Literatura académica sobre el tema "Endosymbiosis"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Endosymbiosis".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Endosymbiosis"
Nowack, Eva C. M. y Michael Melkonian. "Endosymbiotic associations within protists". Philosophical Transactions of the Royal Society B: Biological Sciences 365, n.º 1541 (12 de marzo de 2010): 699–712. http://dx.doi.org/10.1098/rstb.2009.0188.
Texto completoTakahashi, Toshiyuki. "Method for Stress Assessment of Endosymbiotic Algae in Paramecium bursaria as a Model System for Endosymbiosis". Microorganisms 10, n.º 6 (18 de junio de 2022): 1248. http://dx.doi.org/10.3390/microorganisms10061248.
Texto completoSouza, Lucas Santana, Josephine Solowiej-Wedderburn, Adriano Bonforti y Eric Libby. "Modeling endosymbioses: Insights and hypotheses from theoretical approaches". PLOS Biology 22, n.º 4 (10 de abril de 2024): e3002583. http://dx.doi.org/10.1371/journal.pbio.3002583.
Texto completoArchibald, John M. "Genomic perspectives on the birth and spread of plastids". Proceedings of the National Academy of Sciences 112, n.º 33 (20 de abril de 2015): 10147–53. http://dx.doi.org/10.1073/pnas.1421374112.
Texto completoO’Malley, Maureen A. "Endosymbiosis and its implications for evolutionary theory". Proceedings of the National Academy of Sciences 112, n.º 33 (16 de abril de 2015): 10270–77. http://dx.doi.org/10.1073/pnas.1421389112.
Texto completoVeloz, Tomas y Daniela Flores. "Reaction Network Modeling of Complex Ecological Interactions: Endosymbiosis and Multilevel Regulation". Complexity 2021 (7 de agosto de 2021): 1–12. http://dx.doi.org/10.1155/2021/8760937.
Texto completoSchreiber, Mona y Sven B. Gould. "Antreiber evolutionärer Transformation: die Endosymbiose". BIOspektrum 27, n.º 7 (noviembre de 2021): 701–4. http://dx.doi.org/10.1007/s12268-021-1670-9.
Texto completoJenkins, Benjamin H., Finlay Maguire, Guy Leonard, Joshua D. Eaton, Steven West, Benjamin E. Housden, David S. Milner y Thomas A. Richards. "Emergent RNA–RNA interactions can promote stability in a facultative phototrophic endosymbiosis". Proceedings of the National Academy of Sciences 118, n.º 38 (14 de septiembre de 2021): e2108874118. http://dx.doi.org/10.1073/pnas.2108874118.
Texto completoRadzvilavicius, Arunas L. y Neil W. Blackstone. "Conflict and cooperation in eukaryogenesis: implications for the timing of endosymbiosis and the evolution of sex". Journal of The Royal Society Interface 12, n.º 111 (octubre de 2015): 20150584. http://dx.doi.org/10.1098/rsif.2015.0584.
Texto completoMaire, Justin, Nicolas Parisot, Mariana Galvao Ferrarini, Agnès Vallier, Benjamin Gillet, Sandrine Hughes, Séverine Balmand, Carole Vincent-Monégat, Anna Zaidman-Rémy y Abdelaziz Heddi. "Spatial and morphological reorganization of endosymbiosis during metamorphosis accommodates adult metabolic requirements in a weevil". Proceedings of the National Academy of Sciences 117, n.º 32 (28 de julio de 2020): 19347–58. http://dx.doi.org/10.1073/pnas.2007151117.
Texto completoTesis sobre el tema "Endosymbiosis"
Ponce, Toledo Rafael Isaac. "Origins and early evolution of photosynthetic eukaryotes". Thesis, Université Paris-Saclay (ComUE), 2018. http://www.theses.fr/2018SACLS047/document.
