Literatura académica sobre el tema "Ergodic Diffusion Processe"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Ergodic Diffusion Processe".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Ergodic Diffusion Processe"
Corradi, Valentina. "Comovements Between Diffusion Processes". Econometric Theory 13, n.º 5 (octubre de 1997): 646–66. http://dx.doi.org/10.1017/s0266466600006113.
Texto completoKamarianakis, Yiannis. "Ergodic control of diffusion processes". Journal of Applied Statistics 40, n.º 4 (abril de 2013): 921–22. http://dx.doi.org/10.1080/02664763.2012.750440.
Texto completoWong, Bernard. "On Modelling Long Term Stock Returns with Ergodic Diffusion Processes: Arbitrage and Arbitrage-Free Specifications". Journal of Applied Mathematics and Stochastic Analysis 2009 (23 de septiembre de 2009): 1–16. http://dx.doi.org/10.1155/2009/215817.
Texto completoSwishchuk, Anatoliy y M. Shafiqul Islam. "Diffusion Approximations of the Geometric Markov Renewal Processes and Option Price Formulas". International Journal of Stochastic Analysis 2010 (19 de diciembre de 2010): 1–21. http://dx.doi.org/10.1155/2010/347105.
Texto completoKutoyants, Yury A. y Nakahiro Yoshida. "Moment estimation for ergodic diffusion processes". Bernoulli 13, n.º 4 (noviembre de 2007): 933–51. http://dx.doi.org/10.3150/07-bej1040.
Texto completoKiessler, Peter C. "Statistical Inference for Ergodic Diffusion Processes". Journal of the American Statistical Association 101, n.º 474 (1 de junio de 2006): 846. http://dx.doi.org/10.1198/jasa.2006.s98.
Texto completoChen, Mu Fa. "Ergodic theorems for reaction-diffusion processes". Journal of Statistical Physics 58, n.º 5-6 (marzo de 1990): 939–66. http://dx.doi.org/10.1007/bf01026558.
Texto completoMagdziarz, Marcin y Aleksander Weron. "Ergodic properties of anomalous diffusion processes". Annals of Physics 326, n.º 9 (septiembre de 2011): 2431–43. http://dx.doi.org/10.1016/j.aop.2011.04.015.
Texto completoBel, Golan y Ilya Nemenman. "Ergodic and non-ergodic anomalous diffusion in coupled stochastic processes". New Journal of Physics 11, n.º 8 (12 de agosto de 2009): 083009. http://dx.doi.org/10.1088/1367-2630/11/8/083009.
Texto completoDi Masp, G. B. y Ł. Stettner. "Bayesian ergodic adaptive control of diffusion processes". Stochastics and Stochastic Reports 60, n.º 3-4 (abril de 1997): 155–83. http://dx.doi.org/10.1080/17442509708834104.
Texto completoTesis sobre el tema "Ergodic Diffusion Processe"
Wasielak, Aramian. "Various Limiting Criteria for Multidimensional Diffusion Processes". Diss., The University of Arizona, 2009. http://hdl.handle.net/10150/195115.
Texto completoMaillet, Raphaël. "Analyse statistique et probabiliste de systèmes diffusifs en présence de bruit". Electronic Thesis or Diss., Université Paris sciences et lettres, 2024. http://www.theses.fr/2024UPSLD025.
Texto completoThis thesis deals with the long-time behavior of stochastic Fokker-Planck equations with additive common noise and presents statistical methods for estimating the invariant measure of multidimensional ergodic diffusion processes from noisy data. In the first part, we analyze stochastic Fokker-Planck Partial Differential Equations (SPDEs), obtained as the mean-field limit of interacting particle systems influenced by both idiosyncratic and common Brownian noises. We establish conditions under which the addition of common noise restores uniqueness if the invariant measure. The main challenge arises from the finite-dimensional nature of the common noise, while the state variable — interpreted as the conditional marginal law of the system given the common noise — operates within an infinite-dimensional space. We demonstrate that uniqueness is restored if the mean field interaction term attracts the system towards its conditional mean given the common noise, particularly when the intensity of the idiosyncratic noise is small. In the second part, we develop a new statistical methodology using kernel density estimation to effectively approximate the invariant measure from noisy observations, highlighting the crucial role of the underlying Markov structure in the denoising process. This method involves a pre-averaging technique that proficiently reduces the intensity of the noise while maintaining the analytical characteristics and asymptotic properties of the underlying signal. We investigate the convergence rate of our estimator, which depends on the anisotropic regularity of the density and the intensity of the noise. We establish noise intensity conditions that allow for convergence rates comparable to those in noise-free environments. Additionally, we demonstrate a Bernstein concentration inequality for our estimator, leading to an adaptive procedure for selecting the kernel bandwidth
Aeckerle-Willems, Cathrine [Verfasser] y Claudia [Akademischer Betreuer] Strauch. "Nonparametric statistics for scalar ergodic diffusion processes / Cathrine Aeckerle-Willems ; Betreuer: Claudia Strauch". Mannheim : Universitätsbibliothek Mannheim, 2019. http://d-nb.info/1202012035/34.
Texto completoSera, Toru. "Functional limit theorem for occupation time processes of intermittent maps". Kyoto University, 2020. http://hdl.handle.net/2433/259719.
