Literatura académica sobre el tema "Epigenetic regulator"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Epigenetic regulator".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Epigenetic regulator"
Abdullah, Omeima y Mahmoud Alhosin. "HAUSP Is a Key Epigenetic Regulator of the Chromatin Effector Proteins". Genes 13, n.º 1 (24 de diciembre de 2021): 42. http://dx.doi.org/10.3390/genes13010042.
Texto completoAlbogami, Sarah. "Epigenetic Regulator Signatures in Regenerative Capacity". Current Stem Cell Research & Therapy 14, n.º 7 (23 de septiembre de 2019): 598–606. http://dx.doi.org/10.2174/1574888x14666190618125111.
Texto completoBarneda-Zahonero, Bruna, Lidia Roman-Gonzalez, Olga Collazo, Tokameh Mahmoudi y Maribel Parra. "Epigenetic Regulation of B Lymphocyte Differentiation, Transdifferentiation, and Reprogramming". Comparative and Functional Genomics 2012 (2012): 1–10. http://dx.doi.org/10.1155/2012/564381.
Texto completoMcCoy, Rachel M., Russell Julian, Shoban R. V. Kumar, Rajeev Ranjan, Kranthi Varala y Ying Li. "A Systems Biology Approach to Identify Essential Epigenetic Regulators for Specific Biological Processes in Plants". Plants 10, n.º 2 (13 de febrero de 2021): 364. http://dx.doi.org/10.3390/plants10020364.
Texto completoSkalnik, David G. "The epigenetic regulator Cfp1". BioMolecular Concepts 1, n.º 5-6 (1 de diciembre de 2010): 325–34. http://dx.doi.org/10.1515/bmc.2010.031.
Texto completoTheys, Claudia, Dorien Lauwers, Claudina Perez-Novo y Wim Vanden Berghe. "PPARα in the Epigenetic Driver Seat of NAFLD: New Therapeutic Opportunities for Epigenetic Drugs?" Biomedicines 10, n.º 12 (25 de noviembre de 2022): 3041. http://dx.doi.org/10.3390/biomedicines10123041.
Texto completoDey, Anusree, Sheetal Uppal, Jayeeta Giri y Hari Sharan Misra. "Emerging Roles of Bromodomain Protein 4 in Regulation of Stem Cell Identity". Stem Cells 39, n.º 12 (25 de septiembre de 2021): 1615–24. http://dx.doi.org/10.1002/stem.3454.
Texto completoSarne, Victoria, Sandrina Braunmueller, Lisa Rakob y Rita Seeboeck. "The Relevance of Gender in Tumor-Influencing Epigenetic Traits". Epigenomes 3, n.º 1 (28 de enero de 2019): 6. http://dx.doi.org/10.3390/epigenomes3010006.
Texto completoBithell, Angela. "REST: transcriptional and epigenetic regulator". Epigenomics 3, n.º 1 (febrero de 2011): 47–58. http://dx.doi.org/10.2217/epi.10.76.
Texto completoBahia, Ravinder, Xiaoguang Hao, Rozina Hassam, Orsolya Cseh, Danielle Bozek, H. Artee Luchman y Samuel Weiss. "STEM-18. EPIGENETIC AND MOLECULAR COORDINATION BETWEEN HDAC2 AND SMAD3-SKI IS REQUIRED FOR GROWTH AND STEM CELL CHARACTERISTICS OF BRAIN TUMOUR STEM CELLS". Neuro-Oncology 24, Supplement_7 (1 de noviembre de 2022): vii34—vii35. http://dx.doi.org/10.1093/neuonc/noac209.135.
Texto completoTesis sobre el tema "Epigenetic regulator"
Gocevski, Goran. "Interplay of Mye and Max with Epigenetic Regulator Bmi1". Thesis, McGill University, 2013. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=114264.
