Literatura académica sobre el tema "Erythropoiesis, Nrf2, Oxidative stress"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Erythropoiesis, Nrf2, Oxidative stress".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Erythropoiesis, Nrf2, Oxidative stress"
Mbiandjeu, Serge Cedrick Toya, Alessandro Mattè, Enrica Federti, Massimiliano Perduca, Immacolata Andolfo, Achille Iolascon, Maria Teresa Valenti et al. "The Novel Role That Nrf2 Plays in Erythropoiesis during Aging". Blood 134, Supplement_1 (13 de noviembre de 2019): 3502. http://dx.doi.org/10.1182/blood-2019-125920.
Texto completoZhu, Xingguo, Caixia Xi, Bobby Thomas y Betty S. Pace. "Loss of NRF2 function exacerbates the pathophysiology of sickle cell disease in a transgenic mouse model". Blood 131, n.º 5 (1 de febrero de 2018): 558–62. http://dx.doi.org/10.1182/blood-2017-10-810531.
Texto completoCampbell, Michelle R., Mehmet Karaca, Kelly N. Adamski, Brian N. Chorley, Xuting Wang y Douglas A. Bell. "Novel Hematopoietic Target Genes in the NRF2-Mediated Transcriptional Pathway". Oxidative Medicine and Cellular Longevity 2013 (2013): 1–12. http://dx.doi.org/10.1155/2013/120305.
Texto completoBeneduce, Elisabetta, Alessandro Mattè, Luigia De Falco, Serge Cedrick, Emanuela Tolosano, Deborah Chiabrando, Angela Siciliano, Achille Iolascon, Mohandas Narla y Lucia De Franceschi. "Fyn Kinase Is Involved in EPO Receptor Signaling and Is Required to Harmonize the Response to Oxidation". Blood 130, Suppl_1 (7 de diciembre de 2017): 9. http://dx.doi.org/10.1182/blood.v130.suppl_1.9.9.
Texto completoKeleku-Lukwete, Nadine, Mikiko Suzuki, Akihito Otsuki, Kouhei Tsuchida, Saori Katayama, Makiko Hayashi, Eriko Naganuma et al. "Amelioration of inflammation and tissue damage in sickle cell model mice by Nrf2 activation". Proceedings of the National Academy of Sciences 112, n.º 39 (14 de septiembre de 2015): 12169–74. http://dx.doi.org/10.1073/pnas.1509158112.
Texto completoGbotosho, Oluwabukola, Maria G. Kapetanaki, Mark A. Ross, Samit Ghosh, Frances Weidert, Grant C. Bullock, Solomon Fiifi Ofori-Acquah, Gregory J. Kato y Simon Watkins. "Nrf2 Null Mice Are Deficient in CD169+ Macrophages, Associated with Impaired Erythroid Response and Delayed Recovery from Acute Blood Loss". Blood 134, Supplement_1 (13 de noviembre de 2019): 1038. http://dx.doi.org/10.1182/blood-2019-127295.
Texto completoSheng, Y., Y.-J. Chen, Z.-M. Qian, J. Zheng y Y. Liu. "Cyclophosphamide induces a significant increase in iron content in the liver and spleen of mice". Human & Experimental Toxicology 39, n.º 7 (4 de marzo de 2020): 973–83. http://dx.doi.org/10.1177/0960327120909880.
Texto completoKang, Gyeoung Jin, Eun Ji Kim y Chang Hoon Lee. "Therapeutic Effects of Specialized Pro-Resolving Lipids Mediators on Cardiac Fibrosis via NRF2 Activation". Antioxidants 9, n.º 12 (10 de diciembre de 2020): 1259. http://dx.doi.org/10.3390/antiox9121259.
Texto completoNezu, Masahiro y Norio Suzuki. "Roles of Nrf2 in Protecting the Kidney from Oxidative Damage". International Journal of Molecular Sciences 21, n.º 8 (22 de abril de 2020): 2951. http://dx.doi.org/10.3390/ijms21082951.
