Literatura académica sobre el tema "Equation"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Equation".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Equation"
Karakostas, George L. "Asymptotic behavior of a certain functional equation via limiting equations". Czechoslovak Mathematical Journal 36, n.º 2 (1986): 259–67. http://dx.doi.org/10.21136/cmj.1986.102089.
Texto completoParkala, Naresh y Upender Reddy Gujjula. "Mohand Transform for Solution of Integral Equations and Abel's Equation". International Journal of Science and Research (IJSR) 13, n.º 5 (5 de mayo de 2024): 1188–91. http://dx.doi.org/10.21275/sr24512145111.
Texto completoDomoshnitsky, Alexander y Roman Koplatadze. "On Asymptotic Behavior of Solutions of Generalized Emden-Fowler Differential Equations with Delay Argument". Abstract and Applied Analysis 2014 (2014): 1–13. http://dx.doi.org/10.1155/2014/168425.
Texto completoBecker, Leigh, Theodore Burton y Ioannis Purnaras. "Complementary equations: a fractional differential equation and a Volterra integral equation". Electronic Journal of Qualitative Theory of Differential Equations, n.º 12 (2015): 1–24. http://dx.doi.org/10.14232/ejqtde.2015.1.12.
Texto completoN O, Onuoha. "Transformation of Parabolic Partial Differential Equations into Heat Equation Using Hopf Cole Transform". International Journal of Science and Research (IJSR) 12, n.º 6 (5 de junio de 2023): 1741–43. http://dx.doi.org/10.21275/sr23612082710.
Texto completoZhao, Wenling, Hongkui Li, Xueting Liu y Fuyi Xu. "Necessary and Sufficient Conditions for the Existence of a Hermitian Positive Definite Solution of a Type of Nonlinear Matrix Equations". Mathematical Problems in Engineering 2009 (2009): 1–13. http://dx.doi.org/10.1155/2009/672695.
Texto completoYan, Zhenya. "Complex PT -symmetric nonlinear Schrödinger equation and Burgers equation". Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 371, n.º 1989 (28 de abril de 2013): 20120059. http://dx.doi.org/10.1098/rsta.2012.0059.
Texto completoProkhorova, M. F. "Factorization of the reaction-diffusion equation, the wave equation, and other equations". Proceedings of the Steklov Institute of Mathematics 287, S1 (27 de noviembre de 2014): 156–66. http://dx.doi.org/10.1134/s0081543814090156.
Texto completoShi, Yong-Guo y Xiao-Bing Gong. "Linear functional equations involving Babbage’s equation". Elemente der Mathematik 69, n.º 4 (2014): 195–204. http://dx.doi.org/10.4171/em/263.
Texto completoMickens, Ronald E. "Difference equation models of differential equations". Mathematical and Computer Modelling 11 (1988): 528–30. http://dx.doi.org/10.1016/0895-7177(88)90549-3.
Texto completoTesis sobre el tema "Equation"
Thompson, Jeremy R. (Jeremy Ray). "Physical Motivation and Methods of Solution of Classical Partial Differential Equations". Thesis, University of North Texas, 1995. https://digital.library.unt.edu/ark:/67531/metadc277898/.
Texto completoHoward, Tamani M. "Hyperbolic Monge-Ampère Equation". Thesis, University of North Texas, 2006. https://digital.library.unt.edu/ark:/67531/metadc5322/.
Texto completoVong, Seak Weng. "Two problems on the Navier-Stokes equations and the Boltzmann equation /". access full-text access abstract and table of contents, 2005. http://libweb.cityu.edu.hk/cgi-bin/ezdb/thesis.pl?phd-ma-b19885805a.pdf.
Texto completo"Submitted to Department of Mathematics in partial fulfillment of the requirements for the degree of Doctor of Philosophy" Includes bibliographical references (leaves 72-77)
Guan, Meijiao. "Global questions for evolution equations Landau-Lifshitz flow and Dirac equation". Thesis, University of British Columbia, 2009. http://hdl.handle.net/2429/22491.