Texto completoPrimary plastids derive from a cyanobacterium that entered into an endosymbioticrelationship with a eukaryotic host. This event gave rise to the supergroup Archaeplastida whichcomprises Viridiplantae (green algae and land plants), Rhodophyta (red algae) and Glaucophyta. Afterprimary endosymbiosis, red and green algae spread the ability to photosynthesize to other eukaryoticlineages via secondary endosymbioses. Although considerable progress has been made in theunderstanding of the evolution of photosynthetic eukaryotes, important questions remained debatedsuch as the present-day closest cyanobacterial lineage to primary plastids as well as the number andidentity of partners in secondary endosymbioses.The main objectives of my PhD were to study the origin and evolution of plastid-bearing eukaryotesusing phylogenetic and phylogenomic approaches to shed some light on how primary and secondaryendosymbioses occurred. In this work, I show that primary plastids evolved from a close relative ofGloeomargarita lithophora, a recently sequenced early-branching cyanobacterium that has been onlydetected in terrestrial environments. This result provide interesting hints on the ecological setting whereprimary endosymbiosis likely took place. Regarding the evolution of eukaryotic lineages with secondaryplastids, I show that the nuclear genomes of chlorarachniophytes and euglenids, two photosyntheticlineages with green alga-derived plastids, encode for a large number of genes acquired by transfersfrom red algae. Finally, I highlight that SELMA, the translocation machinery putatively used to importproteins across the second outermost membrane of secondary red plastids with four membranes, has asurprisingly complex history with strong evolutionary implications: cryptophytes have recruited a set ofSELMA components different from those present in haptophytes, stramenopiles and alveolates.In conclusion, during my PhD I identified for the first time the closest living cyanobacterium to primaryplastids and provided new insights on the complex evolution that have undergone secondary plastid-bearing eukaryotes
Moustafa, Ahmed Bhattacharya Debashish. "Evolutionary and functional genomics of photosynthetic eukaryotes". Iowa City : University of Iowa, 2009. http://ir.uiowa.edu/etd/311.
Texto completoHraber, Peter T. "Discovering molecular mechanisms of mututalism with computational approaches to endosymbiosis /". Color figures, full content, and supplementary materials are available online, 2001.
Buscar texto completo"July, 2001." Includes bibliographical references (leaves 112-121). Color figures, full content, and supplementary materials are available online via www.santafe.edu/p̃th/dss.
Wisecaver, Jennifer Hughes. "Horizontal Gene Transfer and Plastid Endosymbiosis in Dinoflagellate Gene Innovation". Diss., The University of Arizona, 2012. http://hdl.handle.net/10150/265594.
Texto completoTruitt, Amy Michelle. "Wolbachia-Host Interactions and the Implications to Insect Conservation and Management". PDXScholar, 2017. https://pdxscholar.library.pdx.edu/open_access_etds/3643.
Texto completoTeberobsky, Debora Yurman. "Aphis fabae (Scopoli) subspecies their host plant utilization, endosymbiosis and taxonomy (Homoptera: Aphididae)". Thesis, University of York, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.245896.
Texto completoGarrido, Clotilde. "De l’origine des peptides d’adressage aux organites (mitochondries et chloroplastes)". Electronic Thesis or Diss., Sorbonne université, 2021. https://accesdistant.sorbonne-universite.fr/login?url=https://theses-intra.sorbonne-universite.fr/2021SORUS280.pdf.
Texto completoMitochondria and chloroplasts are eukaryotic organelles that originated from endosymbiotic events betweena bacteria and a host cell more than a billion years ago. Today, the vast majority of proteins present in theseorganelles are encoded in the nucleus. Targeting of cytosolic proteins to mitochondria and chloroplasts couldderive from a mechanism of bacterial resistance to the attacks of antimicrobial peptides, major actors of theinnate immunity system, present in all domains of life. This hypothesis is based on the striking similaritiesbetween these two mechanisms. During my PhD, I challenged this hypothesis. In a first part, I showed thata subset of antimicrobial peptides structuring in ↵-amphipathic helix and organelle targeting peptides havecommon physico-chemical properties, distinct from those shared by bacterial and eukaryotic secretory signalpeptides whose common evolutionary origin is well established. Furthermore, they can functionally complementeach other, supporting the hypothesis of their common origin (Garrido et al. 2020). The molecular transitionrequired for the emergence of a targeting peptide from an antimicrobial peptide involves 3 crucial steps : (i)the replacement of lysines with arginines, which decreases microbial activity and promotes addressing activity,(ii) the acquisition of a cleavage site and (iii) the acquisition of a loosely structured N-terminal domain forchloroplast specific targeting within photosynthetic eukaryotes (Caspari, Garrido et al. , submitted). In asecond part, I established the exhaustive catalog of peptidase homologous families involved in the degradationof taregting peptides across the tree of life. I showed that each of these peptidases was acquired via a horizontaltransfer event from a bacterium; and consistent with the hypothesis, many homologs from antimicrobialpeptide-resistant bacterial are closely related to the organelle peptidases (Garrido et al., submitted)
Roopin, Modi M. Chadwick Nanette Elizabeth. "Symbiotic benefits to sea anemones from the metabolic byproducts of anemonefish". Auburn, Ala., 2007. http://hdl.handle.net/10415/1331.