Texto completoFederti, Enrica, Francesca Vinchi, Iana Iatcenko, Alessandra Ghigo, Alessandro Mattè, Serge Cedrick, Angela Siciliano et al. "Nrf2 Plays a Key Role in Iron-Overload Cardiomyopathy". Blood 138, Supplement 1 (5 de noviembre de 2021): 3068. http://dx.doi.org/10.1182/blood-2021-146157.
Texto completoTesis sobre el tema "Erythropoiesis, Nrf2, Oxidative stress"
Qaisiya, Mohammed Ali Hassan. "UNCONJUGATED BILIRUBIN MEDIATED OXIDATIVE STRESS, ER STRESS, AND ACTIVATION OF NRF2 PATHWAY". Doctoral thesis, Università degli studi di Trieste, 2014. http://hdl.handle.net/10077/10137.
Texto completoElevati livelli plasmatici di bilirubina non coniugata (UCB) sono responsabili dell’ittero neontale che è fisiologico nella maggior parte dei casi. L’iperbilirubinemia severa e prolungata nel tempo può causare encefalopatia da bilirubina e Kernicterus che, se non trattati, possono lasciare pesanti sequele neurologiche e nei casi più gravi condurre a morte. La neurotossicità da bilirubina è ancora una delle principali cause di malattie neurologiche nei paesi via di sviluppo ed è un problema riemergente nei paesi sviluppati a causa delle anticipate dimissioni dall’ospedale dei neonati. I meccanismi molecolari responsabili della neurotossicità da bilirubina non sono ancora completamente chiariti. Questo lavoro riporta i risultati ottenuti durante il mio progetto di dottorato volto a studiare il “molecular signalling” coinvolto nella neurotossicità da bilirubina. L’obiettivo principale è stato valutare gli effetti di concentrazioni pro-ossidanti di bilirubina sullo stato redox cellulare e sullo stress del reticolo endoplasmico (ER stress). Ci siamo focalizzati sulla pathway che coinvolge Nrf2, analizzando i geni indotti dalla bilirubina per effetto di Nrf2 e studiando il signalling a monte coinvolto nella sua attivazione. Parallelamente abbiamo anche studiato la cascata di segnali coinvolti nell’ER stress. Tutti gli esperimenti sono stati condotti nella linea cellulare di neuroblastoma umano SH-SY5Y, alcuni ripetuti anche nella linea di epatocarcinoma HepG2 e in colture primarie di astrociti dalla corteccia cerebrale di ratto. I nostri risultati mostrano che concentrazioni tossiche di bilirubina inducono un 40% di mortalità cellulare tra 1 e 4 ore di trattamento che si mantiene stabile fino alle 24 ore di trattamento. Le cellule trattate con UCB mostrano un incremento del livello dei ROS intracellulare dopo 1 ora seguito dall’accumulo nucleare dell’Nrf2 endogeno dopo 3 ore. La bilirubina aumenta l’induzione della trascrizione dell’ARE-GFP reporter gene associata ad una up-regolazione di diversi geni target di Nrf2. L’induzione dell’espressione genica può essere suddivisa in due categorie principali:la risposta precoce (4h-8h) e la risposta tardiva (16h-24h).La risposta precoce inizia con l’induzione dell’espressione di ATF3 dopo 4 ore di trattamento ed è seguita da i trasportatori di amminoacidi (xCT and Gly1) dopo 8h. Per la risposta tardiva abbiamo visto l’induzione dell’espressione genica degli enzimi coinvolti nella sintesi del glutatione. (γGCL and TNX1),nella risposta antiossidante e di detossificazione (HO-1, NQO1, FTH)e nell’omeostasi del NADPH (ME1, and G6PD). In seguito al silenziamento specifico di Nrf2, il trattamento con bilirubina diminuisce l’induzione dell’mRNA solo dell’HO-1 (75%), del NQO1 (56%) e della FTH (40%) Inoltre l’induzione dell’HO-1 è ridotta se le cellule vengono pretrattate con l’antiossidante NAC (65%) e con specifici inibitori per PKC (80%), P38α (40%) and MEK1/2 (25%). Risulta evidente che l’induzione di ATF3 è la