Literatura académica sobre el tema "Euclidean distance degree"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Euclidean distance degree".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Euclidean distance degree"
Maxim, Laurentiu G., Jose Israel Rodriguez y Botong Wang. "Defect of Euclidean distance degree". Advances in Applied Mathematics 121 (octubre de 2020): 102101. http://dx.doi.org/10.1016/j.aam.2020.102101.
Texto completoLee, Hwangrae. "The Euclidean distance degree of Fermat hypersurfaces". Journal of Symbolic Computation 80 (mayo de 2017): 502–10. http://dx.doi.org/10.1016/j.jsc.2016.07.006.
Texto completoMaxim, Laurentiu G., Jose I. Rodriguez y Botong Wang. "Euclidean Distance Degree of the Multiview Variety". SIAM Journal on Applied Algebra and Geometry 4, n.º 1 (enero de 2020): 28–48. http://dx.doi.org/10.1137/18m1233406.
Texto completoDraisma, Jan, Emil Horobeţ, Giorgio Ottaviani, Bernd Sturmfels y Rekha R. Thomas. "The Euclidean Distance Degree of an Algebraic Variety". Foundations of Computational Mathematics 16, n.º 1 (6 de enero de 2015): 99–149. http://dx.doi.org/10.1007/s10208-014-9240-x.
Texto completoPham, Thu-Thuy. "Euclidean distance degree of zero-set of two polynomials". Tạp chí Khoa học - Trường Đại học Sư phạm Hà Nội 2 1, n.º 2 (28 de diciembre de 2022): 68–75. http://dx.doi.org/10.56764/hpu2.jos.2022.1.2.68-75.
Texto completoAluffi, Paolo y Corey Harris. "The Euclidean distance degree of smooth complex projective varieties". Algebra & Number Theory 12, n.º 8 (4 de diciembre de 2018): 2005–32. http://dx.doi.org/10.2140/ant.2018.12.2005.
Texto completoDrusvyatskiy, Dmitriy, Hon-Leung Lee, Giorgio Ottaviani y Rekha R. Thomas. "The euclidean distance degree of orthogonally invariant matrix varieties". Israel Journal of Mathematics 221, n.º 1 (11 de julio de 2017): 291–316. http://dx.doi.org/10.1007/s11856-017-1545-4.
Texto completoDAS, GAUTAM y PAUL J. HEFFERNAN. "CONSTRUCTING DEGREE-3 SPANNERS WITH OTHER SPARSENESS PROPERTIES". International Journal of Foundations of Computer Science 07, n.º 02 (junio de 1996): 121–35. http://dx.doi.org/10.1142/s0129054196000105.
Texto completoZou, Yan, Weijie Chen, Mingyu Tong y Shuo Tao. "DEA Cross-Efficiency Aggregation with Deviation Degree Based on Standardized Euclidean Distance". Mathematical Problems in Engineering 2021 (10 de marzo de 2021): 1–10. http://dx.doi.org/10.1155/2021/6682499.
Texto completoRemais, Justin, Adam Akullian, Lu Ding y Edmund Seto. "Analytical methods for quantifying environmental connectivity for the control and surveillance of infectious disease spread". Journal of The Royal Society Interface 7, n.º 49 (17 de febrero de 2010): 1181–93. http://dx.doi.org/10.1098/rsif.2009.0523.
Texto completoTesis sobre el tema "Euclidean distance degree"
Gustafsson, Lukas. "The Euclidean Distance Degree of Conics". Thesis, KTH, Matematik (Avd.), 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-252533.
Texto completoThe Euclidean Distance Degree (EDD) of a variety is the number of critical points of the squared distance function of a general point outside the variety. In this thesis we give a classification of conics based on their EDD, originally attributed to Cayley. We show that circles and parabolas have EDD 2 and 3 respectively while all other conics have EDD 4. We reduce the computation of the EDD to finding solutions of the determinant of a certain generalized matrix, called the hyperdeterminant of type 2 × 3 × 3. This determinant is computed using the celebrated Schläfli decomposition.