Texto completoJumarhon, Bartur. "The one dimensional heat equation and its associated Volterra integral equations". Thesis, University of Strathclyde, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.342381.
Texto completoBanerjee, Paromita. "Numerical Methods for Stochastic Differential Equations and Postintervention in Structural Equation Models". Case Western Reserve University School of Graduate Studies / OhioLINK, 2021. http://rave.ohiolink.edu/etdc/view?acc_num=case1597879378514956.
Texto completoWang, Jun. "Integral Equation Methods for the Heat Equation in Moving Geometry". Thesis, New York University, 2017. http://pqdtopen.proquest.com/#viewpdf?dispub=10618746.
Texto completoMany problems in physics and engineering require the solution of the heat equation in moving geometry. Integral representations are particularly appropriate in this setting since they satisfy the governing equation automatically and, in the homogeneous case, require the discretization of the space-time boundary alone. Unlike methods based on direct discretization of the partial differential equation, they are unconditonally stable. Moreover, while a naive implementation of this approach is impractical, several efforts have been made over the past few years to reduce the overall computational cost. Of particular note are Fourier-based methods which achieve optimal complexity so long as the time step Δt is of the same order as Δx, the mesh size in the spatial variables. As the time step goes to zero, however, the cost of the Fourier-based fast algorithms grows without bound. A second difficulty with existing schemes has been the lack of efficient, high-order local-in-time quadratures for layer heat potentials.
In this dissertation, we present a new method for evaluating heat potentials that makes use of a spatially adaptive mesh instead of a Fourier series, a new version of the fast Gauss transform, and a new hybrid asymptotic/numerical method for local-in-time quadrature. The method is robust and efficient for any Δt, with essentially optimal computational complexity. We demonstrate its performance with numerical examples and discuss its implications for subsequent work in diffusion, heat flow, solidification and fluid dynamics.
Grundström, John. "The Sustainability Equation". Thesis, Umeå universitet, Arkitekthögskolan vid Umeå universitet, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-133151.
Texto completoGylys-Colwell, Frederick Douglas. "An inverse problem for the anisotropic time independent wave equation /". Thesis, Connect to this title online; UW restricted, 1993. http://hdl.handle.net/1773/5726.
Texto completoShedlock, Andrew James. "A Numerical Method for solving the Periodic Burgers' Equation through a Stochastic Differential Equation". Thesis, Virginia Tech, 2021. http://hdl.handle.net/10919/103947.
Texto completoMaster of Science
Burgers equation is a Partial Differential Equation (PDE) used to model how fluids evolve in time based on some initial condition and viscosity parameter. This viscosity parameter helps describe how the energy in a fluid dissipates. When studying partial differential equations, it is often hard to find a closed form solution to the problem, so we often approximate the solution with numerical methods. As our viscosity parameter approaches 0, many numerical methods develop problems and may no longer accurately compute the solution. Using random variables, we develop an approximation algorithm and test our numerical method on various types of initial conditions with small viscosity coefficients.
Libros sobre el tema "Equation"
Selvadurai, A. P. S. Partial Differential Equations in Mechanics 1: Fundamentals, Laplace's Equation, Diffusion Equation, Wave Equation. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000.
Buscar texto completoTam, Kenneth. The earther equation: The fourth equations novel. Waterloo, ON: Iceberg Pub., 2005.
Buscar texto completoTam, Kenneth. The vengeance equation: The sixth equations novel. Waterloo, Ont: Iceberg, 2007.
Buscar texto completoTam, Kenneth. The alien equation: The second equations novel. Waterloo, ON: Iceberg Pub., 2004.
Buscar texto completoTam, Kenneth. The human equation: The first equations novel. Waterloo, ON: Iceberg Pub., 2003.
Buscar texto completoTam, Kenneth. The genesis equation: The fifth equations novel. Waterloo, ON: Iceberg, 2006.
