Literatura académica sobre el tema "Environmental health Data processing"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Environmental health Data processing".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Environmental health Data processing"
Ivanov, Alexander y Alexander Platov. "Environmental monitoring based on data processing of Internet of Things". E3S Web of Conferences 136 (2019): 01041. http://dx.doi.org/10.1051/e3sconf/201913601041.
Texto completoCummings, Stuart W. "Distributed Databases for Clinical Data Processing". Drug Information Journal 27, n.º 4 (octubre de 1993): 949–56. http://dx.doi.org/10.1177/009286159302700403.
Texto completoPimazzoni, Monica. "Global Data Management: A Winning Approach to Clinical Data Processing". Drug Information Journal 32, n.º 2 (abril de 1998): 569–71. http://dx.doi.org/10.1177/009286159803200230.
Texto completoWoods, Valerie. "Musculoskeletal disorders and visual strain in intensive data processing workers". Occupational Medicine 55, n.º 2 (1 de marzo de 2005): 121–27. http://dx.doi.org/10.1093/occmed/kqi029.
Texto completoJia, Xiao Yu y Tao Li. "Data Processing in Environmental Performance of Building Systems Applied in Residential Design". Advanced Materials Research 978 (junio de 2014): 145–48. http://dx.doi.org/10.4028/www.scientific.net/amr.978.145.
Texto completoArisetty, Murty. "A Team-Based Approach to Clinical Data Processing". Drug Information Journal 19, n.º 1 (enero de 1985): 81–84. http://dx.doi.org/10.1177/009286158501900113.
Texto completoLeighton, Charles C. "Clinical Data Processing in Retrospect and in Prospect". Drug Information Journal 20, n.º 1 (enero de 1986): 7–15. http://dx.doi.org/10.1177/009286158602000103.
Texto completoGillum, Terry L., Robert H. George y Jack E. Leitmeyer. "An Autoencoder for Clinical and Regulatory Data Processing". Drug Information Journal 29, n.º 1 (enero de 1995): 107–13. http://dx.doi.org/10.1177/009286159502900115.
Texto completoHrzic, Rok, Timo Clemens, Daan Westra y Helmut Brand. "Comparability in Cross-National Health Research Using Insurance Claims Data: The Cases of Germany and The Netherlands". Das Gesundheitswesen 82, S 01 (19 de noviembre de 2019): S83—S90. http://dx.doi.org/10.1055/a-1005-6792.
Texto completoKraft, Robin, Ferdinand Birk, Manfred Reichert, Aniruddha Deshpande, Winfried Schlee, Berthold Langguth, Harald Baumeister, Thomas Probst, Myra Spiliopoulou y Rüdiger Pryss. "Efficient Processing of Geospatial mHealth Data Using a Scalable Crowdsensing Platform". Sensors 20, n.º 12 (18 de junio de 2020): 3456. http://dx.doi.org/10.3390/s20123456.
Texto completoTesis sobre el tema "Environmental health Data processing"
Wilmot, Peter Nicholas. "Modelling cooling tower risk for Legionnaires' Disease using Bayesian Networks and Geographic Information Systems". Title page, contents and conclusion only, 1999. http://web4.library.adelaide.edu.au/theses/09SIS.M/09sismw744.pdf.
Texto completoChitondo, Pepukayi David Junior. "Data policies for big health data and personal health data". Thesis, Cape Peninsula University of Technology, 2016. http://hdl.handle.net/20.500.11838/2479.
Texto completoHealth information policies are constantly becoming a key feature in directing information usage in healthcare. After the passing of the Health Information Technology for Economic and Clinical Health (HITECH) Act in 2009 and the Affordable Care Act (ACA) passed in 2010, in the United States, there has been an increase in health systems innovations. Coupling this health systems hype is the current buzz concept in Information Technology, „Big data‟. The prospects of big data are full of potential, even more so in the healthcare field where the accuracy of data is life critical. How big health data can be used to achieve improved health is now the goal of the current health informatics practitioner. Even more exciting is the amount of health data being generated by patients via personal handheld devices and other forms of technology that exclude the healthcare practitioner. This patient-generated data is also known as Personal Health Records, PHR. To achieve meaningful use of PHRs and healthcare data in general through big data, a couple of hurdles have to be overcome. First and foremost is the issue of privacy and confidentiality of the patients whose data is in concern. Secondly is the perceived trustworthiness of PHRs by healthcare practitioners. Other issues to take into context are data rights and ownership, data suppression, IP protection, data anonymisation and reidentification, information flow and regulations as well as consent biases. This study sought to understand the role of data policies in the process of data utilisation in the healthcare sector with added interest on PHRs utilisation as part of big health data.