prima risposta generata dal trattamento con UCB. Di seguito abbiamo osservato un’induzione sequenziale dei marker dell’ER stress: da quelli coinvolti nel signaling di PERK a 4h (PERK, ATF3, ATF4, CHOP), dalla diminuzione della proteina della ciclina D1 dopo 1 h e dall’induzione di IRE1 (XBP1), ATF6, e BiP dopo 8h di trattamento. Da notare però che il silenzia mento di PERK non riduce l’induzione dell’espressione dell’mRNA di ATFs/CHOP, ma induce l’espressione dell’mRNA di GCN2. Riassumendo noi abbiamo dimostrato che la bilirubina causa mortalità cellulare, produce la formazione di ROS, provoca l’accumulo di Nrf2 nel nucleo e induce la risposta antiossidante mediata dalle sequenze ARE. La bilirubina induce l’espressione di diversi geni coinvolti nella risposta antiossidante, tra tutti l’HO-1 e il NQO1 sono indotti dalla bilirubina in maniera dipendente da Nrf2. Abbiamo anche dimostrato che lo stress ossidativo (OS) e la PKC sono i principali fattori coinvolti nell’attivazione di Nrf2/HO-1. I risultati ottenuti dimostrano che l’induzione di ATFs/CHOP e di PERK sono uno dei primi eventi associati alla tossicità da bilirubina. Allo stesso tempo il silenziamento di PERK non influisce sull’induzione di ATFs/CHOP mentre induce GCN2, suggerendo un meccanismo di compensazione tra il signalling di PERK e GCN2. Concludendo i nostri dati dimostrano che lo stress ossidativo e lo stress del reticolo endoplasmico sono coinvolti nella neurotossicità indotta da UCB nella linea di neuroblastoma umano SH-SY5Y. Le cellule sviluppano una risposta adattativa alla bilirubina inducendo OS and ER stress e aumentando l’espressione dei geni coinvolti nella risposta antiossidante (in parte via Nrf2 pathway) e nello stress del reticolo endoplasmico (UPR).
Elevated levels of unconjugated bilirubin (UCB) are responsible for neonatal jaundice, and in some case, severe hyperbilirubinemia exposes babies to bilirubin encephalopathy and kernicterus with the risk of neurological sequela and death. Bilirubin neurotoxicity is still a major cause of neurological injury in the developing countries and is a re-emerged problem in the developed countries, due to the early hospital discharge of newborns after birth. The molecular mechanisms of UCB induced neurotoxicty are incompletely elucidated. Present thesis are reported the results obtained during my PhD course aimed to investigate the molecular signaling involved in UCB induced neurotoxicity .The main goal of this work was to evaluate the effects of the pro-oxidant concentration of UCB on cellular redox state and ER stress. We focused on Nrf2 pathway, analyzing the genes induced by UCB at Nrf2-dependent manner and the up-stream signaling involved in Nrf2 pathway activation. In parallel, we also studied the ER stress cascade signaling. All experiments were conducted in SH-SY5Y neuroblastoma cell line, with some performed in HepG2 cells and primary culture of cortical astrocytes. Our results showed that SH-SY5Y neuroblastoma cells incubated with toxic concentration of UCB suffer a 40% loss of cell viability between 1h to 4h, reaching a plateau until 24h after UCB treatment. Treated cells showed an increased level of intracellular ROS after 1h followed by the nuclear accumulation of endogenous Nrf2 after 3h. UCB enhanced the transcriptional activation of ARE-GFP reporter gene associated with an up-regulation of several Nrf2 target genes. Expression response could be divided into two main categories: early (4h-8h) and late response (16h-24h). As far as early genes, UCB mediates a sequential transcription starting with the ATF3 