Vojvodina Province. As phosphorus concentration is an important factor in the process of eutrophication of a body of water, the study has devoted particular attention to the control of this element.
Los estilos APA, Harvard, Vancouver, ISO, etc.
42

Boqiang, QIN. "Shallow lake limnology and control of eutrophication in Lake Taihu". Journal of Lake Sciences 32, n.º 5 (2020): 1229–43. http://dx.doi.org/10.18307/2020.0501.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
43

Shang, Guang-ping y Jin-cheng Shang. "Causes and control countermeasures of eutrophication in Chaohu lake, China". Chinese Geographical Science 15, n.º 4 (diciembre de 2005): 348–54. http://dx.doi.org/10.1007/s11769-005-0024-8.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
44

Waajen, Guido, Frank van Oosterhout, Grant Douglas y Miquel Lürling. "Geo-engineering experiments in two urban ponds to control eutrophication". Water Research 97 (junio de 2016): 69–82. http://dx.doi.org/10.1016/j.watres.2015.11.070.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
45

Suzhen, DOU, SUN Zhaocai, CAO Ying, MA Yumei, ZHANG Jingfu, LIU Guicheng y KOU Xiaoyan. "Hydrobios and Control of Eutrophication in Dongping Lake, Shandong Province". Acta Geologica Sinica - English Edition 74, n.º 2 (7 de septiembre de 2010): 329–33. http://dx.doi.org/10.1111/j.1755-6724.2000.tb00470.x.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
46

Hall, Kenneth J., Thomas P. D. Murphy, Michael Mawhinney y Kenneth I. Ashley. "Iron Treatment For Eutrophication Control In Black Lake, British Columbia". Lake and Reservoir Management 9, n.º 1 (octubre de 1994): 114–17. http://dx.doi.org/10.1080/07438149409354739.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
47

Talbot, C. y R. Hole. "Fish diets and the control of eutrophication resulting from aquaculture". Journal of Applied Ichthyology 10, n.º 4 (diciembre de 1994): 258–70. http://dx.doi.org/10.1111/j.1439-0426.1994.tb00165.x.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
48

Soyupak, S., L. Mukhallalati, D. Yemişen, A. Bayar y C. Yurteri. "Evaluation of eutrophication control strategies for the Keban Dam reservoir". Ecological Modelling 97, n.º 1-2 (abril de 1997): 99–110. http://dx.doi.org/10.1016/s0304-3800(96)00077-4.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
49

Zhang, Yongwei, Dongyang Wei, Liam Morrison, Zhibin Ge, Xinmin Zhan y Ruihua Li. "Nutrient removal through pyrrhotite autotrophic denitrification: Implications for eutrophication control". Science of The Total Environment 662 (abril de 2019): 287–96. http://dx.doi.org/10.1016/j.scitotenv.2019.01.230.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
50

Currie, J. A., N. R. Harrison, L. Wang, M. I. Jones y M. S. Brooks. "A preliminary study of processing seafood shells for eutrophication control". Asia-Pacific Journal of Chemical Engineering 2, n.º 5 (2007): 460–67. http://dx.doi.org/10.1002/apj.82.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!

Pasar a la bibliografía