Literatura académica sobre el tema "ENERGY MOLECULES"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "ENERGY MOLECULES".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "ENERGY MOLECULES"
Willich, Marcel M., Lucas Wegener, Johannes Vornweg, Manuel Hohgardt, Julia Nowak, Mario Wolter, Christoph R. Jacob y Peter Jomo Walla. "A new ultrafast energy funneling material harvests three times more diffusive solar energy for GaInP photovoltaics". Proceedings of the National Academy of Sciences 117, n.º 52 (14 de diciembre de 2020): 32929–38. http://dx.doi.org/10.1073/pnas.2019198117.
Texto completoYu, Chang Feng. "A Novel High Precision Analytic Potential Function for Diatomic Molecules". Key Engineering Materials 645-646 (mayo de 2015): 313–18. http://dx.doi.org/10.4028/www.scientific.net/kem.645-646.313.
Texto completoBorodin, Dmitriy, Igor Rahinov, Pranav R. Shirhatti, Meng Huang, Alexander Kandratsenka, Daniel J. Auerbach, Tianli Zhong et al. "Following the microscopic pathway to adsorption through chemisorption and physisorption wells". Science 369, n.º 6510 (17 de septiembre de 2020): 1461–65. http://dx.doi.org/10.1126/science.abc9581.
Texto completoMATSUI, A. H., M. TAKESHIMA, K. MIZUNO y T. AOKI-MATSUMOTO. "PHOTOPHYSICAL OVERVIEW OF EXCITATION ENERGY TRANSFER IN ORGANIC MOLECULAR ASSEMBLIES — A ROUTE TO STUDY BIO-MOLECULAR ARRAYS —". International Journal of Modern Physics B 15, n.º 28n30 (10 de diciembre de 2001): 3857–60. http://dx.doi.org/10.1142/s0217979201008846.
Texto completoMehboob, Muhammad Yasir, Muhammad Usman Khan, Riaz Hussain, Rafia Fatima, Zobia Irshad y Muhammad Adnan. "Designing of near-infrared sensitive asymmetric small molecular donors for high-efficiency organic solar cells". Journal of Theoretical and Computational Chemistry 19, n.º 08 (18 de septiembre de 2020): 2050034. http://dx.doi.org/10.1142/s0219633620500340.
Texto completoMishra, Mirtunjai, Narinder Kumar, Khem Thapa, B. S. Rawat, Reena Dhyani, Devendra Singh y Devesh Kumar. "Physical, chemical, optical and insulating properties of alkyl benzoic acid derivatives liquid crystal due to extension alkyl chain (CNH2N+1) length: A DFT study". Kragujevac Journal of Science, n.º 45 (2023): 21–28. http://dx.doi.org/10.5937/kgjsci2345021m.
Texto completoSivanathan, M. y B. Karthikeyan. "Computational Studies of Self Assembled 3,5 Bis(Tri Fluoro Methyl) Benzyl Amine Phenyl Alanine Nano Tubes". Materials Science Forum 1070 (13 de octubre de 2022): 105–13. http://dx.doi.org/10.4028/p-ftw4x6.
Texto completoJungclas, Hartmut, Viacheslav V. Komarov, Anna M. Popova y Lothar Schmidt. "Pyrene Fluorescence in Nanoaggregates Irradiated by IR Photons". Zeitschrift für Naturforschung A 69, n.º 12 (1 de diciembre de 2014): 629–34. http://dx.doi.org/10.5560/zna.2014-0069.
Texto completoGajdoš, Ján y Tomáš Bleha. "Stability of molecular aggregates of hydrocarbons with all-trans chains and translation of the molecules". Collection of Czechoslovak Chemical Communications 50, n.º 7 (1985): 1553–64. http://dx.doi.org/10.1135/cccc19851553.
Texto completoLu, Peifen, Junping Wang, Hui Li, Kang Lin, Xiaochun Gong, Qiying Song, Qinying Ji et al. "High-order above-threshold dissociation of molecules". Proceedings of the National Academy of Sciences 115, n.º 9 (13 de febrero de 2018): 2049–53. http://dx.doi.org/10.1073/pnas.1719481115.
Texto completoTesis sobre el tema "ENERGY MOLECULES"
Hoffmeyer, Ruth Ellen. "High-energy electron scattering from molecules". Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1998. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp02/NQ35471.pdf.
Texto completoRawi, Zaid. "Rotational energy transfer in polyatomic molecules". Thesis, University of Sussex, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.390073.
Texto completoPounds, Andrew J. "A generalized discrete dynamical search method for locating minimum energy molecular geometries". Diss., Georgia Institute of Technology, 1994. http://hdl.handle.net/1853/27144.