Texto completoGerhart, Jonathan Graham. "Evolution and Metabolic Potential of Francisella-like Endosymbionts of Ticks". PDXScholar, 2017. https://pdxscholar.library.pdx.edu/open_access_etds/3832.
Texto completoAtyame, Nten Célestine Michelle. "Dynamique évolutive des bactéries endocellulaires Wolbachia et des incompatibilités cytoplasmiques chez le moustique Culex pipiens". Thesis, Montpellier 2, 2011. http://www.theses.fr/2011MON20031/document.
Texto completoWolbachia are maternally inherited endocellular α-Proteobacteria that manipulate the reproduction of Arthropods to promote their own transmission. In the mosquito Culex pipiens, Wolbachia induce cytoplasmic incompatibility (CI) which results in high embryonic mortality in crosses between mosquitoes infected with incompatible Wolbachia strains. This mosquito is characterized by high genetic diversity of its Wolbachia (referred as wPip strains) and by complex CI patterns. We examined mechanisms that shape the dynamics of this symbiotic association at genomic, phenotypic and field population levels to understand how it evolves. We showed that wPip strains have a unique and recent evolutionary origin and that their diversity clusters into distinct genetic groups with a geographic structure. We revealed the existence of extensive recombinations among wPip strains, which could influence their adaptive dynamics by creating new wPip strains and thus allow the rapid emergence of new CI patterns. The analysis of crossing relationships between mosquito lines from different geographic origins and infected with wPip strains belonging to different genetic groups showed that CIs (i) evolve rapidly in Cx. pipiens; (ii) are controlled by several genetic factors, and (iii) there is a significant relationship between CI patterns and genetic divergence of wPip strains. In field populations, it appears that CIs are selected against within a population but a contact zone between populations infected by incompatible Wolbachia strains can be stably maintained
Libros sobre el tema "Endosymbiosis"
Löffelhardt, Wolfgang, ed. Endosymbiosis. Vienna: Springer Vienna, 2014. http://dx.doi.org/10.1007/978-3-7091-1303-5.
Texto completoLöffelhardt, W. Endosymbiosis. Wien: Springer, 2014.
Buscar texto completoSaibōnai kyōsei. Tōkyō: Tōkyō Daigaku Shuppankai, 1985.
Buscar texto completoGeus, Armin. Bakterienlicht & Wurzelpilz: Endosymbiosen in Forschung und Geschichte. Marburg: Basilisken-Presse, 1998.
Buscar texto completo1940-, Schwemmler Werner y Gassner George, eds. Insect endocytobiosis: Morphology, physiology, genetics, evolution. Boca Raton, Fla: CRC Press, 1989.
Buscar texto completoL, O'Neill Scott, Hoffmann Ary A y Werren John H, eds. Influential passengers: Inherited microorganisms and arthropod reproduction. Oxford [England]: Oxford University Press, 1997.
Buscar texto completoManipulative tenants: Bacteria associated with arthropods. Boca Raton: Taylor & Francis, 2012.
Buscar texto completoservice), SpringerLink (Online, ed. Endosymbionts in Paramecium. Berlin, Heidelberg: Springer-Verlag Berlin Heidelberg, 2009.
