Tesis sobre el tema "Entanglement of Gaussian states"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte los 50 mejores tesis para su investigación sobre el tema "Entanglement of Gaussian states".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Explore tesis sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.
Buono, Daniela. "Quantumness of gaussian and non-gaussian states in the optical domain". Doctoral thesis, Universita degli studi di Salerno, 2013. http://hdl.handle.net/10556/827.
Texto completoThe Dissertation Quantumness of Gaussian and non-Gaussian states in the op- tical domain collects my personal both theoretical and experimental contribu- tions, in the context of the Quantum Information theory in continuous variables (cv). In this context, the research focused on the analysis of the quantum prop- erties of bipartite states of electromagnetic radiation. The Dissertation contains, rst, the study of the main possible quantum cor- relations between two modes of the electromagnetic eld. Particular attention has been devoted to the analysis of the di¤erent forms of non-locality present in quantum mechanics. Second, it shows the analysis of how the presence of quantum properties in bipartite states a¤ects the performance of these states, when they are used as resources in quantum protocols. In particular, the cv teleportation protocol was used as a reference to test the goodness of results. The quantum resources can be divided in two main classes: Gaussian re- sources and non-Gaussian ones. My research activity has been strucured in which way to be able to proceed, in parallel, to the analysis of both classes. Gaussian resoures.To assess the presence of entanglement in a quantum system it is possible to refer to the many criteria proposed in the literature. In the Dissertation it is reported the study of some main criteria generally used for Gaussian bipartite mixed states. This study has allowed us to establish a hierarchy very useful for the evaluation of the entanglement. Then we have dis- cussed and experimentally analyzed the e¤ects of the transmission over a lossy channel on the quantumness of bipartite Gaussian states, focusing our analysis on the states generated by a type-II optical parametric oscillator (OPO). Even- tually it is reported the study of the Bell s inequality in terms of purity and entanglement for a bipartite Gaussian state, desribed by a symmetric covari- ance matrix..It allows to investigate how the "quantumness" owned by a state, established by the violation of Bell s inequality, is related to the purity of the state and to the entanglement. Non-Gaussian resources. The study of non-Gaussian resources is mainly related to a particular class of states: the squeezed Bell states. All the analy- sis carried out to date show that these states are one of the best possible re- sources for e¢ cient BKV quantum teleportation protocol. This is con rmed by two additional theoretical tests presented in the Dissertation. In fact, squeezed Bell states maximize the violation of Bell s inequality with respect to all other (Gaussian and non-Gaussian) states obtained from the same class. So they represent the most non-local resource among all those considered (for example, the squeezed photon number states, the photon subtracted squeezed states, the photon added states, the squeezed vacuum states). Moreover, as demonstrated in the course of the Dissertation, squeezed Bell states are the best resource for teleportation of a coherent state, even after having undergone a process of en- tanglement swapping. The result is compared with that provided by the other main quantum swapped resources of the same class. As a consequence of the positive results obtained from the tests, it was designed a scheme that allows the experimental production of squeezed Bell states. It is then evaluated its experimental feasibility both in ideal and realistic conditions obtaining very encouraging results. Finally, it is dealt the study (it is at a very preliminary stage) of a non-Gaussian state produced by a sub-threshold OPO, when there are uctuations of some parameters of the optical device (amplitude and phase of the pump, etc..) at the aim to nd a new strategy for the generation of non-Gaussian resources. [edited by author]
XI n.s.
Strobel, Helmut [Verfasser] y Markus K. [Akademischer Betreuer] Oberthaler. "Fisher Information and entanglement of non-Gaussian spin states / Helmut Strobel ; Betreuer: Markus K. Oberthaler". Heidelberg : Universitätsbibliothek Heidelberg, 2016. http://d-nb.info/1180610423/34.
Texto completoGagatsos, Christos. "Gaussian deterministic and probabilistic transformations of bosonic quantum fields: squeezing and entanglement generation". Doctoral thesis, Universite Libre de Bruxelles, 2014. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/209146.
Texto completoThis interplay between phase-space and state-space representations does not represent a particular problem as long as Gaussian states (e.g. coherent, squeezed, or thermal states) and Gaussian operations (e.g. beam splitters or squeezers) are concerned. Indeed, Gaussian states are fully characterized by the first- and second-order moments of mode operators, while Gaussian operations are defined via their actions on these moments. The so-called symplectic formalism can be used to treat all Gaussian transformations on Gaussian states, including mixed states of an arbitrary number of modes, and the entropies of Gaussian states are directly linked to their symplectic eigenvalues.
This thesis is concerned with the Gaussian transformations applied onto arbitrary states of light, in which case the symplectic formalism is unapplicable and this phase-to-state space interplay becomes highly non trivial. A first motivation to consider arbitrary (non-Gaussian) states of light results from various Gaussian no-go theorems in continuous-variable quantum information theory. For instance, universal quantum computing, quantum entanglement concentration, or quantum error correction are known to be impossible when restricted to the Gaussian realm. A second motivation comes from the fact that several fundamental quantities, such as the entanglement of formation of a Gaussian state or the communication capacity of a Gaussian channel, rely on an optimization over all states, including non-Gaussian states even though the considered state or channel is Gaussian. This thesis is therefore devoted to developing new tools in order to compute state-space properties (e.g. entropies) of transformations defined in phase-space or conversely to computing phase-space properties (e.g. mean-field amplitudes) of transformations defined in state space. Remarkably, even some basic questions such as the entanglement generation of optical squeezers or beam splitters were unsolved, which gave us a nice work-bench to investigate this interplay.
In the first part of this thesis (Chapter 3), we considered a recently discovered Gaussian probabilistic transformation called the noiseless optical amplifier. More specifically, this is a process enabling the amplification of a quantum state without introducing noise. As it has long been known, when amplifing a quantum signal, the arising of noise is inevitable due to the unitary evolution that governs quantum mechanics. It was recently realized, however, that one can drop the unitarity of the amplification procedure and trade it for a noiseless, albeit probabilistic (heralded) transformation. The fact that the transformation is probabilistic is mathematically reflected in the fact that it is non trace-preserving. This quantum device has gained much interest during the last years because it can be used to compensate losses in a quantum channel, for entanglement distillation, probabilistic quantum cloning, or quantum error correction. Several experimental demonstrations of this device have already been carried out. Our contribution to this topic has been to derive the action of this device on squeezed states and to prove that it acts quite surprisingly as a universal (phase-insensitive) optical squeezer, conserving the signal-to-noise ratio just as a phase-sensitive optical amplifier but for all quadratures at the same time. This also brought into surface a paradoxical effect, namely that such a device could seemingly lead to instantaneous signaling by circumventing the quantum no-cloning theorem. This paradox was discussed and resolved in our work.