Yang, Bin y 杨彬. "A novel framework for binning environmental genomic fragments". Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2010. http://hub.hku.hk/bib/B45789344.
Texto completoGigandet, Katherine M. "Processing and Interpretation of Illinois Basin Seismic Reflection Data". Wright State University / OhioLINK, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=wright1401309913.
Texto completoPerovich, Laura J. (Laura Jones). "Data Experiences : novel interfaces for data engagement using environmental health data". Thesis, Massachusetts Institute of Technology, 2014. http://hdl.handle.net/1721.1/95612.
Texto completoCataloged from PDF version of thesis.
Includes bibliographical references (pages 71-81).
For the past twenty years, the data visualization movement has reworked the way we engage with information. It has brought fresh excitement to researchers and reached broad audiences. But what comes next for data? I seek to create example "Data Experiences" that will contribute to developing new spaces of information engagement. Using data from Silent Spring Institute's environmental health studies as a test case, I explore Data Experiences that are immersive, interactive, and aesthetic. Environmental health datasets are ideal for this application as they are highly relevant to the general population and have appropriate complexity. Dressed in Data will focus on the experience of an individual with her/his own environmental health data while BigBarChart focuses on the experience of the community with the overall dataset. Both projects seek to present opportunities for nontraditional learning, community relevance, and social impact.
by Laura J. Perovich.
S.M.
Ponsimaa, P. (Petteri). "Discovering value for health with grocery shopping data". Master's thesis, University of Oulu, 2016. http://urn.fi/URN:NBN:fi:oulu-201605221849.
Texto completoAdu-Prah, Samuel. "GEOGRAPHIC DATA MINING AND GEOVISUALIZATION FOR UNDERSTANDING ENVIRONMENTAL AND PUBLIC HEALTH DATA". OpenSIUC, 2013. https://opensiuc.lib.siu.edu/dissertations/657.
Texto completoKersten, Ellen Elisabeth. "Spatial Triage| Data, Methods, and Opportunities to Advance Health Equity". Thesis, University of California, Berkeley, 2015. http://pqdtopen.proquest.com/#viewpdf?dispub=3686356.
Texto completoThis dissertation examines whether spatial measures of health determinants and health outcomes are being used appropriately and effectively to improve the health of marginalized populations in the United States. I concentrate on three spatial measures that have received significant policy and regulatory attention in California and nationally: access to healthful foods, climate change, and housing quality. I find that measures of these health determinants have both significant limitations and unrealized potential for addressing health disparities and promoting health equity.
I define spatial triage as a process of using spatial data to screen or select place-based communities for targeted investments, policy action, and/or regulatory attention. Chapter 1 describes the historical context of spatial triage and how it relates to ongoing health equity research and policy. In Chapter 2, I evaluate spatial measures of community nutrition environments by comparing data from in-person store surveys against data from a commercial database. I find that stores in neighborhoods with higher population density or higher percentage of people of color have lower availability of healthful foods and that inaccuracies in commercial databases may produce biased measures of healthful food availability.
Chapter 3 focuses on spatial measures of climate change vulnerability. I find that currently used spatial measures of "disadvantaged communities" ignore many important factors, such as community assets, region-specific risks, and occupation-based hazards that contribute to place-based vulnerability. I draw from examples of successful actions by community-based environmental justice organizations and reframe "disadvantaged" communities as sites of solutions where innovative programs are being used to simultaneously address climate mitigation, adaptation, and equity goals.
In Chapter 4, I combine electronic health records, public housing locations, and census data to evaluate patterns of healthcare utilization and health outcomes for low-income children in San Francisco. I find that children who live in redeveloped public housing are less likely to have more than one acute care hospital visit within a year than children who live in older, traditional public housing. These results demonstrate how integrating patient-level data across hospitals and with data from other sectors can identify new types of place-based health disparities. Chapter 5 details recommendations for analytic, participatory, and cross-sector approaches to guide the development and implementation of more effective health equity research and policy.
