Artículos de revistas sobre el tema "Electroorganic"

Siga este enlace para ver otros tipos de publicaciones sobre el tema: Electroorganic.

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "Electroorganic".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.

1

Breinbauer, Rolf. "Electroorganic Reductions Syntheses". Synthesis 2006, n.º 17 (septiembre de 2006): 2974. http://dx.doi.org/10.1055/s-2006-951382.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Montenegro, I. "Modern electroorganic chemistry". Journal of Electroanalytical Chemistry 387, n.º 1-2 (mayo de 1995): 152. http://dx.doi.org/10.1016/0022-0728(95)90299-6.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Gieshoff, Tile, Anton Kehl, Dieter Schollmeyer, Kevin D. Moeller y Siegfried R. Waldvogel. "Electrochemical synthesis of benzoxazoles from anilides – a new approach to employ amidyl radical intermediates". Chemical Communications 53, n.º 20 (2017): 2974–77. http://dx.doi.org/10.1039/c7cc00927e.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Lateef, Shaik, Srinivasulu Reddy Krishna Mohan y Srinivasulu Reddy Jayarama Reddy. "Electroorganic synthesis of benzathine". Tetrahedron Letters 48, n.º 1 (enero de 2007): 77–80. http://dx.doi.org/10.1016/j.tetlet.2006.11.008.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Nematollahi, Davood y Esmail Tammari. "Electroorganic Synthesis of Catecholthioethers". Journal of Organic Chemistry 70, n.º 19 (septiembre de 2005): 7769–72. http://dx.doi.org/10.1021/jo0508301.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Waldvogel, S. R. "Challenges in Electroorganic Synthesis". Chemie Ingenieur Technik 86, n.º 9 (28 de agosto de 2014): 1447. http://dx.doi.org/10.1002/cite.201450707.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Cantillo, David. "Synthesis of active pharmaceutical ingredients using electrochemical methods: keys to improve sustainability". Chemical Communications 58, n.º 5 (2022): 619–28. http://dx.doi.org/10.1039/d1cc06296d.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Momeni, Shima y Davood Nematollahi. "Electrosynthesis of new quinone sulfonimide derivatives using a conventional batch and a new electrolyte-free flow cell". Green Chemistry 20, n.º 17 (2018): 4036–42. http://dx.doi.org/10.1039/c8gc01727a.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Shin, Samuel J., Sangmee Park, Jin-Young Lee, Jae Gyeong Lee, Jeongse Yun, Dae-Woong Hwang y Taek Dong Chung. "Cathodic electroorganic reaction on silicon oxide dielectric electrode". Proceedings of the National Academy of Sciences 117, n.º 52 (14 de diciembre de 2020): 32939–46. http://dx.doi.org/10.1073/pnas.2005122117.

Texto completo
Resumen
The faradaic reaction at the insulator is counterintuitive. For this reason, electroorganic reactions at the dielectric layer have been scarcely investigated despite their interesting aspects and opportunities. In particular, the cathodic reaction at a silicon oxide surface under a negative potential bias remains unexplored. In this study, we utilize defective 200-nm-thick n+-Si/SiO2 as a dielectric electrode for electrolysis in an H-type divided cell to demonstrate the cathodic electroorganic reaction of anthracene and its derivatives. Intriguingly, the oxidized products are generated at the cathode. The experiments under various conditions provide consistent evidence supporting that the electrochemically generated hydrogen species, supposedly the hydrogen atom, is responsible for this phenomenon. The electrogenerated hydrogen species at the dielectric layer suggests a synthetic strategy for organic molecules.
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

TOKUDA, Masao. "Organometallic compounds in electroorganic synthesis." Journal of Synthetic Organic Chemistry, Japan 43, n.º 6 (1985): 522–32. http://dx.doi.org/10.5059/yukigoseikyokaishi.43.522.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
11

BECK, Fritz y Hiroshi SUGINOME. "Industrial Electroorganic Synthesis in Europe." Journal of Synthetic Organic Chemistry, Japan 49, n.º 9 (1991): 798–808. http://dx.doi.org/10.5059/yukigoseikyokaishi.49.798.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
12

TORII, Sigeru. "Organometal Complexes in Electroorganic Synthesis." Journal of Synthetic Organic Chemistry, Japan 51, n.º 11 (1993): 1024–42. http://dx.doi.org/10.5059/yukigoseikyokaishi.51.1024.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
13