In a second step, the action of the noiseless optical amplifier and it dual operation (i.e. heralded noiseless attenuator) on non-Gaussian states has been examined. We have observed that the mean-field amplitude may decrease in the process of noiseless amplification (or may increase in the process of noiseless attenuation), a very counterintuitive effect that Gaussian states cannot exhibit. This work illustrates the above-mentioned phase-to-state space interplay since these devices are defined as simple filtering operations in state space but inferring their action on phase-space quantities such as the mean-field amplitude is not straightforward. It also illustrates the difficulty of dealing with non-Gaussian states in Gaussian transformations (these noiseless devices are probabilistic but Gaussian). Furthermore, we have exhibited an experimental proposal that could be used to test this counterintuitive feature. The proposed set-up is feasible with current technology and robust against usual inefficiencies that occur in optical experiment.
Noiseless amplification and attenuation represent new important tools, which may offer interesting perspectives in quantum optical communications. Therefore, further understanding of these transformations is both of fundamental interest and important for the development and analysis of protocols exploiting these tools. Our work provides a better understanding of these transformations and reveals that the intuition based on ordinary (deterministic phase-insensitive) amplifiers and losses is not always applicable to the noiseless amplifiers and attenuators.
In the last part of this thesis, we have considered the entropic characterization of some of the most fundamental Gaussian transformations in quantum optics, namely a beam splitter and two-mode squeezer. A beam splitter effects a simple rotation in phase space, while a two-mode squeezer produces a Bogoliubov transformation. Thus, there is a well-known phase-space characterization in terms of symplectic transformations, but the difficulty originates from that one must return to state space in order to access quantum entropies or entanglement. This is again a hard problem, linked to the above-mentioned interplay in the reverse direction this time. As soon as non-Gaussian states are concerned, there is no way of calculating the entropy produced by such Gaussian transformations. We have investigated two novel tools in order to treat non-Gaussian states under Gaussian transformations, namely majorization theory and the replica method.
In Chapter 4, we have started by analyzing the entanglement generated by a beam splitter that is fed with a photon-number state, and have shown that the entanglement monotones can be neatly combined with majorization theory in this context. Majorization theory provides a preorder relation between bipartite pure quantum states, and gives a necessary and sufficient condition for the existence of a deterministic LOCC (local operations and classical communication) transformation from one state to another. We have shown that the state resulting from n photons impinging on a beam splitter majorizes the corresponding state with any larger photon number n’ > n, implying that the entanglement monotonically grows with n, as expected. In contrast, we have proven that such a seemingly simple optical component may have a rather surprising behavior when it comes to majorization theory: it does not necessarily lead to states that obey a majorization relation if one varies the transmittance (moving towards a balanced beam splitter). These results are significant for entanglement manipulation, giving rise in particular to a catalysis effect.
Moving forward, in Chapter 5, we took the step of introducing the replica method in quantum optics, with the goal of achieving an entropic characterization of general Gaussian operations on a bosonic quantum field. The replica method, a tool borrowed from statistical physics, can also be used to calculate the von Neumann entropy and is the last line of defense when the usual definition is not practical, which is often the case in quantum optics since the definition involves calculating the eigenvalues of some (infinite-dimensional) density matrix. With this method, the entropy produced by a two-mode squeezer (or parametric optical amplifier) with non-trivial input states has been studied. As an application, we have determined the entropy generated by amplifying a binary superposition of the vacuum and an arbitrary Fock state, which yields a surprisingly simple, yet unknown analytical expression. Finally, we have turned to the replica method in the context of field theory, and have examined the behavior of a bosonic field with finite temperature when the temperature decreases. To this end, information theoretical tools were used, such as the geometric entropy and the mutual information, and interesting connection between phase transitions and informational quantities were found. More specifically, dividing the field in two spatial regions and calculating the mutual information between these two regions, it turns out that the mutual information is non-differentiable exactly at the critical temperature for the formation of the Bose-Einstein condensate.
The replica method provides a new angle of attack to access quantum entropies in fundamental Gaussian bosonic transformations, that is quadratic interactions between bosonic mode operators such as Bogoliubov transformations. The difficulty of accessing entropies produced when transforming non-Gaussian states is also linked to several currently unproven entropic conjectures on Gaussian optimality in the context of bosonic channels. Notably, determining the capacity of a multiple-access or broadcast Gaussian bosonic channel is pending on being able to access entropies. We anticipate that the replica method may become an invaluable tool in order to reach a complete entropic characterization of Gaussian bosonic transformations, or perhaps even solve some of these pending conjectures on Gaussian bosonic channels.
Doctorat en Sciences de l'ingénieur
info:eu-repo/semantics/nonPublished
Quinn, Niall. "Gaussian non-classical correlations in bipartite dissipative continuous variable quantum systems". Thesis, University of St Andrews, 2015. http://hdl.handle.net/10023/6915.
Texto completoMissori, Ricardo José. "Análise e geração de emaranhamento em sistemas de variáveis discreta e continua via átomos". [s.n.], 2009. http://repositorio.unicamp.br/jspui/handle/REPOSIP/278170.
Texto completoTese (doutorado) - Universidade Estadual de Campinas, Instituto de Fisica Gleb Wataghin
Made available in DSpace on 2018-08-14T10:42:52Z (GMT). No. of bitstreams: 1 Missori_RicardoJose_D.pdf: 12608973 bytes, checksum: 25d2abc254d2688f7a4225e0cd2bc6aa (MD5) Previous issue date: 2009
Resumo: Nesta tese, apresentamos dois resultados para a geração de emaranhamento, ambos envolvendo a interação entre átomos e radiação. Na primeira parte, propomos um esquema para geração de estados emaranhados envolvendo os estados eletrônicos de dois íons separados espacialmente, cada qual aprisionado em uma cavidade. Um átomo propagante, que cruza essas cavidades, é responsável pela geração de estados emaranhados do tipo Bell entre os dois íons. Mostramos que para tempos específicos de interação, a geração dos estados emaranhados é não-probabilística. Propostas de átomo e íons, candidatos a implementação do esquema experimental, também são apresentadas. Já segunda parte deste trabalho, investigamos um modelo para a interação de dois campos quânticos ortogonalmente polarizados com uma nuvem de átomos de quatro níveis do tipo-X. Consideramos, para nosso esquema, situações físicas onde os átomos funcionam efetivamente como sendo de dois níveis. Assim, dentro de uma aproximação linearizada do campo, nosso Hamiltoniano efetivo bilinear, que representa a interação átomos-campo, passa a depender da diferença de população entre os dois níveis do ensemble de átomos. Após uma medida condicionada nos átomos, mostramos que os dois modos do campo ficam em estados emaranhados não-Gaussianos, diferentemente do que foi considerado em alguns trabalhos recentes na literatura que abordamos. Como a compressão abaixo do limite de ruído na polarização linear pode ser usada como indicadora de emaranhamento na polarização circular, nós podemos usar a variância das quadraturas, combinada com o critério de inseparabilidade para variáveis contínuas, para complementar o nosso estudo sobre o esquema experimental.
