Literatura académica sobre el tema "Epidemiology modeling tool"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Epidemiology modeling tool".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Epidemiology modeling tool"
Amorim, Leila Denise Alves Ferreira, Rosemeire L. Fiaccone, Carlos Antônio S. T. Santos, Tereza Nadya dos Santos, Lia Terezinha L. P. de Moraes, Nelson F. Oliveira, Silvano O. Barbosa et al. "Structural equation modeling in epidemiology". Cadernos de Saúde Pública 26, n.º 12 (diciembre de 2010): 2251–62. http://dx.doi.org/10.1590/s0102-311x2010001200004.
Texto completoDelmaar, C., H. Bremmer y I. Tuinman. "Experimental Validation of the Consumer Exposure Modeling Tool ConsExpo". Epidemiology 17, Suppl (noviembre de 2006): S182. http://dx.doi.org/10.1097/00001648-200611001-00460.
Texto completoBell, Michelle. "AIR QUALITY MODELING AS A TOOL FOR HUMAN HEALTH RESEARCH". Epidemiology 15, n.º 4 (julio de 2004): S152. http://dx.doi.org/10.1097/00001648-200407000-00397.
Texto completoKolesnichenko, Olga, Igor Nakonechniy y Yuriy Kolesnichenko. "From digital to quantum epidemiology: The Quantum Data Lake concept for big data related to viral infectious diseases". Global Health Economics and Sustainability 2, n.º 1 (20 de marzo de 2024): 2148. http://dx.doi.org/10.36922/ghes.2148.
Texto completoAzimaee, Parisa, Mohammad Jafari Jozani y Yaser Maddahi. "Calibration of surgical tools using multilevel modeling with LINEX loss function: Theory and experiment". Statistical Methods in Medical Research 30, n.º 6 (13 de abril de 2021): 1523–37. http://dx.doi.org/10.1177/09622802211003620.
Texto completoLimburg, Hans y Jan E. E. Keunen. "Blindness and low vision in The Netherlands from 2000 to 2020—modeling as a tool for focused intervention". Ophthalmic Epidemiology 16, n.º 6 (diciembre de 2009): 362–69. http://dx.doi.org/10.3109/09286580903312251.
Texto completoCasado-Vara, Roberto, Marcos Severt, Antonio Díaz-Longueira, Ángel Martín del Rey y Jose Luis Calvo-Rolle. "Dynamic Malware Mitigation Strategies for IoT Networks: A Mathematical Epidemiology Approach". Mathematics 12, n.º 2 (12 de enero de 2024): 250. http://dx.doi.org/10.3390/math12020250.
Texto completoBen-Hassen, Céline, Catherine Helmer, Claudine Berr y Hélène Jacqmin-Gadda. "Five-Year Dynamic Prediction of Dementia Using Repeated Measures of Cognitive Tests and a Dependency Scale". American Journal of Epidemiology 191, n.º 3 (9 de noviembre de 2021): 453–64. http://dx.doi.org/10.1093/aje/kwab269.
Texto completoKunicki, Zachary J., Meghan L. Smith y Eleanor J. Murray. "A Primer on Structural Equation Model Diagrams and Directed Acyclic Graphs: When and How to Use Each in Psychological and Epidemiological Research". Advances in Methods and Practices in Psychological Science 6, n.º 2 (abril de 2023): 251524592311560. http://dx.doi.org/10.1177/25152459231156085.
Texto completoOleson, Jacob J., Joseph E. Cavanaugh, J. Bruce Tomblin, Elizabeth Walker y Camille Dunn. "Combining growth curves when a longitudinal study switches measurement tools". Statistical Methods in Medical Research 25, n.º 6 (11 de julio de 2016): 2925–38. http://dx.doi.org/10.1177/0962280214534588.
Texto completoTesis sobre el tema "Epidemiology modeling tool"
Guifo, Fodjo A. Yvan. "Séparation des préoccupations dans les modèles compartimentaux étendus". Electronic Thesis or Diss., Sorbonne université, 2023. http://www.theses.fr/2023SORUS262.
Texto completoMathematical modeling and computer simulation have very often contributed to improving our understanding, prediction, and decision making in the face of epidemics. However, a problem that is often encountered in the development and implementation of epidemiological models is the mixing of different aspects of the model. Indeed, epidemiological models become more and more complex as new concerns are taken into account (age, gender, spatial heterogeneity, containment or vaccination policies, etc.). These aspects, which are usually intertwined, make models difficult to extend, modify or reuse. In mathematical modeling applied to epidemiology, two main approaches are considered. The first one, the "compartmental models", has proven to be robust and provides fairly good results for many diseases. However, it does not take into account some sources of heterogeneity. The second approach, based on "contact networks", has proven to be intuitive to represent contacts between individuals and brings very good results concerning the prediction of epidemics. However, this approach requires more effort during the implementation. A solution to this problem has been proposed: Kendrick. It is a modeling and simulation tool and approach that has shown promising results in separating epidemiological concerns, by defining them as stochastic automata (continuous time markov chain), which can then be combined using an associative and pseudo commutative tensor sum operator. However, a significant limitation of this approach is its restricted application to compartmental models. Taking into account the particularities and shortcomings of each approach, in this research work, we propose a combined approach between compartmental models and contact network models. The aim is to generalize the Kendrick approach to take into account certain aspects of contact networks in order to improve the predictive quality of models with significant heterogeneity in the structure of the contacts, while maintaining the simplicity of compartmental models. To achieve this, this extension of compartmental models is made possible by applying the infection force formalism of Bansal et al (2007) and the behavioral Template Method Design Pattern. The result is an approach that is easy to define, analyze and simulate. We validated this approach on different techniques to generalize compartmental models. Simulation results showed that our approach succeeds in capturing the aspects of contact network models within the compartmental framework while improving the prediction quality of the Kendrick tool and does not deviate from a typical simulation approach on a contact network model
Stevens, Kim Barbra. "Risk-based decision making tools for highly pathogenic avian influenza virus (H5N1) in domestic poultry in Asia : a comparison of spatial-modelling methods". Thesis, Royal Veterinary College (University of London), 2016. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.701672.
