Literatura académica sobre el tema "Epigenomic regulators"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Epigenomic regulators".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Epigenomic regulators"
Al-Janabi, Ismail. "Therapeutic Targeting of the Regulators of Cancer Epigenomes". Al-Rafidain Journal of Medical Sciences ( ISSN 2789-3219 ) 5 (1 de julio de 2023): 1–13. http://dx.doi.org/10.54133/ajms.v5i.128.
Texto completoPaul, Aswathy Mary, Madhavan Radhakrishna Pillai y Rakesh Kumar. "Prognostic Significance of Dysregulated Epigenomic and Chromatin Modifiers in Cervical Cancer". Cells 10, n.º 10 (5 de octubre de 2021): 2665. http://dx.doi.org/10.3390/cells10102665.
Texto completoSchmitz, Ulf, Jaynish S. Shah, Bijay P. Dhungel, Geoffray Monteuuis, Phuc-Loi Luu, Veronika Petrova, Cynthia Metierre et al. "Widespread Aberrant Alternative Splicing despite Molecular Remission in Chronic Myeloid Leukaemia Patients". Cancers 12, n.º 12 (11 de diciembre de 2020): 3738. http://dx.doi.org/10.3390/cancers12123738.
Texto completoZhou, Huaijun. "97 Dissection of Evolution of Cis-Regulatory Elements and Its Application on Genetic Control of Complex Traits in Farm Animals". Journal of Animal Science 101, Supplement_3 (6 de noviembre de 2023): 51–52. http://dx.doi.org/10.1093/jas/skad281.063.
Texto completoTseng, Yen-Tzu, Hung-Fu Liao, Chih-Yun Yu, Chu-Fan Mo y Shau-Ping Lin. "Epigenetic factors in the regulation of prospermatogonia and spermatogonial stem cells". REPRODUCTION 150, n.º 3 (septiembre de 2015): R77—R91. http://dx.doi.org/10.1530/rep-14-0679.
Texto completoDeng, Xian, Xianwei Song, Liya Wei, Chunyan Liu y Xiaofeng Cao. "Epigenetic regulation and epigenomic landscape in rice". National Science Review 3, n.º 3 (1 de septiembre de 2016): 309–27. http://dx.doi.org/10.1093/nsr/nww042.
Texto completoRada-Iglesias, Alvaro, Ruchi Bajpai, Sara Prescott, Samantha A. Brugmann, Tomek Swigut y Joanna Wysocka. "Epigenomic Annotation of Enhancers Predicts Transcriptional Regulators of Human Neural Crest". Cell Stem Cell 11, n.º 5 (noviembre de 2012): 633–48. http://dx.doi.org/10.1016/j.stem.2012.07.006.
Texto completoSmetanina, Mariya A., Valeria A. Korolenya, Alexander E. Kel, Ksenia S. Sevostyanova, Konstantin A. Gavrilov, Andrey I. Shevela y Maxim L. Filipenko. "Epigenome-Wide Changes in the Cell Layers of the Vein Wall When Exposing the Venous Endothelium to Oscillatory Shear Stress". Epigenomes 7, n.º 1 (20 de marzo de 2023): 8. http://dx.doi.org/10.3390/epigenomes7010008.
Texto completoBoix, Carles A., Benjamin T. James, Yongjin P. Park, Wouter Meuleman y Manolis Kellis. "Regulatory genomic circuitry of human disease loci by integrative epigenomics". Nature 590, n.º 7845 (3 de febrero de 2021): 300–307. http://dx.doi.org/10.1038/s41586-020-03145-z.
Texto completokong, ranran, Ayushi S. Patel, Takashi Sato, Seungyeul Yoo, Abhilasha Sinha, Yang Tian, Feng Jiang et al. "Abstract 5709: Transcriptional circuitry of NKX2-1 and SOX1 defines a previously unrecognized lineage subtype of small cell lung cancer". Cancer Research 82, n.º 12_Supplement (15 de junio de 2022): 5709. http://dx.doi.org/10.1158/1538-7445.am2022-5709.