Yoshida, Jun-ichi, Kazuhide Kataoka, Roberto Horcajada y Aiichiro Nagaki. "Modern Strategies in Electroorganic Synthesis". Chemical Reviews 108, n.º 7 (julio de 2008): 2265–99. http://dx.doi.org/10.1021/cr0680843.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
14

Elsherbini, Mohamed y Thomas Wirth. "Electroorganic Synthesis under Flow Conditions". Accounts of Chemical Research 52, n.º 12 (6 de noviembre de 2019): 3287–96. http://dx.doi.org/10.1021/acs.accounts.9b00497.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
15

Gütz, Christoph, Bernhard Klöckner y Siegfried R. Waldvogel. "Electrochemical Screening for Electroorganic Synthesis". Organic Process Research & Development 20, n.º 1 (21 de diciembre de 2015): 26–32. http://dx.doi.org/10.1021/acs.oprd.5b00377.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
16

Atobe, Mahito, Yoshifumi Kado y Tsutomu Nonaka. "Ultrasonic effects on electroorganic processes". Ultrasonics Sonochemistry 7, n.º 3 (julio de 2000): 97–102. http://dx.doi.org/10.1016/s1350-4177(99)00036-x.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
17

Atobe, Mahito, Michiaki Sasahira y Tsutomu Nonaka. "Ultrasonic effects on electroorganic processes". Ultrasonics Sonochemistry 7, n.º 3 (julio de 2000): 103–7. http://dx.doi.org/10.1016/s1350-4177(99)00044-9.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
18

Pletcher, Derek. "Novel trends in electroorganic synthesis". Journal of Electroanalytical Chemistry 422, n.º 1-2 (febrero de 1997): 201. http://dx.doi.org/10.1016/s0022-0728(97)80113-1.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
19

Grimshaw, James. "Recent advances in electroorganic synthesis". Electrochimica Acta 33, n.º 9 (septiembre de 1988): 1255. http://dx.doi.org/10.1016/0013-4686(88)80160-9.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
20

Bouzek, Karel, Vladimír Jiřičný, Roman Kodým, Jiří Křišťál y Tomáš Bystroň. "Microstructured reactor for electroorganic synthesis". Electrochimica Acta 55, n.º 27 (noviembre de 2010): 8172–81. http://dx.doi.org/10.1016/j.electacta.2010.05.061.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
21

Atobe, Mahito, Naohiro Yamada, Toshio Fuchigami y Tsutomu Nonaka. "Ultrasonic effects on electroorganic processes". Electrochimica Acta 48, n.º 12 (mayo de 2003): 1759–66. http://dx.doi.org/10.1016/s0013-4686(03)00153-1.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
22

Cignitti, M. "Recent Advances in Electroorganic Synthesis." Bioelectrochemistry and Bioenergetics 19, n.º 1 (marzo de 1988): 187–88. http://dx.doi.org/10.1016/0302-4598(88)85026-8.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
23

Pletcher, D. "Emerging Opportunities for Electroorganic Processes". Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 195, n.º 2 (noviembre de 1985): 439. http://dx.doi.org/10.1016/0022-0728(85)80065-6.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
24

Hasegawa, Masaru y Toshio Fuchigami. "Electroorganic reactions in ionic liquids". Electrochimica Acta 49, n.º 20 (agosto de 2004): 3367–72. http://dx.doi.org/10.1016/j.electacta.2004.03.015.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
25

Chaloner, Penny A. "Electroorganic Synthesis; Best synthetic Methods". Journal of Organometallic Chemistry 418, n.º 1 (octubre de 1991): C17—C18. http://dx.doi.org/10.1016/0022-328x(91)86358-w.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
26

Atobe, Mahito, Naohiro Yamada y Tsutomu Nonaka. "Ultrasonic effects on electroorganic processes". Electrochemistry Communications 1, n.º 11 (noviembre de 1999): 532–35. http://dx.doi.org/10.1016/s1388-2481(99)00111-3.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
27

MAKI, Shojiro y Haruki NIWA. "The Application of Electroorganic Chemical Reaction." Journal of Synthetic Organic Chemistry, Japan 56, n.º 9 (1998): 725–35. http://dx.doi.org/10.5059/yukigoseikyokaishi.56.725.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
28