Texto completoLa protéine de groupe polycomb Bmi1 est essentielle pour la prolifération de nombreux types de cancers. En freinant l'expression du suppresseur de tumeur p53, Bmi1 est capable de prévenir l'apoptose et la sénescence. c-Myc, une autre oncogène, s'associe à Bmi1 pour stimuler la transformation et la tumorigenèse. Une enquête plus approfondie de l'interaction biologique fondamentale entre Bmi1 et c-Myc est crucial pour notre compréhension de leur capacité à promouvoir la tumorigène. Dans mon projet, j'ai démontré que c-Myc et Bmi1 interagissent directement et forment des foyers nucléaires. La surexpression de Max, un partenaire connu de Myc, perturbe l'interaction entre Bmi1 et c-Myc et empêche la formation de foyers nucléaires. Des résultats similaires ont été obtenus avec un autre membre de la famille Myc, L-Myc. En outre, j'ai constaté que HDAC3 interagi et se co-localise avec Myc. HDAC3 forme aussi des foyers nucléaires avec Bmi1 et l'ajout de Max abroge cette interaction. En plus du rôle bien établi de Bmi1 comme un régulateur épigénétique, il a été démontré récemment que Bmi1 fait partie d'une ubiquitine-ligase E3 complexe, connu sous le nom complexe Bmi1/RING1A ou B. Ce complexe contrôle la stabilité de nombreuses protéines. J'ai démontré que Bmi1 induit l'ubiquitination de L-Myc qui à son tour provoque la dégradation de celle-ci. Ces données proposent un nouveau mécanisme de règlementation pour la stabilité des oncogènes Myc. Les résultats de cette thèse fournissent un nouvel éclairage sur l'interaction biochimique de Bmi1 avec Myc et Max.
Almoflehi, Sakhar. "Cord Blood CD34+ Expansion Using Vitamin-C: An Epigenetic Regulator". Thesis, Université d'Ottawa / University of Ottawa, 2020. http://hdl.handle.net/10393/41413.
Texto completoLu, Yizhen. "Physical interation of parathyroid hormone-related protein with the epigenetic regulator Bmi1". Thesis, McGill University, 2011. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=96929.
Texto completoLa protéine Parathyroid hormone related-protein (PTHrP) joue un rôle très important dans la croissance et la différentiation cellulaire en plus d'être responsable de l'hypercalcémie induite par la malignité. Ce peptide est unique non seulement parce qu'il agit par l'intermediate de récepteurs transmembranaires, mais aussi parce qu'il est transloqué directement au noyau. Bmi-1, un peptide essentiel du PcG complexe, fonctionne comme un répresseur de transcription pour plusieurs gènes importants dans le développement et de l'organisme de la prolifération cellulaire. Cette fonction répressive régule l'expression des gènes cibles en induisant des modifications sur la chromatine (73). Des études publiées récemment démontrent que PTHrP influence l'expression moléculaire de Bmi-1 (95). Cependant, le mécanisme par lequel Bmi-1 contrôle PTHrP n'est pas encore bien documenté. Mon but premier est d'élucider les mécanismes moléculaires de cette interaction ensuite de trouver quelles conséquences fonctionnelles peuvent résulter de cette interaction. Au départ, la colocalisation de PTHrP et Bmi-1 a été démontrée dans le noyau de cellules HEK293. Ensuite, l'interaction entre Bmi-1 et PTHrP a été illustrée in vivo et in vitro. On a trouvé que c'est le N-Terminal qui est responsable des interactions in vivo et in vitro. De plus, la surexpression de PTHrP et Bmi-1 dans les cellules HEK293 provoque des effets minimes sur l'activité transcriptionelle des gènes et de l'expression du gène P19arf. En outre, la surexpression de PTHrP et Bmi-1 cause une augmentation du niveau de prolifération cellulaire dans les cellules HEK293 et NIH 3T3. En parallèle, j'ai découvert une augmentation du taux de survie des cellules HEK 293 et NIH 3T3 suite à surexpression des peptides PTHrP et Mel18. A été noteé ces études démontrent que l'hormone PTHrP interagit physiquement et est attaché fonctionnellement avec Bmi-1.