Sodomaco, Luca. "The Distance Function from the Variety of partially symmetric rank-one Tensors". Doctoral thesis, 2020. http://hdl.handle.net/2158/1220535.
Texto completoCapítulos de libros sobre el tema "Euclidean distance degree"
Feng, Yong y Wuxin Chen. "Fuzzy Pattern Recognition Based on Generalized Euclidean Weight Distance Adjoined Degree and Its Application in Forecasting Hazard of Karst Collapse". En Communications in Computer and Information Science, 264–71. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-16388-3_29.
Texto completoTapia, J. M., F. Chiclana, M. J. Del Moral y E. Herrera-Viedma. "Improving Euclidean’s Consensus Degrees in Group Decision Making Problems Through a Uniform Extension". En Frontiers in Artificial Intelligence and Applications. IOS Press, 2021. http://dx.doi.org/10.3233/faia210033.
Texto completoYu, Gao-Feng, Deng-Feng Li y Jin-Ming Qiu. "Interval-Valued Intuitionistic Fuzzy Multi-Attribute Decision Making Based on Satisfactory Degree". En Theoretical and Practical Advancements for Fuzzy System Integration, 49–71. IGI Global, 2017. http://dx.doi.org/10.4018/978-1-5225-1848-8.ch003.
Texto completoSiddiquee, Mahfuzur Rahman, Naimul Haider y Rashedur M. Rahman. "Movie Recommendation System Based on Fuzzy Inference System and Adaptive Neuro Fuzzy Inference System". En Fuzzy Systems, 573–608. IGI Global, 2017. http://dx.doi.org/10.4018/978-1-5225-1908-9.ch026.
Texto completoBoiko, Yurii. "THE RIGHT-BANK UKRAINE INDUSTRIAL PRODUCTION AND INTRA-REGIONAL SPECIALIZATION IN THE MID-19TH CENTURY". En Global trends and prospects of socio-economic development of Ukraine. Publishing House “Baltija Publishing”, 2022. http://dx.doi.org/10.30525/978-9934-26-193-0-19.
Texto completoYapıcı Pehlivan, Nimet y Neşe Yalçın. "Neutrosophic TOPSIS Method for Sustainable Supplier Selection in a Discount Market Chain". En Handbook of Research on Advances and Applications of Fuzzy Sets and Logic, 692–715. IGI Global, 2022. http://dx.doi.org/10.4018/978-1-7998-7979-4.ch031.
Texto completoLi, Deng-Feng y Jiang-Xia Nan. "Extension of the TOPSIS for Multi-Attribute Group Decision Making under Atanassov IFS Environments". En Contemporary Theory and Pragmatic Approaches in Fuzzy Computing Utilization, 241–55. IGI Global, 2013. http://dx.doi.org/10.4018/978-1-4666-1870-1.ch017.
Texto completoActas de conferencias sobre el tema "Euclidean distance degree"
Draisma, Jan, Emil Horobeţ, Giorgio Ottaviani, Bernd Sturmfels y Rekha Thomas. "The euclidean distance degree". En the 2014 Symposium. New York, New York, USA: ACM Press, 2014. http://dx.doi.org/10.1145/2631948.2631951.
Texto completoSingh, Aman y Babita Pandey. "An euclidean distance based KNN computational method for assessing degree of liver damage". En 2016 International Conference on Inventive Computation Technologies (ICICT). IEEE, 2016. http://dx.doi.org/10.1109/inventive.2016.7823222.
Texto completoLiu, Baixi, Hongzhao Liu, Daning Yuan y Jianhua Rao. "A New Recognition Method for Damping Coefficients of Rod Pumping System of Directional Well". En ASME 8th Biennial Conference on Engineering Systems Design and Analysis. ASMEDC, 2006. http://dx.doi.org/10.1115/esda2006-95019.
Texto completoShubat, Oksana y Irina Shmarova. "Identifying regional models of active grandparenting in Russia based on cluster analysis". En 36th ECMS International Conference on Modelling and Simulation. ECMS, 2022. http://dx.doi.org/10.7148/2022-0078.
Texto completo