up-regulation at 4h and followed by the induction of amino acid transporters at 8h (xCT and Gly1). On the contrary, for late genes, we observed an up-regulation of the enzymes involved in GSH synthesis (γGCL and TNX1), antioxidant/detoxification (HO-1, NQO1, FTH), and NADPH homeostasis (ME1, and G6PD). Specific Nrf2 siRNA against Nrf2 decreased the induction only of HO-1 (75%), NQO1 (56%), and FTH (40%) upon UCB exposure. HO-1 induction was reduced in cells pre-treated with antioxidant NAC (65%) and with specific signaling inhibitors for PKC (80%), P38α (40%) and MEK1/2 (25%). It was evident that ATF3 up-regulation at 4h represents the earliest response to UCB exposure. We observed a sequential activation of UPR sensors starting with PERK signaling at 4h (up-regulation of PERK, ATF3, ATF4, CHOP at 4h, and loss of cyclin D1 protein at 1h), followed by IRE1 (XBP1), ATF6, and BiP at 8h after UCB treatment. Interestingly, PERK siRNA does not changed the induction of ATFs/CHOP while induced GCN2 mRNA upon UCB exposure. In summary, we demonstrated that UCB mediates loss of cell viability, ROS generation, Nrf2 nuclear accumulation and induction of ARE. Nrf2 pathway activation was associated with the induction of multiple antioxidant genes, among all, HO-1 and NQO1 are induced by UCB at Nrf2-dependent manner. We observed that OS and PKC are the major up-stream signaling involved in Nrf2/HO-1 activation. Results demonstrated ATFs/CHOP induction and ER stress (initiated by PERK signaling) as one of the earliest event associated with UCB toxicity. However, PERK siRNA does not affected ATFs/CHOP induction by UCB while induced GCN2, suggesting a compensatory mechanism between PERK and GCN2 signaling. In conclusion, our data demonstrate that OS and ER stress are involved in UCB induced neurotoxicity in SH-SY5Y cells. The cells undergo an adaptive response against UCB induced OS and ER stress, through activation of multiple antioxidant genes (in part via Nrf2 pathway), and activation of sequential UPR sensors
XXVI Ciclo
1985
Lee, Sang C., Jack Zhang, Josh Strom, Danzhou Yang, Thai Nho Dinh, Kyle Kappeler y Qin M. Chen. "G-Quadruplex in the NRF2 mRNA 5′ Untranslated Region Regulates De Novo NRF2 Protein Translation under Oxidative Stress". AMER SOC MICROBIOLOGY, 2017. http://hdl.handle.net/10150/622753.
Texto completoTao, Shasha, Pengfei Liu, Gang Luo, de la Vega Montserrat Rojo, Heping Chen, Tongde Wu, Joseph Tillotson, Eli Chapman y Donna D. Zhang. "p97 Negatively Regulates NRF2 by Extracting Ubiquitylated NRF2 from the KEAP1-CUL3 E3 Complex". AMER SOC MICROBIOLOGY, 2017. http://hdl.handle.net/10150/623934.
Texto completoMaltagliati, Anthony y Anthony Maltagliati. "Nrf2: A Candidate Therapeutic Target to Dampen Oxidative Stress in Acute Myocardial Infarction". Thesis, The University of Arizona, 2016. http://hdl.handle.net/10150/623086.
Texto completoTodorovic, Michael. "Assessing the Role of the Oxidative Stress Response ‘Master Regulator’ Nrf2 in Parkinson’s Disease". Thesis, Griffith University, 2016. http://hdl.handle.net/10072/367349.
Texto completoThesis (PhD Doctorate)
Doctor of Philosophy (PhD)
School of Natural Sciences
Science, Environment, Engineering and Technology
Full Text
Strom, Joshua. "A Critical Role of Nrf2 In Protecting Cardiomyocytes Against Oxidative Stress and Ischemic Injury". Diss., The University of Arizona, 2014. http://hdl.handle.net/10150/333336.
Texto completoHintsala, H. R. (Hanna-Riikka). "Oxidative stress and cell adhesion in skin cancer". Doctoral thesis, Oulun yliopisto, 2016. http://urn.fi/urn:isbn:9789526212692.