Buscar texto completoShivokene, I͡A. Simbiotnoe pishchevarenie u gidrobiontov i nasekomykh: Monografii͡a. Vilʹni͡us: "Mokslas", 1989.
Buscar texto completoSchenk, Hainfried E. A. 1934- y International Colloquium on Endocytobiology and Symbiosis (6th : 1995 : Tübingen, Germany), eds. Eukaryotism and symbiosis: Intertaxonic combination versus symbiotic adaptation. Berlin: Springer, 1997.
Buscar texto completoCapítulos de libros sobre el tema "Endosymbiosis"
Latorre, Amparo. "Endosymbiosis". En Encyclopedia of Astrobiology, 733–34. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-44185-5_516.
Texto completoMehlhorn, Heinz. "Endosymbiosis". En Encyclopedia of Parasitology, 901. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-662-43978-4_3842.
Texto completoMehlhorn, Heinz. "Endosymbiosis". En Encyclopedia of Parasitology, 1. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-642-27769-6_3842-1.
Texto completoLatorre, Amparo. "Endosymbiosis". En Encyclopedia of Astrobiology, 494–95. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-11274-4_516.
Texto completoReitner, Joachim y Volker Thiel. "Endosymbiosis". En Encyclopedia of Geobiology, 355. Dordrecht: Springer Netherlands, 2011. http://dx.doi.org/10.1007/978-1-4020-9212-1_82.
Texto completoLatorre, Amparo. "Endosymbiosis". En Encyclopedia of Astrobiology, 1–2. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-27833-4_516-4.
Texto completoLatorre, Amparo. "Endosymbiosis". En Encyclopedia of Astrobiology, 901–2. Berlin, Heidelberg: Springer Berlin Heidelberg, 2023. http://dx.doi.org/10.1007/978-3-662-65093-6_516.
Texto completoLang, B. Franz. "Mitochondria and the Origin of Eukaryotes". En Endosymbiosis, 3–18. Vienna: Springer Vienna, 2013. http://dx.doi.org/10.1007/978-3-7091-1303-5_1.
Texto completoLinares, Marjorie, Dee Carter y Sven B. Gould. "Chromera et al.: Novel Photosynthetic Alveolates and Apicomplexan Relatives". En Endosymbiosis, 183–96. Vienna: Springer Vienna, 2013. http://dx.doi.org/10.1007/978-3-7091-1303-5_10.
Texto completoTanifuji, Goro y John M. Archibald. "Nucleomorph Comparative Genomics". En Endosymbiosis, 197–213. Vienna: Springer Vienna, 2013. http://dx.doi.org/10.1007/978-3-7091-1303-5_11.
Texto completoActas de conferencias sobre el tema "Endosymbiosis"
Johnson, Kiara, Piper Welch, Emily Dolson y Anya E. Vostinar. "Endosymbiosis or Bust: Influence of Ectosymbiosis on Evolution of Obligate Endosymbiosis". En The 2022 Conference on Artificial Life. Cambridge, MA: MIT Press, 2022. http://dx.doi.org/10.1162/isal_a_00488.
Texto completoStadnichuk, I. N. y V. V. Kuznetsov. "Chloroplast endosymbiosis: historical aspect and current problems". En IX Congress of society physiologists of plants of Russia "Plant physiology is the basis for creating plants of the future". Kazan University Press, 2019. http://dx.doi.org/10.26907/978-5-00130-204-9-2019-410.
Texto completoMOUSTAFA, AHMED, CHEONG XIN CHAN, MEGAN DANFORTH, DAVID ZEAR, HIBA AHMED, NAGNATH JADHAV, TREVOR SAVAGE y DEBASHISH BHATTACHARYA. "A PHYLOGENOMIC APPROACH FOR STUDYING PLASTID ENDOSYMBIOSIS". En Proceedings of the 19th International Conference. IMPERIAL COLLEGE PRESS, 2008. http://dx.doi.org/10.1142/9781848163324_0014.
