Literatura académica sobre el tema "Equivariant quantization"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Equivariant quantization".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Equivariant quantization"
Bieliavsky, Pierre, Victor Gayral, Sergey Neshveyev y Lars Tuset. "On deformations of C∗-algebras by actions of Kählerian Lie groups". International Journal of Mathematics 27, n.º 03 (marzo de 2016): 1650023. http://dx.doi.org/10.1142/s0129167x16500233.
Texto completoLecomte, Pierre B. A. "Towards Projectively Equivariant Quantization". Progress of Theoretical Physics Supplement 144 (1 de diciembre de 2001): 125–32. http://dx.doi.org/10.1143/ptps.144.125.
Texto completoPoncin, N., F. Radoux y R. Wolak. "Equivariant quantization of orbifolds". Journal of Geometry and Physics 60, n.º 9 (septiembre de 2010): 1103–11. http://dx.doi.org/10.1016/j.geomphys.2010.04.003.
Texto completoPFLAUM, M. J., H. B. POSTHUMA, X. TANG y H. H. TSENG. "ORBIFOLD CUP PRODUCTS AND RING STRUCTURES ON HOCHSCHILD COHOMOLOGIES". Communications in Contemporary Mathematics 13, n.º 01 (febrero de 2011): 123–82. http://dx.doi.org/10.1142/s0219199711004142.
Texto completoHawkins, Eli. "Quantization of Equivariant Vector Bundles". Communications in Mathematical Physics 202, n.º 3 (1 de mayo de 1999): 517–46. http://dx.doi.org/10.1007/s002200050594.
Texto completoTang, Xiang y Yi-Jun Yao. "K -theory of equivariant quantization". Journal of Functional Analysis 266, n.º 2 (enero de 2014): 478–86. http://dx.doi.org/10.1016/j.jfa.2013.10.005.
Texto completoRogers, Alice. "Equivariant BRST quantization and reducible symmetries". Journal of Physics A: Mathematical and Theoretical 40, n.º 17 (11 de abril de 2007): 4649–63. http://dx.doi.org/10.1088/1751-8113/40/17/016.
Texto completoMichel, Jean-Philippe. "Conformally Equivariant Quantization for Spinning Particles". Communications in Mathematical Physics 333, n.º 1 (16 de diciembre de 2014): 261–98. http://dx.doi.org/10.1007/s00220-014-2229-0.
Texto completoDuval, Christian, Pierre Lecomte y Valentin Ovsienko. "Conformally equivariant quantization: existence and uniqueness". Annales de l’institut Fourier 49, n.º 6 (1999): 1999–2029. http://dx.doi.org/10.5802/aif.1744.
Texto completoDonin, J. y A. Mudrov. "Reflection equation, twist, and equivariant quantization". Israel Journal of Mathematics 136, n.º 1 (diciembre de 2003): 11–28. http://dx.doi.org/10.1007/bf02807191.
Texto completoTesis sobre el tema "Equivariant quantization"
Tizzano, Luigi. "Geometry of BV quantization and Mathai-Quillen formalism". Master's thesis, Alma Mater Studiorum - Università di Bologna, 2013. http://amslaurea.unibo.it/5941/.
Texto completoMarie, Valentin. "représentations projectives et groupes quantiques localement compacts". Electronic Thesis or Diss., Reims, 2024. http://www.theses.fr/2024REIMS012.