Texto completoMélykúti, Bence. "Theoretical advances in the modelling and interrogation of biochemical reaction systems : alternative formulations of the chemical Langevin equation and optimal experiment design for model discrimination". Thesis, University of Oxford, 2010. http://ora.ox.ac.uk/objects/uuid:d368c04c-b611-41b2-8866-cde16b283b0d.
Texto completoKadlec, Karel. "Optimální řízení stochastických rovnic s Lévyho procesy v Hilbertových proctorech". Doctoral thesis, 2020. http://www.nusl.cz/ntk/nusl-437018.
Texto completoLibros sobre el tema "Ergodic Diffusion Processe"
S, Borkar Vivek y Ghosh Mrinal K. 1956-, eds. Ergodic control of diffusion processes. Cambridge: Cambridge University Press, 2011.
Buscar texto completoKutoyants, Yury A. Statistical Inference for Ergodic Diffusion Processes. London: Springer London, 2004. http://dx.doi.org/10.1007/978-1-4471-3866-2.
Texto completoHerrmann, Samuel. Stochastic resonance: A mathematical approach in the small noise limit. Providence, Rhode Island: American Mathematical Society, 2014.
Buscar texto completoBorkar, Vivek S., Ari Arapostathis y Mrinal K. Ghosh. Ergodic Control of Diffusion Processes. Cambridge University Press, 2011.
Buscar texto completoBorkar, Vivek S., Ari Arapostathis y Mrinal K. Ghosh. Ergodic Control of Diffusion Processes. Cambridge University Press, 2011.
Buscar texto completoBorkar, Vivek S., Ari Arapostathis y Mrinal K. Ghosh. Ergodic Control of Diffusion Processes. Cambridge University Press, 2013.
Buscar texto completoBorkar, Vivek S., Ari Arapostathis y Mrinal K. Ghosh. Ergodic Control of Diffusion Processes. Cambridge University Press, 2011.
Buscar texto completoKutoyants, Yury A. Statistical Inference for Ergodic Diffusion Processes. Springer London, Limited, 2013.
Buscar texto completoStatistical Inference for Ergodic Diffusion Processes. Springer, 2003.
Buscar texto completoKutoyants, Yury A. Statistical Inference for Ergodic Diffusion Proces. Springer London, 2010.
Buscar texto completoCapítulos de libros sobre el tema "Ergodic Diffusion Processe"
Kutoyants, Yury A. "Diffusion Processes and Statistical Problems". En Statistical Inference for Ergodic Diffusion Processes, 17–110. London: Springer London, 2004. http://dx.doi.org/10.1007/978-1-4471-3866-2_2.
Texto completoKutoyants, Yury A. "Introduction". En Statistical Inference for Ergodic Diffusion Processes, 1–16. London: Springer London, 2004. http://dx.doi.org/10.1007/978-1-4471-3866-2_1.
Texto completoKutoyants, Yury A. "Parameter Estimation". En Statistical Inference for Ergodic Diffusion Processes, 111–226. London: Springer London, 2004. http://dx.doi.org/10.1007/978-1-4471-3866-2_3.
Texto completoKutoyants, Yury A. "Special Models". En Statistical Inference for Ergodic Diffusion Processes, 227–307. London: Springer London, 2004. http://dx.doi.org/10.1007/978-1-4471-3866-2_4.
Texto completoKutoyants, Yury A. "Nonparametric Estimation". En Statistical Inference for Ergodic Diffusion Processes, 309–419. London: Springer London, 2004. http://dx.doi.org/10.1007/978-1-4471-3866-2_5.
Texto completoKutoyants, Yury A. "Hypotheses Testing". En Statistical Inference for Ergodic Diffusion Processes, 421–60. London: Springer London, 2004. http://dx.doi.org/10.1007/978-1-4471-3866-2_6.
Texto completoArnold, Ludwig y Hans Crauel. "Iterated Function Systems and Multiplicative Ergodic Theory". En Diffusion Processes and Related Problems in Analysis, Volume II, 283–305. Boston, MA: Birkhäuser Boston, 1992. http://dx.doi.org/10.1007/978-1-4612-0389-6_13.
Texto completoKutoyants, Yury A. y Li Zhou. "Asymptotically Parameter-Free Tests for Ergodic Diffusion Processes". En Statistical Models and Methods for Reliability and Survival Analysis, 161–75. Hoboken, USA: John Wiley & Sons, Inc., 2014. http://dx.doi.org/10.1002/9781118826805.ch11.
Texto completoColonius, Fritz y Wolfgang Kliemann. "Remarks on Ergodic Theory of Stochastic Flows and Control Flows". En Diffusion Processes and Related Problems in Analysis, Volume II, 203–39. Boston, MA: Birkhäuser Boston, 1992. http://dx.doi.org/10.1007/978-1-4612-0389-6_9.
Texto completoKutoyants, Yu A. "On Parameter Estimation by Contaminated Observations of Ergodic Diffusion Processes". En Statistics for Industry and Technology, 461–72. Boston, MA: Birkhäuser Boston, 2004. http://dx.doi.org/10.1007/978-0-8176-8206-4_28.
Texto completoActas de conferencias sobre el tema "Ergodic Diffusion Processe"
Piera, Francisco J. y Ravi R. Mazumdar. "An ergodic result for queue length processes of state-dependent queueing networks in the heavy-traffic diffusion limit". En 2008 46th Annual Allerton Conference on Communication, Control, and Computing. IEEE, 2008. http://dx.doi.org/10.1109/allerton.2008.4797600.
Texto completo