Texto completoTesis sobre el tema "Epigenomic regulators"
Ferré, Quentin. "Leveraging combinations of epigenomic regulators". Electronic Thesis or Diss., Aix-Marseille, 2021. http://www.theses.fr/2021AIXM0151.
Texto completoGenetic cis-regulation in humans is effected through chromatin regulators, such as histone marks and Transcriptional Regulators (TRs). Those regulators seldom act alone, instead forming complexes. The development of NGS provides experimental methods to study this regulation, which includes ChIP-seq. The goal of this thesis is to leverage such combinations through the use of machine learning methods, which are effective at learning regularities in the data. We propose to represent the regions where regulators bind as lists of intervals, converted into matrix and tensor representations. ChIP-seq and other experimental assays can suffer from errors and false positives, poor quality control, and several other biases that are difficult to correct. Furthermore, the use of larger volumes of data increases the probability of errors. We assume that noise peaks will not respect the usual combinations between sources, and propose atyPeak which exploits combinations of TRs, and redundant experiments from the ReMap database. We propose to use a multi-view convolutional autoencoder to perform a “Goldilocks” compression. We developed approaches to evaluate autoencoders based on their respect of existing correlations. Finally, the enrichment of given n-wise combinations of elements (how often they are found compared to expected by chance) needs to be precisely quantified. We propose the OLOGRAM-MODL approach, demonstrating a Monte Carlo based method to fit a Negative Binomial model on the number of base pairs on which a given combination is observed. We also propose an itemset mining algorithm to based on which combinations best rebuild the original data
DAS, VIVEK. "LEVERAGING TRANSCRIPTOMIC ANALYSIS TO IDENTIFY TRANSCRIPTION FACTORS ORCHESTRATING CANCER PROGRESSION". Doctoral thesis, Università degli Studi di Milano, 2018. http://hdl.handle.net/2434/559711.
Texto completoJhanwar, Shalu 1986. "Computational analysis of epigenomic variability and its effect on regulatory activity". Doctoral thesis, Universitat Pompeu Fabra, 2017. http://hdl.handle.net/10803/580601.
Texto completoLa epigenética proporciona un enlace plausible entre el medio ambiente y los cambios en la expresión de genes que podrían contribuir a fenotipo de las enfermedades. El objetivo principal de la tesis es el estudio de la variabilidad epigenómica y su efecto sobre la actividad reguladora subyacente a la dinámica de la cromatina. Con un objetivo último de identificar variantes de regulación que contribuyen al cáncer, así como patrones epigenómicos específicos en enfermedades neurológicas, las tesis se enfoca en el desarrollo y posterior aplicación de un nuevo método supervisado para predecir potenciadores basado en aprendizaje automático (GEP). Además, para abordar el papel de la metilación del ADN en la configuración de dos formas larvarias distintas de un solo huevo en una avispa poliembriónica parasitaria, hemos desarrollado un nuevo método computacional (dMeth-X) para identificar los genes diferencialmente metilados que podrían contribuir distinguiendo formas larvarias contrastantes. Adicionalmente, la tesis incorporó el estudio del efecto de factores externos sobre la variabilidad epigenómica de la corteza del cerebro de ratón. En general, creemos que mi tesis doctoral es un esfuerzo exitoso para estudiar la variabilidad epigenética y la actividad reguladora utilizando enfoques de secuenciación de próxima generación.
Jené, i. Sanz Alba 1984. "Integrative study of the regulatory and epigenomic programs involved in cancer development". Doctoral thesis, Universitat Pompeu Fabra, 2013. http://hdl.handle.net/10803/113380.