Buscar texto completoBejenaru, Ioan. Near soliton evolution for equivariant Schrödinger maps in two spatial dimensions. Providence, Rhode Island: American Mathematical Society, 2013.
Buscar texto completoDante's equation. London: Orbit, 2003.
Buscar texto completoBarbeau, Edward J. Pell’s Equation. New York, NY: Springer New York, 2003. http://dx.doi.org/10.1007/b97610.
Texto completoDante's equation. London: Orbit, 2004.
Buscar texto completoCapítulos de libros sobre el tema "Equation"
Horgmo Jæger, Karoline y Aslak Tveito. "The Cable Equation". En Differential Equations for Studies in Computational Electrophysiology, 79–91. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-30852-9_9.
Texto completoHorgmo Jæger, Karoline y Aslak Tveito. "A Simple Cable Equation". En Differential Equations for Studies in Computational Electrophysiology, 47–52. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-30852-9_6.
Texto completoKurasov, Pavel. "The Characteristic Equation". En Operator Theory: Advances and Applications, 97–122. Berlin, Heidelberg: Springer Berlin Heidelberg, 2023. http://dx.doi.org/10.1007/978-3-662-67872-5_5.
Texto completoKavdia, Mahendra. "Parabolic Differential Equations, Diffusion Equation". En Encyclopedia of Systems Biology, 1621–24. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4419-9863-7_273.
Texto completoSleeman, Brian D. "Partial Differential Equations, Poisson Equation". En Encyclopedia of Systems Biology, 1635–38. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4419-9863-7_274.
Texto completoClayton, Richard H. "Partial Differential Equations, Wave Equation". En Encyclopedia of Systems Biology, 1638–40. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4419-9863-7_275.
Texto completoBrenig, Wilhelm. "Rate Equations (Master Equation, Stosszahlansatz)". En Statistical Theory of Heat, 158–63. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-642-74685-7_32.
Texto completoRapp, Christoph. "Basic equations". En Hydraulics in Civil Engineering, 51–69. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-54860-4_5.
Texto completoParker, David F. "Laplace’s Equation and Poisson’s Equation". En Springer Undergraduate Mathematics Series, 55–76. London: Springer London, 2003. http://dx.doi.org/10.1007/978-1-4471-0019-5_4.
Texto completoGoodair, Daniel y Dan Crisan. "On the 3D Navier-Stokes Equations with Stochastic Lie Transport". En Mathematics of Planet Earth, 53–110. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-40094-0_4.
Texto completoActas de conferencias sobre el tema "Equation"
Cohen, Leon. "Phase-space equation for wave equations". En ICA 2013 Montreal. ASA, 2013. http://dx.doi.org/10.1121/1.4800400.
Texto completoRoy, Subhro, Shyam Upadhyay y Dan Roth. "Equation Parsing : Mapping Sentences to Grounded Equations". En Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, PA, USA: Association for Computational Linguistics, 2016. http://dx.doi.org/10.18653/v1/d16-1117.
Texto completoMikhailov, M. S. y A. A. Komarov. "Combining Parabolic Equation Method with Surface Integral Equations". En 2019 PhotonIcs & Electromagnetics Research Symposium - Spring (PIERS-Spring). IEEE, 2019. http://dx.doi.org/10.1109/piers-spring46901.2019.9017786.
Texto completoTAKEYAMA, YOSHIHIRO. "DIFFERENTIAL EQUATIONS COMPATIBLE WITH BOUNDARY RATIONAL qKZ EQUATION". En Proceedings of the Infinite Analysis 09. WORLD SCIENTIFIC, 2010. http://dx.doi.org/10.1142/9789814324373_0021.
Texto completoIsserstedt, Philipp, Christian Fischer y Thorsten Steinert. "QCD’s equation of state from Dyson-Schwinger equations". En FAIR next generation scientists - 7th Edition Workshop. Trieste, Italy: Sissa Medialab, 2023. http://dx.doi.org/10.22323/1.419.0024.