Ling, Meng-Chun. "Senior health care system". CSUSB ScholarWorks, 2005. https://scholarworks.lib.csusb.edu/etd-project/2785.
Texto completoDulaney, D. R., Kurt J. Maier y Phillip R. Scheuerman. "Data Requirements for Developing Effective Pathogen TMDLs". Digital Commons @ East Tennessee State University, 2005. https://dc.etsu.edu/etsu-works/2938.
Texto completoLibros sobre el tema "Environmental health Data processing"
Bonnyns, E. Enregistrement des résultats d'analyse des précipitations: Aspects informatiques. Bruxelles: Ministère de la santé publique et de la famille, Institut d'hygiène et dépidémiologie, 1985.
Buscar texto completoBasher, Mian M. Abul y Rajshahi University. Department of Statistics, eds. International Conference on Statistical Data Mining for Bioinformatics, Health, Agriculture and Environment, 21-24 December, 2012: Proceedings. [Dhaka]: Higher Education Quality Enhancement Program, 2012.
Buscar texto completoOffice, General Accounting. International environment: U.S. funding of environmental programs and activities. Washington, D.C: The Office, 1996.
Buscar texto completoIfiyenia, Kececioglu, Murthy Jayathi y American Society of Mechanical Engineers. Heat Division., eds. Adaptive computional methods in environmental transport processes: Presented at the Winter Annual Meeting of the American Society of Mechanical Engineers, Anaheim, California, November 8-13, 1992. New York, N.Y: American Society of Mechanical Engineers, 1992.
Buscar texto completoE, Keller Paul, ed. Applications of neural networks in evironment, energy, and health: Proceedings of the 1995 Workshop on Environmental and Energy Applications of Neural Networks, Richland, Washington, USA, 30-31 March 1995. Singapore: World Scientific, 1996.
Buscar texto completoWorkshop on Environmental and Energy Applications of Neural Networks (1995 Richland, Wash.). Applications of neural networks in evironment, energy, and health: Proceedings of the 1995 Workshop on Environmental and Energy Applicatins of Neural Networks, Pacific Northwest National Laboratory, Richland, Washington, USA, 30-31 March 1995. Singapore: World Scientific, 1996.
Buscar texto completoOffice, General Accounting. International environment: Strengthening the implementation of environmental agreements : report to Congressional requestors. Washington, D.C: The Office, 1992.
Buscar texto completoMontana. Legislature. Office of the Legislative Auditor. Performance audit report: Air quality program, Department of Health and Environmental Sciences. Helena, Mont: The Office, 1994.
Buscar texto completoUnited States. Congress. House. Committee on Commerce. Subcommittee on Health and the Environment. Y2K and medical devices: Screening for the Y2K bug : joint hearing before the Subcommittees on Health and Environment and Oversight and Investigations of the Committee on Commerce, House of Representatives, One Hundred Sixth Congress, first session, May 25, 1999. Washington: U.S. G.P.O., 1999.
Buscar texto completoUnited States. Congress. House. Committee on Commerce. Subcommittee on Oversight and Investigations., ed. Y2K and medical devices: Screening for the Y2K bug : joint hearing before the Subcommittees on Health and Environment and Oversight and Investigations of the Committee on Commerce, House of Representatives, One Hundred Sixth Congress, first session, May 25, 1999. Washington: U.S. G.P.O., 1999.
Buscar texto completoCapítulos de libros sobre el tema "Environmental health Data processing"
Balter, Boris, M. Stal’naya y Victor Egorov. "Comparing Two Alternative Pollutant Dispersion Models and Actual Data within an Environmental Health Information Processing System (EHIPS)". En Modelling of Environmental Chemical Exposure and Risk, 151–64. Dordrecht: Springer Netherlands, 2001. http://dx.doi.org/10.1007/978-94-010-0884-6_14.
Texto completoAwange, Joseph. "Data Processing and Adjustment". En GNSS Environmental Sensing, 97–113. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-58418-8_6.
Texto completoAwange, Joseph L. "Data Processing and Adjustment". En Environmental Science and Engineering, 91–107. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-540-88256-5_6.
Texto completoMalley, Brian, Daniele Ramazzotti y Joy Tzung-yu Wu. "Data Pre-processing". En Secondary Analysis of Electronic Health Records, 115–41. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-43742-2_12.