Texto completoCancer has traditionally been regarded as a genetic disease, but recently it is becoming apparent that the deregulation of epigenetic mechanisms greatly contributes to tumour development. At the crossing of genetics and epigenetics lie chromatin regulatory factors (CRFs), which are the focus of intense research due to their potential usefulness in anticancer therapy. In this thesis, I determine the transcriptomic state of normal and tumour cells based on epigenetic and regulatory information, and describe the existence of a global synchronisation of gene expression in which Polycomb regulation arises as one of the two main components. I present an analysis on how the under-expression of Polycomb regulated genes contributes to breast cancer progression and epithelial to mesenchymal transition. Furthermore, I identify this under-expression as a valuable independent prognostic factor. Taking advantage on the wealth of cancer genomics data made available recently, I also evaluate the mutational status of CRFs across many human tumours from different tissues and cancer cell lines, and find that 39 CRFs are potential cancer drivers in at least one tissue, even though most of them are mutated at relatively low frequencies. Finally, I present a resource to visualise and analyse genomic alterations across cancer cell lines in the context of drug sensitivity/resistance and the information on somatic tumour alterations.
Purcaro, Michael J. "Analysis, Visualization, and Machine Learning of Epigenomic Data". eScholarship@UMMS, 2017. https://escholarship.umassmed.edu/gsbs_diss/938.
Texto completoZhu, Yan. "Microfluidic Technology for Low-Input Epigenomic Analysis". Diss., Virginia Tech, 2018. http://hdl.handle.net/10919/83402.
Texto completoPh. D.
Batra, Rajbir Nath. "Decoding the regulatory role and epiclonal dynamics of DNA methylation in 1482 breast tumours". Thesis, University of Cambridge, 2018. https://www.repository.cam.ac.uk/handle/1810/274923.
Texto completoBogatyrova, Olga [Verfasser] y Christoph [Akademischer Betreuer] Plass. "Mutations in regulators of the epigenome and their effects on the DNA methylome / Olga Bogatyrova ; Betreuer: Christoph Plass". Heidelberg : Universitätsbibliothek Heidelberg, 2016. http://d-nb.info/1180617304/34.
Texto completoMorikawa, Hiromasa. "Differential roles of epigenetic changes and Foxp3 expression in regulatory T cell-specific transcriptional regulation". Kyoto University, 2013. http://hdl.handle.net/2433/180610.
Texto completoFloc'hlay, Swann. "Computational analysis and modelling of regulatory networks controlling embryonic development". Electronic Thesis or Diss., Université Paris sciences et lettres, 2020. http://www.theses.fr/2020UPSLE036.
Texto completoThe development of an embryo derives from the DNA sequence of this organism. Genetic variability gives rise to great morphological diversity, while maintaining a robust general organisation. Mutations present within cis-regulatory regions impact transcription via epigenomic mechanisms. The resulting variability in gene expression can be buffered by tran feedback mechanisms within the regulatory network. The precise organisation of these cis and trans interactions remains difficult to decipher. In order to better grasp the effect of mutations on transcription, I analysed genetic, epigenomic and transcriptomic data in collaboration with the Furlong laboratory (EMBL, Heidelberg). The use of allele-specific data from Drosophila F1 lines enabled to infer direct cis-interactions between the regulatory layers, suggesting a difference in the action of the epigenomic markers H3K27ac and H3K4me3 on gene expression. To better understand the trans impact of the structure of regulatory networks on gene expression, I have built a logical model of the dorsal-ventral axis specification in sea urchin embryo, in collaboration with the Lepage laboratory (iBV, Nice). Multicellular and stochastic analyses permitted to detect key components of the network, including the cross-repression dynamic between Nodal and BMP. To conclude, allele-specific data analysis and logical modelling allowed me to study the mechanisms of transcription regulation from two complementary perspectives
Libros sobre el tema "Epigenomic regulators"
Lusardi, Theresa A. y Detlev Boison. Ketogenic Diet, Adenosine, Epigenetics, and Antiepileptogenesis. Editado por Detlev Boison. Oxford University Press, 2016. http://dx.doi.org/10.1093/med/9780190497996.003.0023.
Texto completoCapítulos de libros sobre el tema "Epigenomic regulators"
Zhu, Yan y Chang Lu. "Microfluidic Chromatin Immunoprecipitation for Analysis of Epigenomic Regulations". En Microfluidic Methods for Molecular Biology, 349–63. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-30019-1_16.