Texto completoSong, Na-Young, Xin Li, Jonathan H. Badger, Jami Willette Brown, Xhonghe Sun, Gongping Shi, Feng Zhu et al. "Abstract B17: IKKα/STAT3 antagonistic signaling regulates fungi-bacteria endosymbiosis-associated carcinogenesis". En Abstracts: AACR Special Conference on the Microbiome, Viruses, and Cancer; February 21-24, 2020; Orlando, FL. American Association for Cancer Research, 2020. http://dx.doi.org/10.1158/1538-7445.mvc2020-b17.
Texto completoJohnson, Kiara, Sylvie Dirkswager y Anya E. Vostinar. "Evolution of symbiotic task-based digital genomes: ectosymbiosis hastens the evolution of endosymbiosis". En The 2023 Conference on Artificial Life. MIT Press, 2023. http://dx.doi.org/10.1162/isal_a_00661.
Texto completo"Genome assembly of a new Wolbachia pipientis strain: a promising source for studying Drosophila melanogaster endosymbiosis". En Bioinformatics of Genome Regulation and Structure/Systems Biology (BGRS/SB-2022) :. Institute of Cytology and Genetics, the Siberian Branch of the Russian Academy of Sciences, 2022. http://dx.doi.org/10.18699/sbb-2022-077.
Texto completoRizo Rubalcava, Alicia Margarita, Mónica Margarita Arellano Lara, Rubén de Jesús Tovilla Quesada, María Guadalupe Carrillo Alejo, Miguel Ángel Villarreal Gutiérrez y Argentina Minerva Madrigal González. "GRAPHIC DESIGN AND SCIENTIFIC DISSEMINATION OF THE THEORIES OF THE MOLECULAR ORIGIN OF LIFE (PANSPERMIA AND ENDOSYMBIOSIS)". En 15th annual International Conference of Education, Research and Innovation. IATED, 2022. http://dx.doi.org/10.21125/iceri.2022.1521.
Texto completoChou, Pai H. "Endosymbiotic computing". En the 46th Annual Design Automation Conference. New York, New York, USA: ACM Press, 2009. http://dx.doi.org/10.1145/1629911.1630075.
Texto completoPekarcik, Adrian J. "Endosymbionts ofMelanaphis sacchari". En 2016 International Congress of Entomology. Entomological Society of America, 2016. http://dx.doi.org/10.1603/ice.2016.108437.
Texto completoTodiraş, Vasile, Svetlana Prisacari, Serghei Corcimaru y Tatiana Gutsul. "The potential of magnetite-based nanocomposites in nanophytoremediation of soils polluted by polyethylene". En 5th International Scientific Conference on Microbial Biotechnology. Institute of Microbiology and Biotechnology, Republic of Moldova, 2022. http://dx.doi.org/10.52757/imb22.35.
Texto completoInformes sobre el tema "Endosymbiosis"
Fitzpatrick, Eileen. First Bacterial Endosymbionts Found in the Phylum Ascomycota. Portland State University Library, enero de 2000. http://dx.doi.org/10.15760/etd.675.
Texto completoFisher, Charles y James Childress. Host-Symbiont Interactions between a Marine Mussel and Methanotrophic Bacterial Endosymbionts. Fort Belvoir, VA: Defense Technical Information Center, abril de 1991. http://dx.doi.org/10.21236/ada235562.
Texto completoFisher, Charles y James Childress. Host-Symbiont Interactions Between a Marine Mussel and Methanotrophic Bacterial Endosymbionts. Fort Belvoir, VA: Defense Technical Information Center, abril de 1991. http://dx.doi.org/10.21236/ada244810.
Texto completoGerhart, Jonathan. Evolution and Metabolic Potential of Francisella-like Endosymbionts of Ticks. Portland State University Library, enero de 2000. http://dx.doi.org/10.15760/etd.5726.
Texto completoStern, David y Gadi Schuster. Manipulation of Gene Expression in the Chloroplast. United States Department of Agriculture, septiembre de 2000. http://dx.doi.org/10.32747/2000.7575289.bard.
Texto completoZchori-Fein, Einat, Judith K. Brown y Nurit Katzir. Biocomplexity and Selective modulation of whitefly symbiotic composition. United States Department of Agriculture, junio de 2006. http://dx.doi.org/10.32747/2006.7591733.bard.
Texto completo