Texto completoTiivistelmä Iho on elimistön suurin elin, ja se suojaa meitä auringon ultravioletti (UV)-säteilyltä ja muilta ulkoisilta tekijöiltä. UV-säteily on yhteinen etiologinen tekijä ihon levyepiteelikarsinoomalle ja melanoomalle, jotka aiheuttavat maailmanlaatuisesti paljon sairastavuutta ja kuolleisuutta. Reaktiivisia happiradikaaleja muodostuu esimerkiksi soluhengityksestä ja UV-säteilystä, ja ne voivat reagoida minkä tahansa makromolekyylin kanssa aiheuttaen vaurioita solun perimäainekseen, proteiineihin ja lipidirakenteisiin. Oksidatiivisen stressin (OS) säätely on tärkeä homeostaattinen prosessi, joka vinoutuu syöpäsolujen hyödyksi. Nuclear factor erythroid-2-related factor 2 (Nrf2) on antioksidanttivasteen pääsäätelytekijä, ja sen ilmentyminen on lisääntynyt useissa syövissä lisäten syöpäsolun selviytymistä ja kasvua. Tutkimme potilasaineiston ja immunohistokemian avulla OS:n merkkiaineiden muutoksia melanoomassa ja niiden merkitsevyyttä taudin ennusteelle. Nrf2:n ilmentyminen on lisääntynyt melanoomassa liittyen syvempään invaasioon ja huonompaan tautispesifiseen ennusteeseen. Lisäksi epiteliaali-mesenkymaalitransition merkkiaineiden, Slug, Twist ja Zeb1 ekspression muutoksia havaittiin syvyyskasvun ja metastasoinnin yhteydessä assosioituen myös Nrf2 ilmentymiseen. In vitro- tutkimus osoitti spesifisten inhibiittoreiden avulla, että BRAF- ja NRAS-mutaatiot saattavat aktivoida Nrf2 melanoomassa. Myös Nrf2:n säätelemän entsyymin peroksiredoksiini I:n ilmentyminen on vähentynyt melanoomassa ja metastaaseissa verrattuna hyvänlaatuisiin pigmenttiluomiin. Merkittäviä muutoksia havaittiin myös melanoomaa ympäröivistä rakenteista, esimerkiksi OS:n vauriomarkkerin 8-hydroksi-2’-deoksiguanosiinin vähentynyt ilmentyminen endoteelisoluissa liittyi huonompaan tautispesifiseen ennusteeseen. Lisäksi tutkimme soluväliliitosproteiinien klaudiinien 1–5 sekä 7 ilmentymistä levyepiteelikarsinoomissa ja niiden esiasteissa. Klaudiinien muutokset voivat vaikuttaa ihon permeabiliteettiin ja solujen polarisaatioon. Onkologisten hoitomuotojen teho perustuu usein happiradikaalien aiheuttamiin vaurioihin. Nrf2-inhibitio voisi tarjota keinon lisätä syöpäkudoksen herkkyyttä näille vaurioille sekä estää syöpäsolun selviytymissignalointia. Tulevat tutkimukset tulisivat keskittyä Nrf2 signaloinnin ja muun solusignaloinnin välisiin suhteisiin sekä havaintoihin kasvaimen mikroympäristön muutoksista
Woolridge, Cooper JàNay K. B. S. "Galactomyces Ferment Filtrate Suppresses Melanization and Oxidative Stress in Epidermal Melanocytes". University of Cincinnati / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1511799237125245.
Texto completoAmin, Ahmed [Verfasser]. "NRF2 mediated oxidative stress response activity during early in vitro bovine embryo development / Ahmed Amin". Bonn : Universitäts- und Landesbibliothek Bonn, 2015. http://d-nb.info/107726920X/34.
Texto completoEdwards, Heather Gray. "Protection from oxidative stress in the cardiac H9C2-cell line by the transcription factor NRF2". Auburn, Ala., 2007. http://repo.lib.auburn.edu/07M%20Dissertations/GRAY-EDWARDS_HEATHER_53.pdf.