Abstract: In this thesis, we present two results of entanglement generation, both involving atom-radiation interaction. In the first part, we consider a scheme for generation of entangled states involving electronic states of two distant ions, each one placed in a cavity. A flying atom, that crosses these cavities, is responsible for the generation of entangled states of the Bell-type between the two ions. We show that for specific times of interaction, the entangled states are generated and in a non-probabilistic way. We also present a realistic proposal of candidates for atoms and ions for an experimental implementation of this scheme. In the second part of this work, we investigate a model for the interaction of two orthogonally polarized quantum fields with a cloud of X-like four-level atoms. We consider, in our scheme, a physical situation where the atoms act effectively like two-level atoms. Thus, in a linearized approximation for the field, we derive a bilinear effective Hamiltonian representing the atom-field interaction, which depends on the difference of population between the ensemble of two-level atoms. After a conditional measurement in the atomic system, we show that the two field modes ends up in a non-Gaussian entangled states, differently from what has been considered in some recent works in the literature. Since the squeezing below the noise limit in the linear polarization can be used as an indicator of entanglement in the circular polarization, we can use the variances in the quadratures, combined with the inseparability criterion for continuum variables, to complement our study of the experimental scheme.
Doutorado
Física
Doutor em Ciências
Menu, Raphaël. "Gaussian-state approaches to quantum spin systems away from equilibrium". Thesis, Lyon, 2020. http://www.theses.fr/2020LYSEN036.
Texto completoWhat happens when a quantum many-body system is brutally driven away fromequilibrium ? Toward which kind of states does it relax and what informationcan one extract from the resulting dynamics ? Providing answers to these questionsis a challenging problem that spured the interest of a whole community ofphysicists. However, the numerical cost required to investigate the behaviour ofthese systems, particularly for large system sizes, motivated the development ofcutting-edge numerical and theoretical techniques.This thesis aims at contributing to these efforts by proposing a set of methodsbased on a representation of the systems in terms of a Gaussian field theory, withthe purpose of studying the evolution of spin systems. More specifically, thesemethods are applied to several models inspired by cold-atoms experiments simulatingthe behaviour of spin systems, with a stress on the study of localizationphenomena. Therefore, this thesis highlights the emergence of localization in systemsdevoid of disorder due to an interference effect, the so-called Aharonov-Bohmcaging; as well as a geometrically disordered quantum Ising model displaying adynamics exploring a rich spectrum ranging from balistic diffusion to anomalousdiffusion, an then localization - this last example offers a scenario richer than theone exhibited by the dynamics of free particles in a disordered medium. Finally,we explored the possibility for Gaussian approaches to describe the dynamics ofinteracting systems and their relaxation toward thermal states
Niset, Julien. "Quantum information with optical continuous variables: nonlocality, entanglement, and error correction". Doctoral thesis, Universite Libre de Bruxelles, 2008. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/210459.
Texto completoLe travail peut se diviser en deux parties complémentaires. Dans la première partie, plus fondamentale, la relation complexe qui existe entre l'intrication et la nonlocalité de la mécanique quantique est étudiée sur base des variables optiques continues. Ces deux ressources étant essentielles pour l'information quantique, il est nécessaire de bien les comprendre et de bien les caractériser. Dans la seconde partie, orientée vers des applications concrètes, le problème de la correction d'erreur à variables continues est étudié. Pouvoir transmettre et manipuler l'information sans erreurs est nécessaire au bon développemnent de l'information quantique, mais, en pratique, les erreurs sont inévitables. Les codes correcteurs d'erreurs permettent de détecter et corriger ces erreures de manière efficace.
Doctorat en Sciences de l'ingénieur
info:eu-repo/semantics/nonPublished
Gondret, Victor. "On the entanglement of quasi-particles in a Bose-Einstein Condensate". Electronic Thesis or Diss., université Paris-Saclay, 2025. http://www.theses.fr/2025UPASP005.
Texto completoThis thesis focuses on the non-separability of pairs of quasi-particles excited by parametric resonance. The experimental setup used here allows the production of a Bose-Einstein condensate of metastable helium. The use of an ultra-cold atomic gas makes it possible to reach sufficiently low temperatures to observe intrinsically quantum phenomena: the non-separability of the state. In this work, we use the condensate as a coherent reservoir to populate two momentum modes. The advantage of metastable helium is its high internal energy, which allows the electronic detection of single particles. We therefore measure the position and the time of impact of the particles after a time of flight of 308 ms, which allows us to reconstruct the in-trap momentum distribution. In the first theoretical contribution of this work, we demonstrate that measuring the two- and four-body correlation functions not only attests to, but also quantifies the non-separability of a Gaussian state. We also derive a new entanglement witness using only the two-body correlation function. In the experimental part, we improve the machine used to produce our ultra-cold gas and enhance its stability. We implement original techniques to deflect part of the atoms and avoid the saturation of our detector. These improvements allow us to observe the non-separability of the state
Nocerino, Gaetano. "Gaussian and non-Gaussian resources in Quantum Information". Doctoral thesis, Universita degli studi di Salerno, 2013. http://hdl.handle.net/10556/994.
Texto completoThis dissertation was carried out within the framework of the Quantum Information (QI). In particular, I have analyzed the main aspects: the protocol, the quantum states, the conditional measurements, and the decoherence. The protocol. I have studied the teleportation protocol, the entanglement swapping protocol, and the Bell’s inequality (which is the basis of some protocols such as the quantum cryptography). I have dealt with the maximization of the efficiency of each protocol, by acting on the generation of the appropriate quantum states. Starting from the known Squeezed Bell (SB) states that maximize the fidelity of teleportation, I have shown that even for the entanglement swapping protocol and for the violation of the Bell’s inequality, the SB states exhibit better performance than all the other continuous variable (CV) quantum states (for example squeezed vacuum states, subtracted photon squeezed states, added photon squeezed states, squeezed number states). Preparation of quantum states. I have presented an experimental scheme capable of generating, with good approximation, the SB states. I have identified a scheme that is based on conditional measures performed on ancillary quantum states. I have started to study an ideal scheme (free by inefficiencies and decoherence), obtaining the reproduction of the SB states. Then I have introduced the inefficiencies of detection, of the optical elements and of the conditional measurements. In the latter case, the scheme does not exactly reproduce the SB states, but tunable quantum states are obtained, which are very close to SB states. They exhibit a greater teleportation fidelity than all other realistic quantum states that we have analyzed. In addition, in collaboration with Prof. Salvatore Solimeno and Dr. Alberto Porzio of University of Naples "Federico II", I have studied (the work is still at a preliminary stage) the non-Gaussianity introduced by fluctuations in the pump amplitude of the Optical Parametric Oscillator(OPO) below threshold and with non-degenerate polarization. I have proved that such fluctuations lead to an increase of fidelity of teleportation with respect to the not fluctuating (and gaussian) case. Conditional Measurements. In the context of the QI, conditional measurements are used to prepare quantum states and to optimize the transfer of information, as required by the specific protocol. I propose a rather general formulation of the method of conditioning through ancillary measurements, in terms of the characteristic functions. I have considered the case of simultaneous measurements of single-photon, of homodyne detection, and of on/off type (via ideal and realistic POVM). Decoherence. The quantum properties are very sensitive to the interaction of the quantum systems with the external environment. For this reason, a part of this dissertation is devoted to analysis of the evolution of some quantum quantities under the action of the decoherence. In particular, I have studied how the effects of decoherence act on the following quantities: the purity, the quantum correlations, the content of information, the fidelity of teleportation of a coherent state, and the Bell’s inequality of a bi-partite Gaussian state that is transmitted through a realistic channel. I have added the experimental verification to the theoretical study, in collaboration with the University of Naples "Federico II" and under the guidance of Dr. Alberto Porzio and of Prof. Salvatore Solimeno. [edited by author]
XI n.s.