Texto completoBall, Christopher D. "Rotational energy transfer in low temperature molecules /". The Ohio State University, 1998. http://rave.ohiolink.edu/etdc/view?acc_num=osu1487951214940079.
Texto completoRempe, Susan Lynne Beamis. "Potential energy surfaces for vibrating hexatomic molecules /". Thesis, Connect to this title online; UW restricted, 1998. http://hdl.handle.net/1773/8536.
Texto completoShi, Yuanyuan. "Materials and molecules for pollution free clean energy". Doctoral thesis, Universitat Rovira i Virgili, 2018. http://hdl.handle.net/10803/664725.
Texto completoLa combustión de los combustibles fósiles ha causado problemas medioambientales y energéticos a nivel mundial, lo que influye en la salud y las actividades humanas. Con la motivación de contribuir para resolver estos problemas, hemos realizado una serie de investigaciones para explorar materiales y moléculas para la generación de energía libre de contaminación, como es la energía solar convertida en hidrógeno que propone esta tesis. Hemos analizado estadísticamente las partículas contaminantes en el aire, partículas de PM2.5, las cuales indican que los agregados de hollín ricos en carbono muestran una adhesividad y agregación muy altas. Más del 50% de las partículas PM2.5 interactúan fuertemente con el sustrato a través de una capa muy delgada (<10 nm) de trazas oscura la cual es muy estable incluso bajo estrés mecánico y está compuesta de metales alcalinos, hidrógeno y grupos CH. Después del estudio sobre partículas contaminantes en el aire, nos hemos centrado en el estudio de dispositivos de división de agua mediante radiación solar para explorar la generación de hidrógeno a gran escala. En esta tesis, nos hemos centrado principalmente en la investigación de materiales y moléculas para divisores de moléculas de agua fotoelectroquímicos (PEC) y fotovoltaico-electrolíticos (PV-EC). Nuestros resultados muestran que en los dispositivos PEC, pueden depositarse en la superficie de los foto-ánodos de silicio películas delgadas metálicas de cobre y níquel, pudiendo formar CuO y NiOX respectivamente. Ambos materiales actúan como catalizadores muy activos para la reacción de oxidación de agua y a la vez como una capa protectora de la corrosión para superficie de silicio. Por otro lado, los dispositivos PV-EC, para los que se usó un ánodo basado en moléculas catalizadoras de Rutenio, se ha integrado con células solares de unión triple comerciales. Estos dispositivos han logrado una eficiencia máxima de conversión energía solar-hidrógeno del 21,2% a pH neutro y justo por debajo de la iluminación solar sin ninguna polarización externa. Estos resultados allanan el camino para la generación de hidrógeno por conversión solar a gran escala.
The combustion of the fossil fuels has caused the global environment and energy problems, which influences human health and activities. With the motivation to make our contributions to solving these problems, we have performed a series of investigations to explore materials and molecules for pollution free clean energy, which is solar energy converted hydrogen in this thesis. We have statistically analyzed the airborne pollutant particles, PM2.5 particles, which indicates that the carbon-rich fluffy soot aggregates always show very high adhesiveness and aggregation. And more than 50% PM2.5 particles strongly interact with the substrate through a ultra-thin (< 10 nm) dark trace layer, which is very stable even under mechanical stress and it is consisted of alkali metals, hydrogen and CH groups. After the study about airborne pollutant particles, we have moved to the study of solar-driven water splitting devices for exploring the large-scale generation of hydrogen. In this thesis, we have mainly focused on the investigation of the materials and molecules for photoelectrochemical (PEC) and photovoltaic-electrolysis (PV-EC) water splitting devices. Our results show that in the PEC water splitting devices, copper and nickel metallic thin films can be deposited on the surface of silicon photoanodes, which can form CuO and NiOX respectively and then serve as very active catalysts for water oxidation reaction and a protecting layer for silicon surface from corrosion. And in PV-EC water splitting devices, the ruthenium molecular catalysts based anode has been used for the electrolyzer, which has been integrated with commercially available triple junction solar cells. This integrated PV-EC device achieves the highest solar-to-hydrogen efficiency of 21.2 % at neutral pH and just under solar illumination without any external bias. These results pave the way for the generation of large-scale solar converted hydrogen.
Wickham-Jones, C. T. "Studies of vibrational energy transfer of small molecules". Thesis, University of Oxford, 1986. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.371569.
Texto completoLyons, Benjamin Paul. "Energy transfer to dopant molecules in polyfluorene films". Thesis, Durham University, 2005. http://etheses.dur.ac.uk/2722/.