Texto completoSharifi, J. y H. Momeni. "Optimal control equation for quantum stochastic differential equations". En 2010 49th IEEE Conference on Decision and Control (CDC). IEEE, 2010. http://dx.doi.org/10.1109/cdc.2010.5717172.
Texto completoFreire, Igor Leite y Priscila Leal da Silva. "An equation unifying both Camassa-Holm and Novikov equations". En The 10th AIMS Conference on Dynamical Systems, Differential Equations and Applications (Madrid, Spain). American Institute of Mathematical Sciences, 2015. http://dx.doi.org/10.3934/proc.2015.0304.
Texto completoPang, Subeen y George Barbastathis. "Robust Transport-of-Intensity Equation with Neural Differential Equations". En Computational Optical Sensing and Imaging. Washington, D.C.: Optica Publishing Group, 2023. http://dx.doi.org/10.1364/cosi.2023.cth4d.4.
Texto completoBui, T. T. y V. Popov. "Radial basis integral equation method for Navier-Stokes equations". En BEM/MRM 2009. Southampton, UK: WIT Press, 2009. http://dx.doi.org/10.2495/be090131.
Texto completoVălcan, Teodor-Dumitru. "From Diofantian Equations To Matricial Equations (Ii) -Generalizations Of The Pythagorean Equation-". En 9th International Conference Education, Reflection, Development. European Publisher, 2022. http://dx.doi.org/10.15405/epes.22032.63.
Texto completoInformes sobre el tema "Equation"
Lettau, Martin y Sydney Ludvigson. Euler Equation Errors. Cambridge, MA: National Bureau of Economic Research, septiembre de 2005. http://dx.doi.org/10.3386/w11606.
Texto completoBoyd, Zachary M., Scott D. Ramsey y Roy S. Baty. Symmetries of the Euler compressible flow equations for general equation of state. Office of Scientific and Technical Information (OSTI), octubre de 2015. http://dx.doi.org/10.2172/1223765.
Texto completoMickens, Ronald E. Mathematical and Numerical Studies of Nonstandard Difference Equation Models of Differential Equations. Office of Scientific and Technical Information (OSTI), diciembre de 2008. http://dx.doi.org/10.2172/965764.
Texto completoGrinfeld, M. A. Operational Equations of State. 1. A Novel Equation of State for Hydrocode. Fort Belvoir, VA: Defense Technical Information Center, septiembre de 2011. http://dx.doi.org/10.21236/ada553223.
Texto completoMenikoff, Ralph. JWL Equation of State. Office of Scientific and Technical Information (OSTI), diciembre de 2015. http://dx.doi.org/10.2172/1229709.
Texto completoGrove, John W. xRage Equation of State. Office of Scientific and Technical Information (OSTI), agosto de 2016. http://dx.doi.org/10.2172/1304734.
Texto completoSCIENCE AND TECHNOLOGY CORP HAMPTON VA. Analytic Parabolic Equation Solutions. Fort Belvoir, VA: Defense Technical Information Center, noviembre de 1989. http://dx.doi.org/10.21236/ada218588.
Texto completoFujisaki, Masatoshi. Normed Bellman Equation with Degenerate Diffusion Coefficients and Its Application to Differential Equations. Fort Belvoir, VA: Defense Technical Information Center, octubre de 1987. http://dx.doi.org/10.21236/ada190319.
Texto completoUhlman, J. S. y Jr. An Integral Equation Formulation of the Equations of Motion of an Incompressible Fluid. Fort Belvoir, VA: Defense Technical Information Center, julio de 1992. http://dx.doi.org/10.21236/ada416252.
Texto completoGrinfeld, Michael. The Operational Equations of State, 4: The Dulong-Petit Equation of State for Hydrocode. Fort Belvoir, VA: Defense Technical Information Center, julio de 2012. http://dx.doi.org/10.21236/ada568915.
Texto completo