De, Fazio Cecilia. "Entanglement Entropy In Excited States". Master's thesis, Alma Mater Studiorum - Università di Bologna, 2018. http://amslaurea.unibo.it/15833/.
Texto completoHuang, Kun. "Architectures hybrides pour le traitement quantique de l'information". Thesis, Paris, Ecole normale supérieure, 2015. http://www.theses.fr/2015ENSU0007/document.
Texto completoThe thesis focuses on the experimental investigation of the optical hybrid approach forquantum information processing. Specifically, two traditionally separated approaches, i.e.the discrete and the continuous-variable ones, are combined in the same experiment with twodistinct quantum measurements based on photon counting (photon number) and homodynedetection (quadrature components).The optical hybrid approach is first applied to generate high-fidelity non-Gaussian states,e.g. Fock states and Schrödinger cat states, which correspond to two types of qubit encodingsused in optical quantum information. The use of high-efficiency superconducting nanowiresingle-photon detectors leads to an unprecedented preparation rate, which facilitates thesubsequent use of these states. For instance, the two types of states are combined to generatefor the first time a hybrid entanglement between particle-like and wave-like optical qubits, aswell as the extension to hybrid qutrit entanglement. These novel resources may pave the wayto implement heterogeneous networks where discrete and continuous-variable operations andtechniques can be efficiently combined. Additionally, we also experimentally demonstratefor the first time the so-called squeezing-induced micro-macro entangled states.During this PhD, efforts have also been dedicated to implement a high-efficiency andlow-noise frequency up-conversion system based on two synchronized fiber lasers. Suchquantum frequency converter not only permits to extend the spectra of quantum statesto difficultly accessible wavelengths with current technology, but also constitutes a highperformancephoton detector especially in the infrared regime. Based on the conversionsystem, several applications are demonstrated, such as infrared photon-number-resolvingdetection, and few-photon-level infrared imaging
Wellens, Thomas. "Entanglement and control of quantum states". Diss., [S.l.] : [s.n.], 2002. http://edoc.ub.uni-muenchen.de/archive/00000081.
Texto completoAulbach, Martin. "Classification of entanglement in symmetric states". Thesis, University of Leeds, 2011. http://etheses.whiterose.ac.uk/1923/.
Texto completoFerreyrol, Franck. "Manipulation de champs quantiques mésoscopiques". Phd thesis, Université Paris Sud - Paris XI, 2011. http://tel.archives-ouvertes.fr/tel-00585534.
Texto completoMcLaren, Melanie. "Tailoring quantum entanglement of orbital angular momentum". Thesis, Stellenbosch : Stellenbosch University, 2014. http://hdl.handle.net/10019.1/95868.
Texto completoENGLISH ABSTRACT: High-dimensional quantum entanglement offers an increase in information capacity per photon; a highly desirable property for quantum information processes such as quantum communication, computation and teleportation. As the orbital angular momentum (OAM) modes of light span an infinite-dimensional Hilbert space, they have become frontrunners in achieving entanglement in higher dimensions. In light of this, we investigate the potential of OAM entanglement of photons by controlling the parameters in both the generation and measurement systems. We show the experimental procedures and apparatus involved in generating and measuring entangled photons in two-dimensions. We verify important quantum tests such as the Einstein, Podolsky and Rosen (EPR) paradox using OAM and angle correlations, as well as a violation of a Bell-type inequality. By performing a full state tomography, we characterise our quantum state and show we have a pure, highly entangled quantum state. We demonstrate that this method can be extended to higher dimensions. The experimental techniques used to generate and measure OAM entanglement place an upper bound on the number of accessible OAM modes. As such, we investigate new methods in which to increase the spiral bandwidth of our generated quantum state. We alter the shape of the pump beam in spontaneous parametric down-conversion and demonstrate an effect on both OAM and angle correlations. We also made changes to the measurement scheme by projecting the photon pairs into the Bessel-Gaussian (BG) basis and demonstrate entanglement in this basis. We show that this method allows the measured spiral bandwidth to be optimised by simply varying the continuous radial parameter of the BG modes. We demonstrate that BG modes can be entangled in higher dimensions compared with the commonly used helical modes by calculating and comparing the linear entropy and fidelity for both modes. We also show that quantum entanglement can be accurately simulated using classical light using back-projection, which allows the study of projective measurements and predicts the strength of the coincidence correlations in an entanglement experiment. Finally, we make use of each of the techniques to demonstrate the effect of a perturbation on OAM entanglement measured in the BG basis. We investigate the self-healing property of BG beams and show that the classical property is translated to the quantum regime. By calculating the concurrence, we see that measured entanglement recovers after encountering an obstruction.