Texto completoJaafar, Amine, Bruno Sareni y Xavier Roboam. "Mission and Environmental Data Processing". En Integrated Design by Optimization of Electrical Energy Systems, 1–43. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118561812.ch1.
Texto completoBill, Ralf. "Spatial Data Processing in Environmental Information Systems". En Environmental Informatics, 53–73. Dordrecht: Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-017-1443-3_4.
Texto completoRao, P. Krishna, Susan J. Holmes, Ralph K. Anderson, Jay S. Winston y Paul E. Lehr. "Satellite Data Product Processing". En Weather Satellites: Systems, Data, and Environmental Applications, 166–79. Boston, MA: American Meteorological Society, 1990. http://dx.doi.org/10.1007/978-1-944970-16-1_18.
Texto completoZhang, Kuan y Xuemin Shen. "Privacy-Preserving Health Data Processing". En Wireless Networks, 81–98. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-24717-5_5.
Texto completoKang, Myeongsu y Jing Tian. "Machine Learning: Data Pre-processing". En Prognostics and Health Management of Electronics, 111–30. Chichester, UK: John Wiley and Sons Ltd, 2018. http://dx.doi.org/10.1002/9781119515326.ch5.
Texto completoSchmidt, Henrik, A. B. Baggeroer, W. A. Kuperman y E. K. Scheer. "Robust Beamforming for Matched Field Processing Under Realistic Environmental Conditions". En Underwater Acoustic Data Processing, 427–31. Dordrecht: Springer Netherlands, 1989. http://dx.doi.org/10.1007/978-94-009-2289-1_47.
Texto completoActas de conferencias sobre el tema "Environmental health Data processing"
Liu, Miao, Junsheng Yu, Zhijiao Chen, Jinglin Guo y Jun Zhao. "Processing Technology of Massive Human Health Data Based on Hadoop". En 2016 6th International Conference on Machinery, Materials, Environment, Biotechnology and Computer. Paris, France: Atlantis Press, 2016. http://dx.doi.org/10.2991/mmebc-16.2016.284.
Texto completoFenton, Kevin y Steven Simske. "Engineering of an artificial intelligence safety data sheet document processing system for environmental, health, and safety compliance". En DocEng '21: ACM Symposium on Document Engineering 2021. New York, NY, USA: ACM, 2021. http://dx.doi.org/10.1145/3469096.3474933.
Texto completoSingh, Ajay, Vincent Koomson, Jaewook Yu y Goldie Nejat. "A Self-Powered Wireless Health and Environment Monitoring System". En ASME 2008 International Mechanical Engineering Congress and Exposition. ASMEDC, 2008. http://dx.doi.org/10.1115/imece2008-67051.
Texto completoFarreras-Alcover, Isaac, Jacob Egede Andersen y Preston Vineyard. "The Structural Health Monitoring System of the Governor Mario M. Cuomo Bridge". En IABSE Conference, Copenhagen 2018: Engineering the Past, to Meet the Needs of the Future. Zurich, Switzerland: International Association for Bridge and Structural Engineering (IABSE), 2018. http://dx.doi.org/10.2749/copenhagen.2018.439.
Texto completoAlexakis, Haris, Andrea Franza, Sinan Acikgoz y Matthew J. DeJong. "Structural Health Monitoring of a masonry viaduct with Fibre Bragg Grating sensors". En IABSE Symposium, Guimarães 2019: Towards a Resilient Built Environment Risk and Asset Management. Zurich, Switzerland: International Association for Bridge and Structural Engineering (IABSE), 2019. http://dx.doi.org/10.2749/guimaraes.2019.1560.
Texto completoГегерь, Эмилия, Emilia Geger, Александр Подвесовский, Aleksandr Podvesovskiy, Сергей Кузьмин, Sergey Kuzmin, Виктория Толстенок y Viktoriya Tolstenok. "Methods for the Intelligent Analysis of Biomedical Data". En 29th International Conference on Computer Graphics, Image Processing and Computer Vision, Visualization Systems and the Virtual Environment GraphiCon'2019. Bryansk State Technical University, 2019. http://dx.doi.org/10.30987/graphicon-2019-2-308-311.