Takahashi, Machiko, Masato Fujita y Masatoki Ito. "SERS application to some electroorganic reactions". Surface Science Letters 158, n.º 1-3 (julio de 1985): A424. http://dx.doi.org/10.1016/0167-2584(85)90023-4.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
29

Horcajada, Roberto, Masayuki Okajima, Seiji Suga y Jun-ichi Yoshida. "Microflow electroorganic synthesis without supporting electrolyte". Chemical Communications, n.º 10 (2005): 1303. http://dx.doi.org/10.1039/b417388k.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
30

Takahashi, Machiko, Masato Fujita y Masatoki Ito. "SERS application to some electroorganic reactions". Surface Science 158, n.º 1-3 (julio de 1985): 307–13. http://dx.doi.org/10.1016/0039-6028(85)90305-x.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
31

Ogawa, Kelli A. y Andrew J. Boydston. "Recent Developments in Organocatalyzed Electroorganic Chemistry". Chemistry Letters 44, n.º 1 (5 de enero de 2015): 10–16. http://dx.doi.org/10.1246/cl.140915.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
32

Baizer, M. M. "Electroorganic processes practiced in the world". Pure and Applied Chemistry 58, n.º 6 (1 de enero de 1986): 889–94. http://dx.doi.org/10.1351/pac198658060889.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
33

Nguyen, Zachary A., Dylan Boucher y Shelley D. Minteer. "Electrolyte Induced Solvent Cage Effects for Enantioselective Electrosynthesis". ECS Meeting Abstracts MA2022-02, n.º 53 (9 de octubre de 2022): 2514. http://dx.doi.org/10.1149/ma2022-02532514mtgabs.

Texto completo
Resumen
Electrochemistry provides a tunable, regioselective, and green alternative to traditional synthetic organic methods, and access to reactive intermediates. Problematically, electrochemical redox events often go through planar radical intermediates, thus destroying enantioselectivity. As such, researchers have sought the “chiral electron”, a general methodology to impart enantioselectivity to electroorganic reactions. One strategy has been asymmetric transition metal catalysis while replacing the typical stochiometric redox reagent needed with electricity, thus providing a chiral pathway for elecoorganic reactions. However, the general physical parameters that govern enantioselectivity at electrochemical interfaces, remains poorly understood. Here, we focus on the effects of supporting electrolyte in synthetic organic electrochemistry, specifically its role in enantioselective reactions. Cyclic voltammetry provides a tool to investigate the mechanistic consequences of changes in electrolyte. Using the model reaction of enantioselective carboxylation with a cobalt catalyst, we observe changes in mechanism as the electrolyte size is varied. Specifically, electrolyte identity effects the lifetime of the chiral Co-alkyl intermediate. These fundamental electroanalytical studies provide a sound mechanistic basis for the origin of enantioselectivity in electroorganic reactions. In summary, these results of a general interest as a strategy to tune and improve enantioselectivity in electrochemical transformations.
Los estilos APA, Harvard, Vancouver, ISO, etc.
34

Beil, Sebastian B., Dennis Pollok y Siegfried R. Waldvogel. "Reproducibility in Electroorganic Synthesis—Myths and Misunderstandings". Angewandte Chemie International Edition 60, n.º 27 (3 de marzo de 2021): 14750–59. http://dx.doi.org/10.1002/anie.202014544.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
35

Regenbrecht, Carolin y Siegfried R. Waldvogel. "Efficient electroorganic synthesis of 2,3,6,7,10,11-hexahydroxytriphenylene derivatives". Beilstein Journal of Organic Chemistry 8 (10 de octubre de 2012): 1721–24. http://dx.doi.org/10.3762/bjoc.8.196.