AFRIKAANSE OPSOMMING: Hoë-dimensionele kwantumverstrengeldheid bied ’n toename in inligtingskapasiteit per foton. Hierdie is ’n hoogs wenslike eienskap vir kwantum inligting prosesse soos kwantum kommunikasie, berekening en teleportasie. Omdat die orbitale hoekmomentum (OAM) modusse van lig ’n oneindig dimensionele Hilbertruimte beslaan, het dit voorlopers geword in die verkryging van verstrengeling in hoër dimensies. In die lig hiervan, ondersoek ons die potensiaal van OAM verstrengeling van fotone deur die parameters in beide die generering en meting stelsels te beheer. Ons toon die eksperimentele prosedures en apparaat wat betrokke is by die generering en die meet van verstrengelde fotone in twee dimensies. Ons verifieer kwantumtoetse, soos die Einstein, Podolsky en Rosen (EPR) paradoks vir OAM en die hoekkorrelasies, sowel as ’n skending van ’n Bell-tipe ongelykheid. Deur middel van ’n volledige toestand tomografie, karakteriseer ons die kwantum toestand en wys ons dat dit ’n suiwer, hoogs verstrengel kwantum toestand is. Ons toon ook dat hierdie metode uitgebrei kan word na hoër dimensies. Die eksperimentele tegnieke wat tydens die generasie en meet van OAM verstrengeling gebruik is, plaas ’n bogrens op die aantal toeganklik OAM modusse. Dus ondersoek ons nuwe metodes om die spiraal bandwydte van ons gegenereerde kwantum toestand te verhoog. Ons verander die vorm van die pomp bundel in spontane parametriese af-omskakeling en demonstreer die uitwerking daarvan op beide OAM en die hoekkorrelasies. Ons het ook veranderinge aan die meting skema gemaak deur die foton pare op die Bessel-Gauss (BG) basis te projekteer. Ons wys dat hierdie metode die gemeetde spiraal bandwydte kan optimeer deur eenvoudig die kontinue radiale parameter van die BG modes te verander. Ons demonstreer dat BG modusse verstrengel kan word in hoër dimensies as die heliese modusse, wat algemeen gebruik word, deur berekeninge te maak en te vergelyk met lineêre entropie en vir beide modusse. Ons wys ook dat kwantumverstrengling akkuraat nageboots kan word, met behulp van die klassieke lig terug-projeksie, wat die studie van projeksie metings toelaat en voorspel die krag van die saamval korrelasies in ’n verstrengeling eksperiment. Ten slotte, gebruik ons elk van die tegnieke om die effek van ’n storing op OAM verstrengling wat in die BG basis gemeet is, te demonstreer. Ons ondersoek die self-genesingseienskap van BG bundels en wys dat die klassieke eienskap vertaal na die kwantum-gebied. Deur die berekening van die konkurrensie (concurrence), sien ons dat die gemeetde verstrengeling herstel word nadat ’n obstruksie ondervind is.
Xiao, Jiayang. "Investigating Entanglement Transformations in Three-qubit States". OpenSIUC, 2015. https://opensiuc.lib.siu.edu/theses/1752.
Texto completoSköld, Jennie. "Ordering of Entangled States for Different Entanglement Measures". Thesis, Karlstads universitet, Institutionen för ingenjörsvetenskap och fysik, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:kau:diva-32078.
Texto completoKvantmekanisk sammanflätning är ett fenomen som visat stor potential för framtida tekniska tillämpningar, men för att kunna använda oss av detta krävs att vi hittar lämpliga modeller att mäta omfattningen av sammanflätningen hos ett givet tillstånd. Detta har visat sig vara en svår uppgift, då de modeller som finns idag är otillräckliga när det gäller att konsekvent avgöra till vilken grad olika tillstånd är sammanflätade. Exempelvis kan en modell visa att ett tillstånd är mer sammanflätat än ett annat, medan en annan modell kan visa på motsatsen - att det första tillståndet är mindre sammanflätat än det andra. En möljig orsak kan ligga i de olika modellernas deifnition, då vissa utgår från operativa definitioner, medan andra grundas på matematiska, abstrakta villkor. I denna uppsats tittar vi lite närmre på några av de mätmodeller som finns, och hittar exempel på tillstånd som uppvisar olika ordning av sammanflätningsgrad beroende på vilken modell som används.
Shackerley-Bennett, Uther. "The control of Gaussian quantum states". Thesis, University College London (University of London), 2018. http://discovery.ucl.ac.uk/10040959/.
Texto completoChrzanowski, Helen Mary. "Extracting quantum correlations from gaussian states". Phd thesis, Canberra, ACT : The Australian National University, 2014. http://hdl.handle.net/1885/14511.
Texto completoKintas, Seckin. "Entanglement Transformations". Master's thesis, METU, 2009. http://etd.lib.metu.edu.tr/upload/3/12611363/index.pdf.
Texto completoMarkham, Damian James Harold. "Local distinguishability, entanglement and mixedness of quantum states". Thesis, Imperial College London, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.408038.
Texto completoBartley, Tim J. "Experimental entanglement distillation of continuous-variable optical states". Thesis, University of Oxford, 2014. http://ora.ox.ac.uk/objects/uuid:969147ec-cf16-4c03-9c5b-14c0673c5624.
Texto completoMORENO, FILHO Marcos George Magalhães. "Dicke states: production from EPR pairs and entanglement analysis". Universidade Federal de Pernambuco, 2017. https://repositorio.ufpe.br/handle/123456789/27714.
Texto completoApproved for entry into archive by Alice Araujo (alice.caraujo@ufpe.br) on 2018-11-22T21:53:49Z (GMT) No. of bitstreams: 2 license_rdf: 811 bytes, checksum: e39d27027a6cc9cb039ad269a5db8e34 (MD5) TESE Marcos George Moreno Filho.pdf: 1584536 bytes, checksum: 4022957ffb1932dc79a9c6e4688a3f86 (MD5)
Made available in DSpace on 2018-11-22T21:53:49Z (GMT). No. of bitstreams: 2 license_rdf: 811 bytes, checksum: e39d27027a6cc9cb039ad269a5db8e34 (MD5) TESE Marcos George Moreno Filho.pdf: 1584536 bytes, checksum: 4022957ffb1932dc79a9c6e4688a3f86 (MD5) Previous issue date: 2017-08-11
CNPq
In this work we analyze the problem of creation of Dicke states through the process of entanglement swapping. First we deal with the tripartite case, presenting a deterministic protocol based on a source of EPR pairs. Still in this topic we show that it is possible to create perfect W states (tripartite Dicke states), even when the EPR source does not yield maximally entangled pairs, with a finite success rate. Subsequently we cope with the n-partite case, for which we present a probabilistic procedure, also employing EPR-pair sources, where the output, whenever successful, is perfect. The analysis of this protocol reveals a critical transition for the success probability, which is characterized in the framework of Landau theory of second order phase-transitions. Finally we proceed with a study of the entanglement between bipartitions of systems described by Dicke states, which allows for the implementation of entanglement witnesses. For each Dicke state we present a highly sensitive witness.
Neste trabalho analisamos o problema de criação de estados de Dicke através de um processo de entanglement swapping. Inicialmente tratamos o caso tripartite, para o qual apresentamos um protocolo determinístico empregando uma fonte de estados EPR. Ainda nesse tópico, mostramos que, com uma taxa de sucesso finita, é possível produzir estados W (estados de Dicke tripartite) perfeitos mesmo quando utilizamos uma fonte de estados EPR não maximamente emaranhados. Em seguida consideramos o caso de n partes, para o qual apresentamos um procedimento probabilístico, também fazendo uso de uma fonte de estados EPR, em que o resultado, sempre que bem-sucedido, é perfeito. A análise deste protocolo revela uma transição crítica, que é caracterizada no contexto da teoria de transição de fase de segunda ordem de Landau. Por ultimo fazemos um estudo do emaranhamento entre bipartições de sistemas descritos por estados de Dicke, que nos permite a implementação de testemunhas de emaranhamento. Para cada estado de Dicke, apresentamos uma testemunha com alta sensibilidade.