Lubitz, Sandra. "Analysis of an epigenetic regulator in mouse embryonic stem cell self-renewal and differentiation". Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2006. http://nbn-resolving.de/urn:nbn:de:swb:14-1139479284063-94996.
Texto completoLubitz, Sandra. "Analysis of an epigenetic regulator in mouse embryonic stem cell self-renewal and differentiation". Doctoral thesis, Technische Universität Dresden, 2005. https://tud.qucosa.de/id/qucosa%3A24639.
Texto completoGrinat, Johanna. "The epigenetic regulator Mll1 is required for Wnt-driven intestinal tumorigenesis and cancer stemness". Doctoral thesis, Humboldt-Universität zu Berlin, 2020. http://dx.doi.org/10.18452/22192.
Texto completoGenetic mutations inducing aberrant activity of Wnt signalling are causative for intestinal tumorigenesis. Mutations of the Wnt effector molecule β-catenin in adult stem cells of the intestinal epithelium drive uncontrolled proliferation, expand the stem cell pool and initiate tumor formation. In advanced tumors, aberrant Wnt signalling promotes tumor growth and maintains cancer stem cells. The cancer stem cells are highly resistant to conventional chemotherapy and frequently initiate tumor relapse after completion of treatment. Despite extensive research, we are still lacking efficient therapies for colon cancer that specifically eliminate the cancer stem cells. This dissertation aims to expand our knowledge on molecular gene regulatory mechanisms in colon cancer cells to promote the identification and future development of rational therapies for colon cancer patients. I identified the histone methyltransferase Mll1 as an epigenetic regulator in human and mouse intestinal cancer stem cells and tumors. Human colon carcinomas with nuclear β-catenin exhibit high levels of Mll1. In the adult intestinal epithelium of mice, Mll1 is highly expressed in the Lgr5+ stem cells and is a prerequisite for the oncogenic Wnt/β-catenin-mediated stem cell expansion and tumorigenesis. Conditional knockout of Mll1 in an intestinal mouse tumor model prevents the β-catenin-driven intestinal tumorigenesis. Knockdown of Mll1 impairs the self-renewal and proliferation of colon cancer sphere cultures and halts tumor growth in xenografts. Mechanistically, Mll1 sustains the expression of intestinal stem cell genes including the Wnt/β-catenin target gene Lgr5 by antagonizing gene silencing through polycomb repressive complex 2-mediated H3K27 tri-methylation. Interfering with Mll1 function can efficiently eliminate colon cancer stem cells, and has potential as a rational therapy for colon cancer.
Punnia-Moorthy, Gayathiri. "Defining the functional roles of X-linked epigenetic regulator lysine demethylase 6A (KDM6A) in Melanoma". Thesis, The University of Sydney, 2022. https://hdl.handle.net/2123/28897.
Texto completoGrinat, Johanna [Verfasser]. "The epigenetic regulator Mll1 is required for Wnt-driven intestinal tumorigenesis and cancer stemness / Johanna Grinat". Berlin : Humboldt-Universität zu Berlin, 2020. http://d-nb.info/1223452255/34.
Texto completoTrippel, Franziska Katharina [Verfasser] y Roland [Akademischer Betreuer] Kappler. "The role of NFE2L2 mutations and the epigenetic regulator UHRF1 in hepatoblastoma / Franziska Katharina Trippel. Betreuer: Roland Kappler". München : Universitätsbibliothek der Ludwig-Maximilians-Universität, 2016. http://d-nb.info/1096162644/34.
Texto completoElangovan, Venkateswaran Ramamoorthi, Sara M. Camp, Gabriel T. Kelly, Ankit A. Desai, Djanybek Adyshev, Xiaoguang Sun, Stephen M. Black, Ting Wang y Joe G. N. Garcia. "Endotoxin- and Mechanical Stress–Induced Epigenetic Changes in the Regulation of the Nicotinamide Phosphoribosyltransferase Promoter". UNIV CHICAGO PRESS, 2016. http://hdl.handle.net/10150/622492.