Texto completoCapítulos de libros sobre el tema "Epidemiology modeling tool"
Bruaset, Are Magnus, Glenn Terje Lines y Joakim Sundnes. "Chapter 7 Data aggregation and anonymization for mathematical modeling and epidemiological studies". En Simula SpringerBriefs on Computing, 121–41. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-05466-2_7.
Texto completoPerry, Brian, Bernard Bett, Eric Fèvre, Delia Grace y Thomas Fitz Randolph. "Veterinary epidemiology at ILRAD and ILRI, 1987-2018." En The impact of the International Livestock Research Institute, 208–38. Wallingford: CABI, 2020. http://dx.doi.org/10.1079/9781789241853.0208.
Texto completoRichards, Marcus y Rebecca Hardy. "Life course epidemiology". En Practical Psychiatric Epidemiology, 389–404. Oxford University Press, 2020. http://dx.doi.org/10.1093/med/9780198735564.003.0023.
Texto completoKlepac, Petra y C. Jessica E. Metcalf. "Demographic methods in epidemiology". En Demographic Methods across the Tree of Life, 351–62. Oxford University Press, 2021. http://dx.doi.org/10.1093/oso/9780198838609.003.0022.
Texto completoPrince, Martin. "Statistical methods in psychiatric epidemiology 2: an epidemiologist’ s perspective". En Practical Psychiatric Epidemiology, 275–90. Oxford University Press, 2003. http://dx.doi.org/10.1093/med/9780198515517.003.0015.
Texto completoBueno-Sancho, Vanessa, Clare M. Lewis y Diane G. O. Saunders. "Advances in understanding the biology and epidemiology of rust diseases of cereals". En Achieving durable disease resistance in cereals, 15–38. Burleigh Dodds Science Publishing, 2021. http://dx.doi.org/10.19103/as.2021.0092.02.
Texto completoLamberton, Poppy H. L., Thomas Crellen, James A. Cotton y Joanne P. Webster. "Modelling the Effects of Mass Drug Administration on the Molecular Epidemiology of Schistosomes". En Mathematical Models for Neglected Tropical Diseases: Essential Tools for Control and Elimination, Part A, 293–327. Elsevier, 2015. http://dx.doi.org/10.1016/bs.apar.2014.12.006.
Texto completoVlach, Marek. "Network Modeling of the Spread of Disease". En The Oxford Handbook of Archaeological Network Research, 512–27. Oxford University Press, 2023. http://dx.doi.org/10.1093/oxfordhb/9780198854265.013.29.
Texto completoJosé Becerra, Melgris y Mariano Araujo Bernardino da Rocha. "Applications of Geotechnologies in the Field of Public Health". En Geographic Information Systems - Data Science Approach. IntechOpen, 2024. http://dx.doi.org/10.5772/intechopen.1003867.
Texto completoWilson, Andrew. "Positioning Computational Modelling in Roman Studies". En Simulating Roman Economies, 308–24. Oxford University PressOxford, 2022. http://dx.doi.org/10.1093/oso/9780192857828.003.0012.
Texto completoActas de conferencias sobre el tema "Epidemiology modeling tool"
Mokros, Jan, Jacob Sagrans y Pendred Noyce. "Data science for youth in the time of COVID". En IASE 2021 Satellite Conference: Statistics Education in the Era of Data Science. International Association for Statistical Education, 2022. http://dx.doi.org/10.52041/iase.hmtse.
Texto completoSvensson, Elisabeth. "Experiencing the complexity of reality before graduation". En Next Steps in Statistics Education. IASE international Association for Statistical Education, 2009. http://dx.doi.org/10.52041/srap.09202.
Texto completoSautner, J. B., M. L. Maslia y M. M. Aral. "Water-Distribution System Modeling as a Tool to Enhance Epidemiologic Case-Control Investigations: A Case Study–The Dover Township (Toms River) Childhood Cancer Investigation". En 29th Annual Water Resources Planning and Management Conference. Reston, VA: American Society of Civil Engineers, 1999. http://dx.doi.org/10.1061/40430(1999)51.
Texto completoInformes sobre el tema "Epidemiology modeling tool"
Millington, Kerry y Samantha Reddin. COVID-19 Health Evidence Summary No.112. Institute of Development Studies (IDS), febrero de 2021. http://dx.doi.org/10.19088/k4d.2021.021.
Texto completoMillington, Kerry y Samantha Reddin. COVID-19 Health Evidence Summary No.107. Institute of Development Studies (IDS), enero de 2021. http://dx.doi.org/10.19088/k4d.2021.002.
Texto completo