Hughes, Catherine. "Engineering and characterisation of quantum non-Gaussian states". Thesis, Imperial College London, 2015. http://hdl.handle.net/10044/1/31998.
Texto completoKorbicz, Jarosław. "Quantumness of states from positive P-representations to entanglement tests /". [S.l.] : [s.n.], 2006. http://deposit.ddb.de/cgi-bin/dokserv?idn=981532470.
Texto completoSciara, Stefania. "INVESTIGATION, REALIZATION, AND ENTANGLEMENT CHARACTERIZATION OF COMPLEX OPTICAL QUANTUM STATES". Doctoral thesis, Università degli Studi di Palermo, 2020. http://hdl.handle.net/10447/396237.
Texto completoBrivio, D. "A NOVEL SOURCE OF ENTANGLED STATES FOR QUANTUM INFORMATION APPLICATIONS". Doctoral thesis, Università degli Studi di Milano, 2012. http://hdl.handle.net/2434/168722.
Texto completoTan, Si Hui Ph D. Massachusetts Institute of Technology. "Quantum state discrimination with bosonic channels and Gaussian states". Thesis, Massachusetts Institute of Technology, 2010. http://hdl.handle.net/1721.1/79253.
Texto completoCataloged from PDF version of thesis.
Includes bibliographical references (p. 161-166).
Discriminating between quantum states is an indispensable part of quantum information theory. This thesis investigates state discrimination of continuous quantum variables, focusing on bosonic communication channels and Gaussian states. The specific state discrimination problems studied are (a) quantum illumination and (b) optimal measurements for decoding bosonic channels. Quantum illumination is a technique for detection and imaging which uses entanglement between a probe and an ancilla to enhance sensitivity. I shall show how entanglement can help with the discrimination between two noisy and lossy bosonic channels, one in which a target reflects back a small part of the probe light, and the other in which all probe light is lost. This enhancement is obtained even though the channels are entanglement-breaking. The main result of this study is that, under optimum detection in the asymptotic limit of many detection trials, 6 dB of improvement in the error exponent can be achieved by using an entangled state as compared to a classical state. In the study of optimal measurements for decoding bosonic channels, I shall present an alternative measurement to the pretty-good measurement for attaining the classical capacity of the lossy bosonic channel given product coherent-state inputs. This new measurement has the feature that, at each step of the measurement, only projective measurements are needed. The measurement is a sequential one: the number of steps required is exponential in the code length, and the error rate of this measurement goes to zero in the limit of large code length. Although not physically practical in itself, this new measurement has a simple physical interpretation in terms of collective energy measurements, and may give rise to an implementation of an optimal measurement for lossy bosonic channels. The two problems studied in my thesis are examples of how state discrimination can be useful in solving problems by using quantum mechanical properties such as entanglement and entangling measurements.
by Si Hui Tan.
Ph.D.
Bohnet-Waldraff, Fabian. "Entanglement and Quantumness - New numerical approaches -". Thesis, Université Paris-Saclay (ComUE), 2017. http://www.theses.fr/2017SACLS318/document.
Texto completoThe main topic of this compilation thesis is the investigation of multipartite entanglement of finite dimensional systems. We developed a numerical algorithm that detects if a multipartite state is entangled or separable in a finite number of steps of a semi-definite optimization task. This method is an extension of previously known semi-definite methods, which are inconclusive when the state is separable. In our case, if the state is separable, an explicit decomposition into a mixture of separable states can be extracted. This was achieved by mapping the entanglement problem onto the mathematically well studied truncated moment problem.Additionally, a new way of writing the partially transposed state for symmetric multi-qubit states was developed which simplifies many results previously known in entanglement theory. This new way of writing the partial transpose criterion unifies different interpretations and alternative formulations of the partial transpose criterion and it is also a part in the aforementioned semi-definite algorithm.The geometric properties of entangled symmetric states of two qubits were studied in detail: We could answer the question of how far a given pure state is from the convex hull of symmetric separable states, as measured by the Hilbert-Schmidt distance, by giving an explicit formula for the closest separable symmetric state. For mixed states we could provide a numerical upper and analytical lower bound for this distance.For a larger number of qubits we investigated the ball of absolutely classical states, i.e.~symmetric multi-qubit states that stay separable under any unitary transformation. We found an analytical lower bound for the radius of this ball around the maximally mixed symmetric state and gave a numerical upper bound on this radius, by searching for an entangled state as close as possible to the maximally mixed symmetric state.The tensor representation of a symmetric multi-qubit state, or spin-$j$ state, allowed us to study entanglement properties based on the spectrum of the tensor via tensor eigenvalues. The definiteness of this tensor relates to the entanglement of the state it represents and, hence, the smallest tensor eigenvalue can be used to detect entanglement. However, the tensor eigenvalues are more difficult to determine than the familiar matrix eigenvalues which made the investigation computationally more challenging.The relationship between the value of the smallest tensor eigenvalue and the amount of entanglement in the state was also investigated. It turned out that they are strongly correlated for small system sizes, i.e.~for up to six qubits. However, to investigate this correlation we needed an independent way to gauge the amount of entanglement of a state and in order to do so we improved existing numerical methods to determine the distance of a state to the set of separable symmetric states, using a combination of linear and quadratic programming.The tensor representation of symmetric multi-qubit states was also used to formally define a new tensor class of regularly decomposable tensors that corresponds to the set of separable symmetric multi-qubit states
Parker, Ryan Charles. "A loss resilient entanglement swapping protocol using non-classical states of light". Thesis, University of York, 2018. http://etheses.whiterose.ac.uk/22822/.
Texto completoRai, Suranjana, Jagdish Rai y Andreas Cap@esi ac at. "Group--Theoretical Structure of the Entangled States of N Identical". ESI preprints, 2000. ftp://ftp.esi.ac.at/pub/Preprints/esi904.ps.
Texto completoAlkus, Umit. "Transformations Of Entangled Mixed States Of Two Qubits". Master's thesis, METU, 2013. http://etd.lib.metu.edu.tr/upload/12615416/index.pdf.
Texto completoSchwemmer, Christian Verfasser] y Harald [Akademischer Betreuer] [Weinfurter. "Efficient tomography and entanglement detection of multiphoton states / Christian Schwemmer. Betreuer: Harald Weinfurter". München : Universitätsbibliothek der Ludwig-Maximilians-Universität, 2015. http://d-nb.info/1082504971/34.