Texto completoLibros sobre el tema "Erythropoiesis, Nrf2, Oxidative stress"
Morales-Gonzalez, Jose Antonio, Angel Morales-Gonzalez y Eduardo Osiris Madrigal-Santillan, eds. A Master Regulator of Oxidative Stress - The Transcription Factor Nrf2. InTech, 2016. http://dx.doi.org/10.5772/62743.
Texto completoCapítulos de libros sobre el tema "Erythropoiesis, Nrf2, Oxidative stress"
Bhattacharjee, Shamee. "Epigenetic Regulators of NRF2". En Handbook of Oxidative Stress in Cancer: Therapeutic Aspects, 1437–55. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-5422-0_73.
Texto completoBhattacharjee, Shamee. "Epigenetic Regulators of NRF2". En Handbook of Oxidative Stress in Cancer: Therapeutic Aspects, 1–19. Singapore: Springer Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-1247-3_73-1.
Texto completoChen, Chang-Hwei. "Nrf2-ARE Pathway: Defense Against Oxidative Stress". En Xenobiotic Metabolic Enzymes: Bioactivation and Antioxidant Defense, 145–54. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-41679-9_13.
Texto completoChatterjee, Nirmalya y Debamita Chatterjee. "Regulation of Antioxidant Nrf2 Signaling: An Important Pathway in COPD". En Oxidative Stress in Lung Diseases, 161–75. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-32-9366-3_7.
Texto completoAgrawal, Madhunika y Satyam Kumar Agrawal. "Implications of NRF2 in Cancer Progression and Therapeutics". En Handbook of Oxidative Stress in Cancer: Therapeutic Aspects, 1577–93. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-5422-0_79.
Texto completoAgrawal, Madhunika y Satyam Kumar Agrawal. "Implications of NRF2 in Cancer Progression and Therapeutics". En Handbook of Oxidative Stress in Cancer: Therapeutic Aspects, 1–17. Singapore: Springer Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-1247-3_79-1.
Texto completoMorita, Masanobu y Hozumi Motohashi. "Survival Strategy and Disease Pathogenesis According to the Nrf2-Small Maf Heterodimer". En Oxidative Stress in Vertebrates and Invertebrates, 63–82. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2011. http://dx.doi.org/10.1002/9781118148143.ch5.
Texto completoSykiotis, Gerasimos P., Mahidur Rahman y Dirk Bohmann. "Modulation of Oxidative Stress by Keap1/Nrf2 Signaling inDrosophila: Implications for Human Diseases". En Oxidative Stress in Vertebrates and Invertebrates, 309–26. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2011. http://dx.doi.org/10.1002/9781118148143.ch22.
Texto completoSagar, Satish, Christabelle Rajesh y Prakash Radhakrishnan. "Targeting Oxidative Stress Specific NRF2 in Pancreatic Cancer Stem Cells". En Handbook of Oxidative Stress in Cancer: Therapeutic Aspects, 2021–41. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-5422-0_95.
Texto completoSagar, Satish, Christabelle Rajesh y Prakash Radhakrishnan. "Targeting Oxidative Stress Specific NRF2 In Pancreatic Cancer Stem Cells". En Handbook of Oxidative Stress in Cancer: Therapeutic Aspects, 1–21. Singapore: Springer Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-1247-3_95-1.
Texto completoActas de conferencias sobre el tema "Erythropoiesis, Nrf2, Oxidative stress"
Li, Jian, James Baker, Clare Murray, Nicky Cooper, Cathy Lucas, Craig Fox, Dave Singh y Simon Lea. "The effects of Nrf2 activators and oxidative stress on COPD alveolar macrophages". En ERS International Congress 2020 abstracts. European Respiratory Society, 2020. http://dx.doi.org/10.1183/13993003.congress-2020.3307.
Texto completoAhmed, Amira, Huda Farah, Omnia Ahmed, Dina Elsayegh, Abdelrahman Elgamal y Nasser Moustafa Rizk. "Profile Of Oxidative Stress Genes In Response To Obesity Treatment". En Qatar University Annual Research Forum & Exhibition. Qatar University Press, 2021. http://dx.doi.org/10.29117/quarfe.2021.0150.