Texto completoThis thesis exploits a result by De Commer to produce locally compact quantum groups (in the sense of von Neumann algebras) from a classical group. It involves deforming the von Neumann bialgebra of a locally compact group using a unitary dual 2-cocycle. The main objective of this thesis is to construct such dual 2-cocycles, by generalizing to the case of projective representations an article byBieliavsky, Gayral, Neshveyev, Tuset.The groups of interest to us are semidirect products that must satisfy the so-called dual orbit condition and have a non-trivial cohomology in degree 2. We construct a Kohn-Nirenberg type quantization from a projective representation. The star-product of this quantization allows us to formulate a naive dual 2-cocycle. We achieve a rigorous construction of this dual 2-cocycle by introducing a G-Galois object.We then express the multiplicative unitary of the quantum group induced by the dual 2-cocycle. By applying a result of Baaj and Skandalis on pentagonal transformations, we obtain from the multiplicative unitary that this quantum group is isomorphic to a cocycle bicrossed product. The multiplicative unitary induces a so-called pentagonal cohomology and a group morphism that partially describes this cohomology. We study this morphism.We then propose a setup altering the dual orbit condition, in order to study a Weyl type quantization constructed using the same representation. Finally, we present the example of a dual 2-cocycle proposed by Jondreville. We express the multiplicative unitary of the quantum group induced by this dual 2-cocycle
Fitzpatrick, Daniel. "Almost CR Quantization via the Index of Transversally Elliptic Dirac Operators". Thesis, 2009. http://hdl.handle.net/1807/19033.
Texto completoLibros sobre el tema "Equivariant quantization"
Argentina) Luis Santaló Winter School-CIMPA Research School Topics in Noncommutative Geometry (3rd 2010 Buenos Aires. Topics in noncommutative geometry: Third Luis Santaló Winter School-CIMPA Research School Topics in Noncommutative Geometry, Universidad de Buenos Aires, Buenos Aires, Argentina, July 26-August 6, 2010. Editado por Cortiñas, Guillermo, editor of compilation. Providence, RI: American Mathematical Society, 2012.
Buscar texto completoThe [ Gamma]-equivariant form of the Berezin quantization of the upper half plane. Providence, R.I: American Mathematical Society, 1998.
Buscar texto completoCapítulos de libros sobre el tema "Equivariant quantization"
Duval, Christian, Pierre B. A. Lecomte y Valentin Ovsienko. "Methods of Equivariant Quantization". En Noncommutative Differential Geometry and Its Applications to Physics, 1–12. Dordrecht: Springer Netherlands, 2001. http://dx.doi.org/10.1007/978-94-010-0704-7_1.
Texto completoVergne, Michèle. "Geometric Quantization and Equivariant Cohomology". En First European Congress of Mathematics Paris, July 6–10, 1992, 249–95. Basel: Birkhäuser Basel, 1994. http://dx.doi.org/10.1007/978-3-0348-9328-2_8.
Texto completoVergne, Michèle. "Geometric Quantization and Equivariant Cohomology". En First European Congress of Mathematics, 249–95. Basel: Birkhäuser Basel, 1994. http://dx.doi.org/10.1007/978-3-0348-9110-3_8.
Texto completoMatsuura, Shun y Hiroshi Kurata. "Statistical Estimation of Quantization for Probability Distributions: Best Equivariant Estimator of Principal Points". En Machine Learning, Optimization, and Data Science, 430–41. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-95467-3_31.
Texto completoActas de conferencias sobre el tema "Equivariant quantization"
Michel, J. Ph, Piotr Kielanowski, Victor Buchstaber, Anatol Odzijewicz, Martin Schlichenmaier y Theodore Voronov. "Equivariant Quantization of Spin Systems". En XXIX WORKSHOP ON GEOMETRIC METHODS IN PHYSICS. AIP, 2010. http://dx.doi.org/10.1063/1.3527405.
Texto completoShin, Woncheol, Gyubok Lee, Jiyoung Lee, Eunyi Lyou, Joonseok Lee y Edward Choi. "Exploration Into Translation-Equivariant Image Quantization". En ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2023. http://dx.doi.org/10.1109/icassp49357.2023.10096052.
Texto completoBouwknegt, Peter, Alan Carey y Rishni Ratnam. "Recent Advances in the Study of the Equivariant Brauer Group". En Proceedings of the Noncommutative Geometry and Physics 2008, on K-Theory and D-Branes & Proceedings of the RIMS Thematic Year 2010 on Perspectives in Deformation Quantization and Noncommutative Geometry. WORLD SCIENTIFIC, 2013. http://dx.doi.org/10.1142/9789814425018_0012.
Texto completo