Texto completoJhanwar, Shalu. "Computational Epigenomics and Its Application in Regulatory Genomics". En Bioinformatics: Sequences, Structures, Phylogeny, 115–39. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-1562-6_6.
Texto completoHu, Yongfeng y Dao-Xiu Zhou. "Rice Epigenomes: Characteristics, Regulatory Functions, and Reprogramming Mechanisms". En Rice Genomics, Genetics and Breeding, 453–71. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-7461-5_23.
Texto completoRoy Choudhury, Samrat y Brian A. Walker. "Aberrant Epigenomic Regulatory Networks in Multiple Myeloma and Strategies for Their Targeted Reversal". En RNA Technologies, 543–72. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-14792-1_22.
Texto completoKlann, Tyler S., Gregory E. Crawford, Timothy E. Reddy y Charles A. Gersbach. "Screening Regulatory Element Function with CRISPR/Cas9-based Epigenome Editing". En Methods in Molecular Biology, 447–80. New York, NY: Springer New York, 2018. http://dx.doi.org/10.1007/978-1-4939-7774-1_25.
Texto completoHalene, Tobias B., Gregor Hasler, Amanda Mitchell y Schahram Akbarian. "Epigenomic Exploration of the Human Brain". En Psychiatric Genetics, 144–64. Oxford University Press, 2018. http://dx.doi.org/10.1093/med/9780190221973.003.0010.
Texto completoZhou, Tong. "Small non-coding RNAs as epigenetic regulators". En Nutritional Epigenomics, 37–47. Elsevier, 2019. http://dx.doi.org/10.1016/b978-0-12-816843-1.00003-5.
Texto completoBeetch, Megan, Sadaf Harandi-Zadeh, Kate Shen y Barbara Stefanska. "Stilbenoids as dietary regulators of the cancer epigenome". En Nutritional Epigenomics, 353–70. Elsevier, 2019. http://dx.doi.org/10.1016/b978-0-12-816843-1.00021-7.
Texto completoMihaylova, Maria M. y Matthew S. Stratton. "Short chain fatty acids as epigenetic and metabolic regulators of neurocognitive health and disease". En Nutritional Epigenomics, 381–97. Elsevier, 2019. http://dx.doi.org/10.1016/b978-0-12-816843-1.00023-0.
Texto completoYan, Menghong. "The paternal diet regulates the offspring epigenome and health". En Nutritional Epigenomics, 191–200. Elsevier, 2019. http://dx.doi.org/10.1016/b978-0-12-816843-1.00012-6.
Texto completoActas de conferencias sobre el tema "Epigenomic regulators"
Takamatsu, Hironori, Naoko Hattori, Naofumi Asano, Naoko Iida, Akihiko Yoshida, Eisuke Kobayashi, Robert Nakayama et al. "Abstract 843: Epigenomic disruption of adipogenic regulators in dedifferentiated liposarcoma". En Proceedings: AACR Annual Meeting 2019; March 29-April 3, 2019; Atlanta, GA. American Association for Cancer Research, 2019. http://dx.doi.org/10.1158/1538-7445.sabcs18-843.
Texto completoTakamatsu, Hironori, Naoko Hattori, Naofumi Asano, Naoko Iida, Akihiko Yoshida, Eisuke Kobayashi, Robert Nakayama et al. "Abstract 843: Epigenomic disruption of adipogenic regulators in dedifferentiated liposarcoma". En Proceedings: AACR Annual Meeting 2019; March 29-April 3, 2019; Atlanta, GA. American Association for Cancer Research, 2019. http://dx.doi.org/10.1158/1538-7445.am2019-843.
Texto completoGEVAERT, OLIVIER y SYLVIA PLEVRITIS. "IDENTIFYING MASTER REGULATORS OF CANCER AND THEIR DOWNSTREAM TARGETS BY INTEGRATING GENOMIC AND EPIGENOMIC FEATURES". En Proceedings of the Pacific Symposium. WORLD SCIENTIFIC, 2012. http://dx.doi.org/10.1142/9789814447973_0013.