Texto completoJizan, Iman. "Manipulation and characterisation of two photon spectral correlation states in nonlinear devices". Thesis, The University of Sydney, 2016. http://hdl.handle.net/2123/15751.
Texto completoGachechiladze, Mariami [Verfasser] y Otfried [Gutachter] Gühne. "Quantum hypergraph states and the theory of multiparticle entanglement / Mariami Gachechiladze ; Gutachter: Otfried Gühne". Siegen : Universitätsbibliothek der Universität Siegen, 2019. http://d-nb.info/1199610976/34.
Texto completoLee, Yongjeong. "Gaussian density of states driven numerical modeling of organic field-effect transistors". Thesis, Institut polytechnique de Paris, 2020. http://www.theses.fr/2020IPPAX043.
Texto completoAlthough the device physics of organic field-effect transistors (OFETs) has been widely studied, the analysis with energetic distribution of the density-of-states (DOS) is still lacking in spite of the disordered nature of organic semiconductors. Because charge transport and injection take place at the Gaussian DOS, this distinctive energetic structure of organic semiconductors could make the charge-accumulation process, and hence the device operation, different. This thesis is dedicated to understanding the effect of Gaussian DOS on device parameters of OFETs, the threshold voltage, charge-carrier mobility and injection barrier via numerical finite-element based 2D simulations and experimental validation. The threshold voltage is comprehended by the charge trapping into the secondary Gaussian trap DOS as well as the intrinsic Gaussian DOS. We show that the overlap of two Gaussian DOSs due to the disorder induces specific threshold behaviors of OFETs. Second, the hopping transport is studied via Gaussian disordered model (GDM) on random spatial sites of organic semiconductors. This model can offer a precise result over GDM with cubic lattice. Also, we propose a correct parametrization of the model for wide range of materials from polymers to small molecules. Lastly, charge-based and transport-based injection barrier are studied and compared with Gaussian DOS. The advantages and limits of each model are evaluated
Healey, Richard. "Quantum States as Objective Informational Bridges". Springer, 2015. http://hdl.handle.net/10150/623074.
Texto completoMarchisio, Pier Paolo. "Analysis of the dephasing and entanglement properties of few-particle states in quantum dot structures". Thesis, University of York, 2011. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.547336.
Texto completoSchaffry, Marcus C. "Creation and manipulation of quantum states in nanostructures". Thesis, University of Oxford, 2011. http://ora.ox.ac.uk/objects/uuid:3d38fd34-041a-45be-aee0-2038d94b31ed.
Texto completoMahmud, Md Tareq. "Studies of the Local Density of States for Different Arrangements of Gaussian Deformations". Ohio University / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1543313429495373.
Texto completoJabbour, Michael. "Bosonic systems in quantum information theory: Gaussian-dilatable channels, passive states, and beyond". Doctoral thesis, Universite Libre de Bruxelles, 2018. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/272099.
Texto completoLe formalisme symplectique appliqué à la représentation des systèmes bosoniques dans l'espace des phases donne accès à un outil mathématique puissant pour la caractérisation des états gau-ssiens et transformations gaussiennes. Les protocoles d'information quantique impliquant ces derniers sont d'ailleurs très bien compris d'un point de vue théorique. Toutefois, il s'est avéré clair durant ces dernières années que l'utilisation de ressources non-gaussiennes est nécessaire afin d'effectuer des tâches cruciales de traitement de l'information. En effet, certaines tâches — telles que la distillation d’intrication quantique, le codage quantique ou encore le calcul quantique — impliquant des états gaussiens ne peuvent être effectuées avec des transformations gaussiennes. Dans la première partie de cette thèse, nous développons une nouvelle méthode basée sur la fonction génératrice d'une suite qui donne lieu à une description élégante d'objets intrinsèquement non-gaussiens. Se basant sur la fonction génératrice des éléments de matrice d'unitaires gaussiens dans la base de Fock, notre approche donne accès aux probabilités de transition multi-photon via des équations de récurrence étonnamment simples. La méthode est développée pour des unitaires gaussiens produisant des couplages linéaires passifs et actifs entres deux modes bosoniques. Elle prédit un terme d'interférence destructive qui généralise l'effet Hong-Ou-Mandel pour plus de deux photons indistinguables pénétrant dans un diviseur de faisceau équilibré. De plus, elle met en évidence un effet inattendu de suppression de deux photons dans un amplificateur paramétrique optique de gain 2. Cette suppression résulte de l’indistinguabilité entre les paires de photons d’entrée et de sortie. Finalement, nous étendons notre méthode à des transformations de Bogoliubov agissant sur un nombre de modes arbitraire. Dans la seconde partie de cette thèse, nous introduisons une classe de canaux quantiques bosoniques gaussiens-dilatables (caractérisés par un unitaire gaussien dans leur ``Stinespring dilation") appelés canaux à environnement passif. Ces canaux sont intéressants du point de vue de la thermodynamique quantique puisqu’ils correspondent au couplage d’un système bosonique avec un environnement bosonique qui est passif dans la base de Fock (en d’autres termes, il est impossible d’en extraire de l’énergie avec des transformations unitaires), suivi du rejet de l’environnement. Grâce à la fonction génératrice, nous fournissons une description de ces transformations en termes de canaux quantiques bosoniques gaussiens limités par le bruit du vide. Nous introduisons ensuite une nouvelle relation de pré-ordre appelé ``majorization" de Fock, qui coïncide avec la ``majorization" usuelle pour les états passifs mais induit une autre relation en terme du nombre moyen de bosons, connectant ainsi les concepts d’énergie et de désordre d’un état quantique. Dans ce contexte, nous prouvons des propriétés variées de la ``majorization" de Fock et montrons en particulier que cette dernière peut être interprétée comme une relation indiquant l’existence d’une transformation d’amplification entre deux états quantiques. Cette nouvelle relation de pré-ordre s’avère appropriée dans le contexte des canaux bosonique à environnement passif. En effet, nous montrons que ces canaux conservent la ``majorization" de Fock, de sorte que n’importe quels deux états d’entrée obéissant une relation de ``majorization" de Fock sont transformés en états de sortie vérifiant une relation similaire. En particulier, cela implique que les canaux à environnement passif préservent la ``majorization" pour l'ensemble des états passifs de l’oscillateur harmonique. Les conséquences de la préservation de la ``majorization" sont examinées dans le contexte de la ``entropy photon-number inequality". Étant indépendants de la nature spécifique du système étudié, la plupart de nos résultats peuvent être généralisés à d’autres systèmes et hamiltoniens quantiques, donnant lieu à de nouveaux outils qui pourraient s’avérer utiles en théorie de l’information quantique. Dans la dernière partie de notre thèse, nous mettons en place une théorie de l’activité locale pour les système bosoniques. Nous introduisons une notion de distance en terme d'activité locale et la comparons avec le travail qui peut être extrait d'un état quantique avec des unitaires locaux assistés par des unitaires globaux passifs. Le but à long terme est de se baser sur cette théorie afin de connecter les domaines des canaux bosoniques à variables continues et de la thermodynamique quantique.