Texto completoHock, Kai Meng. "Low energy electron scattering from molecules on surfaces". Thesis, University of Cambridge, 1992. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.240119.
Texto completoBarnard, John Cameron. "Low energy electron scattering by ordered adsorbed molecules". Thesis, University of Cambridge, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.321430.
Texto completoLibros sobre el tema "ENERGY MOLECULES"
1950-, Scott P. R., ed. Energy levels in atoms and molecules. Oxford: Oxford University Press, 1994.
Buscar texto completoWong, Wai-Yeung, ed. Organometallics and Related Molecules for Energy Conversion. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-46054-2.
Texto completoMay, Volkhard. Charge and energy transfer dynamics in molecular systems. 3a ed. Weinheim: Wiley-VCH, 2011.
Buscar texto completoOliver, Kühn, ed. Charge and energy transfer dynamics in molecular systems. 2a ed. Weinheim: Wiley-VCH, 2004.
Buscar texto completoOliver, Kühn, ed. Charge and energy transfer dynamics in molecular systems. 3a ed. Weinheim: Wiley-VCH, 2011.
Buscar texto completoGroup theory for atoms, molecules, and solids. Englewood Cliffs, N.J: Prentice-Hall International, 1986.
Buscar texto completoJacox, Marilyn E. Vibrational and electronic energy levels of polyatomic transient molecules. Woodbury, N.Y: American Chemical Society and the American Institute of Physics for the National Institute of Standards and Technology, 1994.
Buscar texto completoRoman, Curik, ed. Low-energy electron scattering from molecules, biomolecules, and surfaces. Boca Raton: Taylor & Francis, 2012.
Buscar texto completoOliver, Kühn, ed. Charge and energy transfer dynamics in molecular systems: A theoretical introduction. Berlin: Wiley-VCH, 2000.
Buscar texto completoCapítulos de libros sobre el tema "ENERGY MOLECULES"
Kajimoto, Okitsugu. "Energy Transfer". En From Molecules to Molecular Systems, 110–26. Tokyo: Springer Japan, 1998. http://dx.doi.org/10.1007/978-4-431-66868-8_7.
Texto completoGuelachvili, G. "Energy level designations". En Linear Triatomic Molecules, 1–2. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/10837166_1.
Texto completoGuelachvili, G. "Energy level designations". En Linear Triatomic Molecules, 1–3. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-74187-9_1.
Texto completoKhristenko, Sergei V., Viatcheslav P. Shevelko y Alexander I. Maslov. "Energy Constants of Molecules". En Molecules and Their Spectroscopic Properties, 39–70. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/978-3-642-71946-2_3.
Texto completoGuelachvili, G. "Potential energy function (PEF)". En Linear Triatomic Molecules, 13–16. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/10837166_4.
Texto completoGuelachvili, G. "Potential energy function (PEF)". En Linear Triatomic Molecules, 19–23. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-74187-9_4.
Texto completoBohm, Arno. "Energy Spectra of Some Molecules". En Quantum Mechanics: Foundations and Applications, 117–58. New York, NY: Springer New York, 1993. http://dx.doi.org/10.1007/978-1-4612-4352-6_3.
Texto completoBohm, Arno y Mark Loewe. "Energy Spectra of Some Molecules". En Quantum Mechanics: Foundations and Applications, 117–58. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-642-88024-7_3.
Texto completoBohm, Arno. "Energy Spectra of Some Molecules". En Quantum Mechanics: Foundations and Applications, 117–58. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/978-3-662-01168-3_3.
Texto completoYurchenko, Sergey. "Kinetic energy operator: Triatomic molecules". En Computational Spectroscopy of Polyatomic Molecules, 79–100. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9780429154348-4.
Texto completoActas de conferencias sobre el tema "ENERGY MOLECULES"
Garcia Ortega, Pablo. "Hadronic Molecules". En 35th International Conference of High Energy Physics. Trieste, Italy: Sissa Medialab, 2011. http://dx.doi.org/10.22323/1.120.0165.
Texto completoHill, Jeffrey R. y Dana D. Dlott. "Vibrational Relaxation and Energy Transfer in Ordered and Disordered Molecular Crystals". En International Conference on Ultrafast Phenomena. Washington, D.C.: Optica Publishing Group, 1986. http://dx.doi.org/10.1364/up.1986.tuf2.
Texto completoQuan, Haiyong y Zhixiong (James) Guo. "Energy Transfer and Molecule-Radiation Interaction in Optical Microcavities". En ASME 2006 International Mechanical Engineering Congress and Exposition. ASMEDC, 2006. http://dx.doi.org/10.1115/imece2006-14689.