Texto completoWorsham, MJ, KM Chen, I. Datta, JK Stephen, D. Chitale y G. Divine. "Abstract P1-04-06: Network integration of epigenomic data: Leveraging the concept of master regulators in ER negative breast cancer". En Abstracts: 2016 San Antonio Breast Cancer Symposium; December 6-10, 2016; San Antonio, Texas. American Association for Cancer Research, 2017. http://dx.doi.org/10.1158/1538-7445.sabcs16-p1-04-06.
Texto completoBattle, Stephanie L., Antti Larjo, Joling Liao, Harri Lähdesmäki, Andre Lieber y R. David Hawkins. "Abstract AS04: Epigenomic characterization of gene regulatory networks in human ovarian cancer stem cells". En Abstracts: 10th Biennial Ovarian Cancer Research Symposium; September 8-9, 2014; Seattle, WA. American Association for Cancer Research, 2015. http://dx.doi.org/10.1158/1557-3265.ovcasymp14-as04.
Texto completoLaFave, Lindsay M., Vinay Kartha, Sai Ma, Kevin Meli, Isabella Del Priore, Caleb Lareau, Venkat Sanker et al. "Abstract PR08: Leveraging single-cell epigenomics to uncover regulatory programs in lung adenocarcinoma". En Abstracts: AACR Special Conference on the Evolving Landscape of Cancer Modeling; March 2-5, 2020; San Diego, CA. American Association for Cancer Research, 2020. http://dx.doi.org/10.1158/1538-7445.camodels2020-pr08.
Texto completoTricarico, Rossella, Pietro Mancuso, Vikram Bhattacharjee, Neil Beeharry, Emmanuelle Nicolas, Margret Einarson, Laura Cosentino et al. "Abstract LB-249: TDG, a dual genomic and epigenomic regulator, as a novel antimelanoma target". En Proceedings: AACR 106th Annual Meeting 2015; April 18-22, 2015; Philadelphia, PA. American Association for Cancer Research, 2015. http://dx.doi.org/10.1158/1538-7445.am2015-lb-249.
Texto completoXU, Liangliang, Feng WU, Otto K. W. CHEUNG, Lemuel L. M. SZETO, Myth T. S. MOK, Kevin Y. L. Yip, Ka F. To y Alfred S. L. CHENG. "Abstract 868: Epigenomic profiling of primary hepatocellular carcinoma reveals super-enhancer-associated chromatin regulator network". En Proceedings: AACR Annual Meeting 2019; March 29-April 3, 2019; Atlanta, GA. American Association for Cancer Research, 2019. http://dx.doi.org/10.1158/1538-7445.sabcs18-868.
Texto completoXU, Liangliang, Feng WU, Otto K. W. CHEUNG, Lemuel L. M. SZETO, Myth T. S. MOK, Kevin Y. L. Yip, Ka F. To y Alfred S. L. CHENG. "Abstract 868: Epigenomic profiling of primary hepatocellular carcinoma reveals super-enhancer-associated chromatin regulator network". En Proceedings: AACR Annual Meeting 2019; March 29-April 3, 2019; Atlanta, GA. American Association for Cancer Research, 2019. http://dx.doi.org/10.1158/1538-7445.am2019-868.
Texto completoZacharias, W., M. Morley, D. T. Swarr, P. Senthamarai Kannan, M. C. Basil y E. E. Morrisey. "Integrated Epigenomic Analysis of the Gene Regulatory Networks Underlying Regenerative Capacity in Alveolar Epithelial Progenitor Cells". En American Thoracic Society 2019 International Conference, May 17-22, 2019 - Dallas, TX. American Thoracic Society, 2019. http://dx.doi.org/10.1164/ajrccm-conference.2019.199.1_meetingabstracts.a4012.
Texto completo