Doctorat en Sciences de l'ingénieur et technologie
info:eu-repo/semantics/nonPublished
Bonato, Christian. "Generation, characterization and applications of optical entangled states". Doctoral thesis, Università degli studi di Padova, 2008. http://hdl.handle.net/11577/3426742.
Texto completoNordling, Emil. "Generation of the Bound Entangled Smolin State and Entanglement Witnesses for Low-Dimensional Unitary Invariant States". Thesis, Uppsala University, Theoretical Physics, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-130039.
Texto completoQuantum entanglement is employed as a resource throughout quantum information science. However, before entanglement can be put to intelligent use, the issues of its production and detection must be considered. This thesis proposes four schemes for producing the bound entangled Smolin state. Three of these schemes produce the Smolin state by means of general quantum gates acting on different initial states - an all-zero state, a GHZ-state and two combined Bell states. The fourth scheme is based on one-qubit operations acting on two-photon states produced by SPDC. Furthermore, a maximum overlap entanglement witness detecting entanglement in the Smolin state is derived. This witness is measurable in three measurement settings with the maximal noise tolerance p=2/3. Lastly, simplified entanglement witnesses for the 4-, 6- and 8-qubit unitary invariant states are derived. These witnesses are measurable in three measurement settings with noise tolerances p=0.1802..., p=0.1502... and p=0.0751..., respectively.
Huber, Felix Michael [Verfasser]. "Quantum states and their marginals : from multipartite entanglement to quantum error-correcting codes / Felix Michael Huber". Siegen : Universitätsbibliothek der Universität Siegen, 2018. http://d-nb.info/1154308545/34.
Texto completoHuber, Felix [Verfasser]. "Quantum states and their marginals : from multipartite entanglement to quantum error-correcting codes / Felix Michael Huber". Siegen : Universitätsbibliothek der Universität Siegen, 2018. http://d-nb.info/1154308545/34.
Texto completoCole, Richard M. "Entanglement properties and correlations of certain one-dimensional magnets out of equilibrium using Matrix Product States". Thesis, Loughborough University, 2016. https://dspace.lboro.ac.uk/2134/25369.
Texto completoAsenbeck, Beate Elisabeth. "Advancing Non-Gaussian states and measurements - an experimental test bed for heterogeneous quantum networks". Electronic Thesis or Diss., Sorbonne université, 2024. https://accesdistant.sorbonne-universite.fr/login?url=https://theses-intra.sorbonne-universite.fr/2024SORUS167.pdf.
Texto completoThis thesis focuses on the creation and manipulation of Non-Gaussian states with the goal of testing emerging heterogeneous quantum networks. These networks are envisioned to host multiple physical platforms, that are connected by optical communication lines. The optical states used for this communication will have to be adapted to the encoding of the physical platform they connect to, leading to a variety of possible encoding strategies. In this work, we develop criteria to test the quality of different encodings and benchmark tools that ensure faithful information transfer. Moreover, we show that multiple encodings can simultaneously be used in the same quantum network without losing their quantum properties through conversion. We use high-quality optical parametric oscillators, producing single- or two-mode squeezed states. Together with heralding via superconducting nanowire single-photon detectors, we create two different optical encodings representing a two-level system and a harmonic oscillator. The two-level system corresponds to superpositions of photon-number excitations, while the harmonic oscillator state translates to optical Schrödinger cats. By creating entanglement between those two different encodings, its use in network protocols is possible. Network protocols are intrinsically limited by the success rate and fidelity of Bell-state measurements. We present an improvement in output state fidelity and projectivity of an all-optical linear Bell-state measurement by combining single photon detection with field quadrature selection. Employing hybrid entanglement together with this hybrid Bell-state measurement enables a two-level input qubit to be converted into its harmonic oscillator counterpart in a teleportation-based setup. After thorough analysis of the results of the converter experiment, we develop a criterion to judge the Non-Gaussianity of quantum coherences. This criterion is applied to two different experimental two-level systems. Finally, a stimulative study of the possible generation of error-correctable Non-Gaussian states points the way towards the future of this experiment. This work promotes the use of multiple encodings in quantum networks and advances measurements and state creation methods that expand the capability of optical systems for quantum communication
Chakhmakhchyan, Levon. "Entangled states and coherent interaction in resonant media". Thesis, Dijon, 2014. http://www.theses.fr/2014DIJOS026/document.
Texto completoThe entanglement features of some solid state materials, as well as of particular systems of interacting atoms and fields are analyzed. A detailed investigation of the rich phase structure of low dimensional spin models, describing the natural mineral azurite and copper based coordination compounds, has revealed regimes with the most robust entanglement behavior. Using the dynamical system approach, the phase structure of some classical models on hierarchical (recursive) lattices has been also studied and, for the first time, the transition between chaotic and periodic regimes by means of tangent bifurcation has been detected.A detailed description of entanglement properties of three atoms trapped in a cavity within the dispersive limit is presented. A relatively simple tunability of the atomic interaction strength of the above system and its close relation to the problems of frustrated magnetism is shown. Furthermore, the propagation effects of two intense laser pulses in a medium of [lambda] atoms with unequal oscillator strengths are investigated. Obtained results are crucial in some problems of quantum information theory, as, e.g., in the analysis of population transfer mechanism in media possessing the above properties. Finally, the dissipation effects in a recently proposed compact continuous-variable entanglement distillation protocol have been analyzed. Despite additional constraints on the parameters of the protocol, the discussed entanglement distillation scheme in quantum memories is still possible to implement within emerging technologies
Nogueira, Keuliane da Silva. "Estudo da polarizaÃÃo quÃntica e do emaranhamento de estados coerentes de fÃtons adicionados". Universidade Federal do CearÃ, 2012. http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=11150.
Texto completoPolarization has been used extensively in quantum information processing, and quantum entanglement is essential to many areas of research, including quantum computing. Here we investigate the degree of polarization and the entanglement of a family of quantum states known as photon-added entangled coherent states. Such states could serve as means of entanglement distribution and quantum key distribution. Using the quantum Stokes parameters and the Q function, we demonstrated that, in general, the polarization of a superposition of two two-mode photon-added coherent states increases significantly with the number of added photons. And using the concurrence, we showed that the amount of entanglement in this kind of superposition presents a behavior that is dependent on whether or not the number of added photons on each mode is the same.
Nyamushosho, Robert Tendai. "States, agency, and power on the ‘peripheries': exploring the archaeology of the later Iron Age societies in precolonial Mberengwa, CE 1300-1600s". Doctoral thesis, Faculty of Science, 2021. http://hdl.handle.net/11427/33942.
Texto completo