Texto completoLibros sobre el tema "Epigenetic regulator"
Epigenetic regulation of lymphocyte development. Heidelberg: Springer, 2011.
Buscar texto completoJörg, Tost, ed. Epigenetics. Norfolk, UK: Caister Academic Press, 2008.
Buscar texto completoJörg, Tost, ed. Epigenetics. Norfolk, UK: Caister Academic Press, 2008.
Buscar texto completoDavid, Allis C., Jenuwein Thomas y Reinberg Danny, eds. Epigenetics. Cold Spring Harbor, N.Y: Cold Spring Harbor Laboratory Press, 2007.
Buscar texto completoMurre, Cornelis, ed. Epigenetic Regulation of Lymphocyte Development. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-24103-1.
Texto completoNajafova, Zeynab. Epigenetic regulation of osteoblast differentiation. Göttingen: Niedersächsische Staats- und Universitätsbibliothek Göttingen, 2017.
Buscar texto completoA, Russo V. E., Martienssen Robert A y Riggs Arthur D, eds. Epigenetic mechanisms of gene regulation. Plainview, N.Y: Cold Spring Harbor Laboratory Press, 1996.
Buscar texto completoDerek, Chadwick y Cardew Gail, eds. Epigenetics. Chichester: Wiley, 1998.
Buscar texto completoChan, Yvonne. Epigenetic regulation of enos gene expression. Ottawa: National Library of Canada, 1998.
Buscar texto completoPh, Jeanteur, ed. Epigenetics and chromatin. Berlin: Springer, 2005.
Buscar texto completoCapítulos de libros sobre el tema "Epigenetic regulator"
Kumar, Sanjay, James A. Stokes, Udai P. Singh, Kumar S. Bishnupuri y Manoj K. Mishra. "Enhancer of Zeste Homology 2 (Ezh2), an Epigenetic Regulator: A Possibility for Prostate Cancer Treatment". En Epigenetic Advancements in Cancer, 229–44. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-24951-3_10.
Texto completoGanai, Shabir Ahmad. "Epigenetic Regulator Enzymes and Their Implications in Distinct Malignancies". En Histone Deacetylase Inhibitors in Combinatorial Anticancer Therapy, 35–65. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-8179-3_2.
Texto completoRaghu, Sukanya, Arathi Bangalore Prabhashankar, Bhoomika Shivanaiah, Ekta Tripathi y Nagalingam Ravi Sundaresan. "Sirtuin 6 Is a Critical Epigenetic Regulator of Cancer". En Subcellular Biochemistry, 337–60. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-07634-3_10.
Texto completoJog, Ruta, Guohua Chen, Todd Leff y Jian Wang. "Threonine Catabolism: An Unexpected Epigenetic Regulator of Mouse Embryonic Stem Cells". En Handbook of Nutrition, Diet, and Epigenetics, 1585–604. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-319-55530-0_103.
Texto completoJog, Ruta, Guohua Chen, Todd Leff y Jian Wang. "Threonine Catabolism: an Unexpected Epigenetic Regulator of Mouse Embryonic Stem Cells". En Handbook of Nutrition, Diet, and Epigenetics, 1–20. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-31143-2_103-1.
Texto completoParo, Renato, Ueli Grossniklaus, Raffaella Santoro y Anton Wutz. "Epigenetics and Cancer". En Introduction to Epigenetics, 151–77. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-68670-3_8.
Texto completoSkillman, Kristen M. y Manoj T. Duraisingh. "Epigenetic Regulation". En Encyclopedia of Malaria, 1–12. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4614-8757-9_41-1.
Texto completoHuang, Yufei. "Epigenetic Regulation". En Encyclopedia of Systems Biology, 665. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4419-9863-7_817.