Texto completoAbalenikhina, Y. V., A. A. Seidkuliyeva, E. D. Rokunov, D. S. Nemtinov, A. V. Shchulkin y E. N. Yakusheva. "PARTICIPATION OF NUCLEAR FACTOR OF ERYTHROID ORIGIN-2 IN REGU-LATION P-GLYCOPROTEIN IN MODELING ENDOGENOUS OXIDATIVE STRESS". En NOVEL TECHNOLOGIES IN MEDICINE, BIOLOGY, PHARMACOLOGY AND ECOLOGY. Institute of information technology, 2022. http://dx.doi.org/10.47501/978-5-6044060-2-1.251-257.
Texto completoPokrzywinski, Kaytee L. y V. Ashutosh Rao. "Abstract LB-291: microRNA regulation of Nrf2: A link between autophagy and oxidative stress". En Proceedings: AACR 106th Annual Meeting 2015; April 18-22, 2015; Philadelphia, PA. American Association for Cancer Research, 2015. http://dx.doi.org/10.1158/1538-7445.am2015-lb-291.
Texto completoWächter, K., A. Navarrete Santos, G. Szabó y A. Simm. "AGE-Rich Bread Crust Extract Boosts Oxidative Stress Interception via Stimulation of the NRF2 Pathway". En 51st Annual Meeting of the German Society for Thoracic and Cardiovascular Surgery (DGTHG). Georg Thieme Verlag KG, 2022. http://dx.doi.org/10.1055/s-0042-1742787.
Texto completoLan, Aixian, Wenjun Li, Yao Liu, Xinyan Zhang, Shanshan Zhou, Olesya Palko, Hao Chen et al. "Abstract 829: Chemoprevention of oxidative stress-associated oral carcinogenesis by sulforaphane depends on NRF2 and the isothiocyanate moiety". En Proceedings: AACR 107th Annual Meeting 2016; April 16-20, 2016; New Orleans, LA. American Association for Cancer Research, 2016. http://dx.doi.org/10.1158/1538-7445.am2016-829.
Texto completoKubo, Y., H. Dick, M. Tohidnezhad, A. Fragoulis, H. Jahr, CJ Wruck y T. Pufe. "Effect of Methysticin on osteoblast function under oxidative stress through Nrf2/HO-1 signaling pathway: in vitro study". En Jahreskongress DVO OSTEOLOGIE 2021. Georg Thieme Verlag KG, 2021. http://dx.doi.org/10.1055/s-0040-1722129.
Texto completoNing, Shoucheng, Thillai Veerapazham Sekar, Ramasamy Paulmurugan, Jan Scicinski, Bryan Oronsky, Donna Peehl y Susan J. Knox. "Abstract 906: Molecular imaging of RRx-001-induced oxidative stress in Nrf2-luciferase expressing SCC VII tumors in mice". En Proceedings: AACR Annual Meeting 2014; April 5-9, 2014; San Diego, CA. American Association for Cancer Research, 2014. http://dx.doi.org/10.1158/1538-7445.am2014-906.
Texto completoSingh, Bhupendra, Amruta Ronghe, Anwesha Chatterjee y Hari K. Bhat. "Abstract 3696: Resveratrol inhibits oxidative stress and prevents estrogen-induced breast carcinogenesis via activation of NRF2-mediated protective pathways." En Proceedings: AACR 104th Annual Meeting 2013; Apr 6-10, 2013; Washington, DC. American Association for Cancer Research, 2013. http://dx.doi.org/10.1158/1538-7445.am2013-3696.
Texto completoGaikwad, Snehal M., Adriana Zingone, Aleksandra Michalowski, Susana Najera, Anaisa Quintanilla-Artega, Sayeh Gorjifard, John Simmons et al. "Abstract 5850: Nrf2-mediated oxidative stress response is altered during acquired resistance to the proteasome inhibitor, oprozomib, in multiple myeloma". En Proceedings: AACR Annual Meeting 2018; April 14-18, 2018; Chicago, IL. American Association for Cancer Research, 2018. http://dx.doi.org/10.1158/1538-7445.am2018-5850.
Texto completo