Texto completoOng, Wen Jie, Ellen M. Sletten, Farnaz Niroui, Jeffrey H. Lang, Vladimir Bulovic y Timothy M. Swager. "Electromechanically actuating molecules". En 2015 Fourth Berkeley Symposium on Energy Efficient Electronic Systems (E3S). IEEE, 2015. http://dx.doi.org/10.1109/e3s.2015.7336809.
Texto completoWolf, H. C. "Molecules for energy transfer and switching". En Molecular electronics—Science and Technology. AIP, 1992. http://dx.doi.org/10.1063/1.42656.
Texto completoCasado, Juan. "Diradicaloid Organic Molecules in Energy Conversion". En nanoGe Spring Meeting 2022. València: Fundació Scito, 2022. http://dx.doi.org/10.29363/nanoge.nsm.2022.237.
Texto completoLiang, Zhi y Hai-Lung Tsai. "Ab Initio Calculations of Vibrational Energy Levels and Transition Dipole Moments of CO2 Molecules". En ASME 2008 International Mechanical Engineering Congress and Exposition. ASMEDC, 2008. http://dx.doi.org/10.1115/imece2008-67765.
Texto completoHarris, C. B., D. J. Russell, K. E. Schultz y J. Z. Zhang. "Energy redistribution in molecules on the femtosecond timescale". En OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1991. http://dx.doi.org/10.1364/oam.1991.fj1.
Texto completoBoeckler, Cathrin, Armin Feldhoff y Torsten Oekermann. "Nanostructured ZnO films electrodeposited using monosaccharide molecules as templates". En Solar Energy + Applications, editado por Jinghua Guo. SPIE, 2007. http://dx.doi.org/10.1117/12.730630.
Texto completoIvanov, Evgeny, Munetake Nishihara, Igor Adamovich y J. Rich. "Energy Transfer Kinetics of Vibrationally Excited Molecules". En 10th AIAA/ASME Joint Thermophysics and Heat Transfer Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2010. http://dx.doi.org/10.2514/6.2010-4514.
Texto completoInformes sobre el tema "ENERGY MOLECULES"
Chang, Yan-Tyng. Potential energy surfaces and reaction dynamics of polyatomic molecules. Office of Scientific and Technical Information (OSTI), noviembre de 1991. http://dx.doi.org/10.2172/5926228.
Texto completoChang, Yan-Tyng. Potential energy surfaces and reaction dynamics of polyatomic molecules. Office of Scientific and Technical Information (OSTI), noviembre de 1991. http://dx.doi.org/10.2172/10124759.
Texto completoDavis, Steven J. Rotational Energy Transfer in Metastable States of Heteronuclear Molecules. Fort Belvoir, VA: Defense Technical Information Center, enero de 1989. http://dx.doi.org/10.21236/ada226768.
Texto completoBadgett, Alex, William Xi y Mark Ruth. The Potential for Electrons to Molecules Using Solar Energy. Office of Scientific and Technical Information (OSTI), septiembre de 2021. http://dx.doi.org/10.2172/1819945.
Texto completoDlott, Dana D. Vibrational Energy in Molecules and Nanoparticles: Applications to Energetic Materials. Fort Belvoir, VA: Defense Technical Information Center, enero de 2009. http://dx.doi.org/10.21236/ada495351.
Texto completoLewandowski, Heather. Resonant Energy Transfer in a System of Cold Trapped Molecules. Fort Belvoir, VA: Defense Technical Information Center, octubre de 2011. http://dx.doi.org/10.21236/ada565577.
Texto completoCrim, F. F. Time Resolved Energy Transfer and Photodissociation of Vibrationally Excited Molecules. Fort Belvoir, VA: Defense Technical Information Center, junio de 2007. http://dx.doi.org/10.21236/ada469746.
Texto completoPulay, Peter y Jon Baker. Efficient Modeling of Large Molecules: Geometry Optimization Dynamics and Correlation Energy. Fort Belvoir, VA: Defense Technical Information Center, abril de 2003. http://dx.doi.org/10.21236/ada416248.
Texto completoTanjore, Deepti. Testing molecules that disperse biofilms and biofouling and improve water recycling energy efficiency. Office of Scientific and Technical Information (OSTI), junio de 2020. http://dx.doi.org/10.2172/1633788.
Texto completoRempe, Susan, Josh Vermaas y Emad Tajkhorshid. Coupling Chemical Energy with Protein Conformational Changes to Translocate Small Molecules Across Membranes. Office of Scientific and Technical Information (OSTI), octubre de 2016. http://dx.doi.org/10.2172/1563079.
Texto completo