Texto completoMinarovits, Janos, Ferenc Banati, Kalman Szenthe y Hans Helmut Niller. "Epigenetic Regulation". En Patho-Epigenetics of Infectious Disease, 1–25. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-24738-0_1.
Texto completoSato, Shinya y Yasushi Miyazaki. "Epigenetic Regulator, Re-emerging Antimetabolites with Novel Mechanism of Action (Azacitidine and Decitabine): Clinical Pharmacology and Therapeutic Results". En Chemotherapy for Leukemia, 327–40. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-3332-2_19.
Texto completoActas de conferencias sobre el tema "Epigenetic regulator"
Gunnell, Andrea, Jessica Downs, Lewis Pennicott, Kay Osborn, Darren Le Grand, Katie Duffell, Hitesh Patel, Jessica Hudson, Jessica R. Booth y Simon Ward. "Abstract 2907: Targeting the epigenetic regulator KAT2a in cancer". En Proceedings: AACR Annual Meeting 2018; April 14-18, 2018; Chicago, IL. American Association for Cancer Research, 2018. http://dx.doi.org/10.1158/1538-7445.am2018-2907.
Texto completoShields, Cara E., Selma M. Cuya, Sarah K. Chappell, Komal Rathi, Shiv Patel, Sindhu Potlapalli y Robert W. Schnepp. "Abstract 3838: Targeting epigenetic regulator BMI-1 in alveolar rhabdomyosarcoma". En Proceedings: AACR Annual Meeting 2019; March 29-April 3, 2019; Atlanta, GA. American Association for Cancer Research, 2019. http://dx.doi.org/10.1158/1538-7445.am2019-3838.
Texto completoShields, Cara E., Selma M. Cuya, Sarah K. Chappell, Komal Rathi, Shiv Patel, Sindhu Potlapalli y Robert W. Schnepp. "Abstract 3838: Targeting epigenetic regulator BMI-1 in alveolar rhabdomyosarcoma". En Proceedings: AACR Annual Meeting 2019; March 29-April 3, 2019; Atlanta, GA. American Association for Cancer Research, 2019. http://dx.doi.org/10.1158/1538-7445.sabcs18-3838.
Texto completoBrennan, Donal J., Kirsha Naicker, Sudipto Das, Bruce Moran, Rut Klinger, Fredrik Ponten, Stephen Hewitt et al. "Abstract 5033: The role of the epigenetic regulator SATB2 in colon cancer progression". En Proceedings: AACR Annual Meeting 2019; March 29-April 3, 2019; Atlanta, GA. American Association for Cancer Research, 2019. http://dx.doi.org/10.1158/1538-7445.sabcs18-5033.
Texto completoBrennan, Donal J., Kirsha Naicker, Sudipto Das, Bruce Moran, Rut Klinger, Fredrik Ponten, Stephen Hewitt et al. "Abstract 5033: The role of the epigenetic regulator SATB2 in colon cancer progression". En Proceedings: AACR Annual Meeting 2019; March 29-April 3, 2019; Atlanta, GA. American Association for Cancer Research, 2019. http://dx.doi.org/10.1158/1538-7445.am2019-5033.
Texto completoMills, Alea A. y Dong-Woo Hwang. "Abstract 2959: The tumor suppressor CHD5 is an epigenetic regulator of neuronal cell fate". En Proceedings: AACR Annual Meeting 2014; April 5-9, 2014; San Diego, CA. American Association for Cancer Research, 2014. http://dx.doi.org/10.1158/1538-7445.am2014-2959.
Texto completoBagheri-Yarmand, Rozita, Sharmistha Lahiri, Xinhai Wan, Nora Navone, Christopher J. Logothetis, Robert F. Gagel y Krishna M. Sinha. "Abstract 2272: A novel epigenetic regulator histone demethylase NO66 promotes prostate cancer bone metastasis". En Proceedings: AACR 106th Annual Meeting 2015; April 18-22, 2015; Philadelphia, PA. American Association for Cancer Research, 2015. http://dx.doi.org/10.1158/1538-7445.am2015-2272.