Texto completo
Resumen
2,3,6,7,10,11-Hexahydroxytriphenylene of good quality and purity can be obtained via anodic treatment of catechol ketals and subsequent acidic hydrolysis. The electrolysis is conducted in propylene carbonate circumventing toxic and expensive acetonitrile. The protocol is simple to perform and superior to other chemical or electrochemical methods. The key of the method is based on the low solubility of the anodically trimerized product. The shift of potentials is supported by cyclic voltammetry studies.
Los estilos APA, Harvard, Vancouver, ISO, etc.
36

SHONO, Tatsuya. "Electroorganic chemistry in organic synthesis. General survey." Journal of Synthetic Organic Chemistry, Japan 43, n.º 6 (1985): 491–95. http://dx.doi.org/10.5059/yukigoseikyokaishi.43.491.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
37

FUCHIGAMI, Toshio. "Selective Electroorganic Reactions Using Transition Metal Complexes". Journal of Japan Oil Chemists' Society 39, n.º 10 (1990): 888–94. http://dx.doi.org/10.5650/jos1956.39.10_888.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
38

Gütz, Christoph, Andreas Stenglein y Siegfried R. Waldvogel. "Highly Modular Flow Cell for Electroorganic Synthesis". Organic Process Research & Development 21, n.º 5 (4 de mayo de 2017): 771–78. http://dx.doi.org/10.1021/acs.oprd.7b00123.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
39

Bellamy, A. J. "Electroorganic synthesis Festschriff for Manuel M. Baizer". Electrochimica Acta 39, n.º 1 (enero de 1994): 158. http://dx.doi.org/10.1016/0013-4686(94)85028-3.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
40

Guetz, Christoph, Bernhard Kloeckner y Siegfried R. Waldvogel. "ChemInform Abstract: Electrochemical Screening for Electroorganic Synthesis". ChemInform 47, n.º 11 (febrero de 2016): no. http://dx.doi.org/10.1002/chin.201611252.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
41

TORII, S. "ChemInform Abstract: Organometal Complexes in Electroorganic Synthesis". ChemInform 25, n.º 13 (19 de agosto de 2010): no. http://dx.doi.org/10.1002/chin.199413303.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
42

NONAKA, Tsutomu y Toshio FUCHIGAMI. "Modified electrodes and their applications to electroorganic reactions." Journal of Synthetic Organic Chemistry, Japan 43, n.º 6 (1985): 565–74. http://dx.doi.org/10.5059/yukigoseikyokaishi.43.565.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
43

NISHIGUCHI, Ikuzo. "Experimental methods for electroorganic synthesis in a laboratory." Journal of Synthetic Organic Chemistry, Japan 43, n.º 6 (1985): 617–33. http://dx.doi.org/10.5059/yukigoseikyokaishi.43.617.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
44

HISAEDA, Yoshio. "Electroorganic Reactions Mediated by Vitamin B12 Model Complexes." Journal of Synthetic Organic Chemistry, Japan 54, n.º 10 (1996): 859–67. http://dx.doi.org/10.5059/yukigoseikyokaishi.54.859.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
45

Rauen, Anna Lisa, Frank Weinelt y Siegfried R. Waldvogel. "Sustainable electroorganic synthesis of lignin-derived dicarboxylic acids". Green Chemistry 22, n.º 18 (2020): 5956–60. http://dx.doi.org/10.1039/d0gc02210a.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
46

KASHIWAGI, Yoshitomo. "Construction of Functional Electrode Interface for Electroorganic Synthesis". YAKUGAKU ZASSHI 127, n.º 7 (1 de julio de 2007): 1047–57. http://dx.doi.org/10.1248/yakushi.127.1047.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
47

Navarro, Marcelo. "Recent advances in experimental procedures for electroorganic synthesis". Current Opinion in Electrochemistry 2, n.º 1 (abril de 2017): 43–52. http://dx.doi.org/10.1016/j.coelec.2017.03.004.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
48

Thomas, F. B., P. A. Ramachandran, M. P. Dudukovic y R. E. W. Jansson. "Laminar radial flow electrochemical reactors. III. Electroorganic sysnthesis". Journal of Applied Electrochemistry 19, n.º 6 (noviembre de 1989): 856–67. http://dx.doi.org/10.1007/bf01007933.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
49

Nishiguchi, Ikuzo. "Some Progress and Development on Synthetic Electroorganic Chemistry". ECS Transactions 2, n.º 22 (21 de diciembre de 2019): 19–24. http://dx.doi.org/10.1149/1.2409000.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
50

Pragst, F. y M. Niazymbetov. "Electrogenerated chemiluminescence in mechanistic investigations of electroorganic reactions". Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 197, n.º 1-2 (enero de 1986): 245–64. http://dx.doi.org/10.1016/0022-0728(86)80153-x.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!

Pasar a la bibliografía