Texto completoOesch, Christopher, Ajay Mahajan, Lucas Utterback, Haricharan Padmanaban, Sanjeevi Chitikeshi y Fernando Figueroa. "Intelligent Sensors for Integrated Health Management Systems". En ASME 2006 International Mechanical Engineering Congress and Exposition. ASMEDC, 2006. http://dx.doi.org/10.1115/imece2006-13576.
Texto completoGiantomassi, Andrea, Francesco Ferracuti, Alessandro Benini, Gianluca Ippoliti, Sauro Longhi y Antonio Petrucci. "Hidden Markov Model for Health Estimation and Prognosis of Turbofan Engines". En ASME 2011 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2011. http://dx.doi.org/10.1115/detc2011-48174.
Texto completoSuharto, K. S. "Structural Health Monitoring of An Offshore Platform Trend of Corrosion and Marine Growth With Predictive Maintenance". En Digital Technical Conference. Indonesian Petroleum Association, 2020. http://dx.doi.org/10.29118/ipa20-se-424.
Texto completoTsai, Hanchung, Yung Y. Liu y James Shuler. "RFID Technology for Environmental Remediation and Radioactive Waste Management". En ASME 2010 13th International Conference on Environmental Remediation and Radioactive Waste Management. ASMEDC, 2010. http://dx.doi.org/10.1115/icem2010-40218.
Texto completoInformes sobre el tema "Environmental health Data processing"
Marter, W. L. y L. R. Bauer. Defense waste processing facility (DWPF) environmental dosimetry data. Office of Scientific and Technical Information (OSTI), abril de 1990. http://dx.doi.org/10.2172/6439530.
Texto completoGautier, M. A. Health and environmental chemistry: analytical techniques, data management, and quality assurance. Volume 1. Office of Scientific and Technical Information (OSTI), mayo de 1986. http://dx.doi.org/10.2172/5107848.
Texto completoGautier, M. A. Health and environmental chemistry: Analytical techniques, data management, and quality assurance. Volume 1, Manual. Office of Scientific and Technical Information (OSTI), noviembre de 1993. http://dx.doi.org/10.2172/10136159.
Texto completoLackland, D. T., J. B. Dunbar y R. M. Jones. Geo-coding of health and demographic data as a resource for environmental incidents preparedness and response. Office of Scientific and Technical Information (OSTI), julio de 1995. http://dx.doi.org/10.2172/88875.
Texto completoMallon, B., D. Layton, R. Fish, P. Hsieh, L. Hall, L. Perry y G. Snyder. Conventional weapons demilitarization: A health and environmental effects data base assessment: Propellants and their co-contaminants. Office of Scientific and Technical Information (OSTI), agosto de 1988. http://dx.doi.org/10.2172/5873712.
Texto completoHunter, M. R. Construction project data sheet for the environmental, safety and health upgrades: Phase 3 Program FY 1991 line item. Office of Scientific and Technical Information (OSTI), febrero de 1989. http://dx.doi.org/10.2172/115623.
Texto completoShinn, J. H., S. A. Martins, P. L. Cederwall y L. B. Gratt. Smokes and obscurants: A health and environmental effects data base assessment: A first-order, environmental screening and ranking of Army smokes and obscurants: Phase 1 report. Office of Scientific and Technical Information (OSTI), marzo de 1985. http://dx.doi.org/10.2172/6068996.
Texto completoCook, R., S. Adams, J. Beauchamp, M. Bevelhimer, B. Blaylock, C. Brandt, C. Ford et al. Phase 1 data summary report for the Clinch River Remedial Investigation: Health risk and ecological risk screening assessment. Environmental Restoration Program. Office of Scientific and Technical Information (OSTI), diciembre de 1992. http://dx.doi.org/10.2172/10117530.
Texto completoRencz, A. N. y I. M. Kettles. Presentations and recommendations from the workshop on the role of geochemical data in environmental and human health risk assessment, Halifax, 2010. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 2011. http://dx.doi.org/10.4095/287934.
Texto completoSmyre, J. L., M. E. Hodgson, B. W. Moll, A. L. King y Yang Cheng. Daytime multispectral scanner aerial surveys of the Oak Ridge Reservation, 1992--1994: Overview of data processing and analysis by the Environmental Restoration Remote Sensing Program, Fiscal year 1995. Office of Scientific and Technical Information (OSTI), noviembre de 1995. http://dx.doi.org/10.2172/204019.
Texto completo