Texto completoFaria, Gustavo Hugo de Souza. "The impact of epigenetics on the development of neurodegenerative diseases". En XIII Congresso Paulista de Neurologia. Zeppelini Editorial e Comunicação, 2021. http://dx.doi.org/10.5327/1516-3180.654.
Texto completoTu, Yaping, Dennis W. Wolff, Zoran Gatalica, Yan Xie y Peter W. Abel. "Abstract 1710: Epigenetic repression of regulator of G-protein signaling 2 promotes prostate cancer progression". En Proceedings: AACR 101st Annual Meeting 2010‐‐ Apr 17‐21, 2010; Washington, DC. American Association for Cancer Research, 2010. http://dx.doi.org/10.1158/1538-7445.am10-1710.
Texto completoKang, Sun Kyoung, Tae Soo Kim, Woo Sun Kwon, Jae Kyung Roh, Ho-Yeong Lim, Hyun Cheol Chun y Sun Young Rha. "Abstract 5069: Inhibition of BET bromodomain, epigenetic regulator, as an effective therapeutic approach for gastric cancer". En Proceedings: AACR Annual Meeting 2017; April 1-5, 2017; Washington, DC. American Association for Cancer Research, 2017. http://dx.doi.org/10.1158/1538-7445.am2017-5069.
Texto completoInformes sobre el tema "Epigenetic regulator"
Isaacs, Jennifer S. Extracellular Hsp90 as a Novel Epigenetic Regulator of EMT and Metastatic Risk in Prostate Cancer. Fort Belvoir, VA: Defense Technical Information Center, octubre de 2013. http://dx.doi.org/10.21236/ada603247.
Texto completoSeale, Maria, R. Salter, Natàlia Garcia-Reyero, y Alicia Ruvinsky. A fuzzy epigenetic model for representing degradation in engineered systems. Engineer Research and Development Center (U.S.), septiembre de 2022. http://dx.doi.org/10.21079/11681/45582.
Texto completoShrikant, Protul A. Epigenetic Regulation of Ovarian Tumor Immunity. Fort Belvoir, VA: Defense Technical Information Center, noviembre de 2010. http://dx.doi.org/10.21236/ada586321.
Texto completoShrikant, Protul A. Epigenetic Regulation of Ovarian Tumor Immunity. Fort Belvoir, VA: Defense Technical Information Center, noviembre de 2009. http://dx.doi.org/10.21236/ada589210.
Texto completoEcker, Joseph Robert. Epigenetic Regulation of Hormone-dependent Plant Growth Processes. Office of Scientific and Technical Information (OSTI), noviembre de 2016. http://dx.doi.org/10.2172/1332760.
Texto completoShurin, Michael R. Epigenetic Regulation of Chemokine Expression in Prostate Cancer. Fort Belvoir, VA: Defense Technical Information Center, diciembre de 2006. http://dx.doi.org/10.21236/ada460756.
Texto completoPawlowski, Wojtek P. y Avraham A. Levy. What shapes the crossover landscape in maize and wheat and how can we modify it. United States Department of Agriculture, enero de 2015. http://dx.doi.org/10.32747/2015.7600025.bard.
Texto completoInce, Tan A. Epigenetic Regulation of Normal and Transformed Breast Epithelial Cell Phenotype. Fort Belvoir, VA: Defense Technical Information Center, junio de 2009. http://dx.doi.org/10.21236/ada514040.
Texto completoMillonig, James H. Epigenetic Regulation of the Autism Susceptibility Gene, ENGRAILED 2 (EN2). Fort Belvoir, VA: Defense Technical Information Center, julio de 2010. http://dx.doi.org/10.21236/ada552004.
Texto completoZhang, Jisheng. Insight into Skin Tumorigenesis Highlighting the Function of Epigenetic Regulators in SCC Formation. Fort Belvoir, VA: Defense Technical Information Center, octubre de 2013. http://dx.doi.org/10.21236/ada599253.
Texto completo