Libros sobre el tema "Electronic Transport Properties -Graphene"

Siga este enlace para ver otros tipos de publicaciones sobre el tema: Electronic Transport Properties -Graphene.

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte los 50 mejores mejores libros para su investigación sobre el tema "Electronic Transport Properties -Graphene".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Explore libros sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.

1

1946-, Zabel H., Solin S. A. 1942- y Doll G. L, eds. Graphite intercalation compounds II: Transport and electronic properties. Berlin: Springer-Verlag, 1992.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Zabel, Hartmut. Graphite Intercalation Compounds II: Transport and Electronic Properties. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Wallbank, John R. Electronic Properties of Graphene Heterostructures with Hexagonal Crystals. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-07722-2.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

service), SpringerLink (Online, ed. Graphene Nanoelectronics: Metrology, Synthesis, Properties and Applications. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

T, Grahn H., ed. Semiconductor superlattices: Growth and electronic properties. Singapore: World Scientific, 1995.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Sabathil, Matthias. Opto-electronic and quantum transport properties of semiconductor nanostructures. Garching: Verein zur Förderung des Walter Schottky Instituts der Technischen Universität München, 2005.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Lui, Chun Hung. Investigations of the electronic, vibrational and structural properties of single and few-layer graphene. [New York, N.Y.?]: [publisher not identified], 2011.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Linjun, Wang, Song Chenchen y SpringerLink (Online service), eds. Theory of Charge Transport in Carbon Electronic Materials. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Madelung, O., U. Rössler y M. Schulz, eds. Group IV Elements, IV-IV and III-V Compounds. Part b - Electronic, Transport, Optical and Other Properties. Berlin/Heidelberg: Springer-Verlag, 2002. http://dx.doi.org/10.1007/b80447.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Graphite Intercalation Compounds II: Transport and Electronic Properties. Springer, 2011.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
11

Zabel, H. Graphite Intercalation Compounds II: Transport and Electronic Properties (Springer Series in Materials Science). Springer, 1992.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
12

Narlikar, A. V. y Y. Y. Fu, eds. Oxford Handbook of Nanoscience and Technology. Oxford University Press, 2017. http://dx.doi.org/10.1093/oxfordhb/9780199533046.001.0001.

Texto completo
Resumen
This Handbook consolidates some of the major scientific and technological achievements in different aspects of the field of nanoscience and technology. It consists of theoretical papers, many of which are linked with current and future nanodevices, molecular-based materials and junctions (including Josephson nanocontacts). Self-organization of nanoparticles, atomic chains, and nanostructures at surfaces are further described in detail. Topics include: a unified view of nanoelectronic devices; electronic and transport properties of doped silicon nanowires; quasi-ballistic electron transport in atomic wires; thermal transport of small systems; patterns and pathways in nanoparticle self-organization; nanotribology; and the electronic structure of epitaxial graphene. The volume also explores quantum-theoretical approaches to proteins and nucleic acids; magnetoresistive phenomena in nanoscale magnetic contacts; novel superconducting states in nanoscale superconductors; left-handed metamaterials; correlated electron transport in molecular junctions; spin currents in semiconductor nanostructures; and disorder-induced electron localization in molecular-based materials.
Los estilos APA, Harvard, Vancouver, ISO, etc.
13

Enoki, Toshiaki, Morinobu Endo y Masatsugu Suzuki. Graphite Intercalation Compounds and Applications. Oxford University Press, 2003. http://dx.doi.org/10.1093/oso/9780195128277.001.0001.

Texto completo
Resumen
Graphite intercalation compounds are a new class of electronic materials that are classified as graphite-based host guest systems. They have specific structural features based on the alternating stacking of graphite and guest intercalate sheets. The electronic structures show two-dimensional metallic properties with a large variety of features including superconductivity. They are also interesting from the point of two-dimensional magnetic systems. This book presents the synthesis, crystal structures, phase transitions, lattice dynamics, electronic structures, electron transport properties, magnetic properties, surface phenomena, and applications of graphite intercalation compounds. The applications covered include batteries, highly conductive graphite fibers, exfoliated graphite and intercalated fullerenes and nanotubes.
Los estilos APA, Harvard, Vancouver, ISO, etc.
14

Electronic and Thermal Properties of Graphene. MDPI, 2020. http://dx.doi.org/10.3390/books978-3-03936-401-5.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
15

Zhan, Hualin. Graphene-Electrolyte Interfaces: Electronic Properties and Applications. Jenny Stanford Publishing, 2020.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
16

Zhan, Hualin. Graphene-Electrolyte Interfaces: Electronic Properties and Applications. Jenny Stanford Publishing, 2020.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
17

Zhan, Hualin. Graphene-Electrolyte Interfaces: Electronic Properties and Applications. Taylor & Francis Group, 2020.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
18

Zhan, Hualin. Graphene-Electrolyte Interfaces: Electronic Properties and Applications. Jenny Stanford Publishing, 2020.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
19

Zhan, Hualin. Graphene-Electrolyte Interfaces: Electronic Properties and Applications. Jenny Stanford Publishing, 2020.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
20

Ngoc Thanh Thuy, Tran, Shih-Yang Lin, Chiun-Yan Lin y Ming-Fa Lin. Geometric and Electronic Properties of Graphene-Related Systems. CRC Press, 2017. http://dx.doi.org/10.1201/b22450.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
21

Electronic Properties of Graphene Heterostructures with Hexagonal Crystals. Springer, 2014.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
22

Wallbank, John. Electronic Properties of Graphene Heterostructures with Hexagonal Crystals. Springer International Publishing AG, 2016.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
23

Wallbank, John R. Electronic Properties of Graphene Heterostructures with Hexagonal Crystals. Springer, 2014.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
24

Raza, Hassan. Graphene Nanoelectronics: Metrology, Synthesis, Properties and Applications. Springer, 2012.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
25

Raza, Hassan. Graphene Nanoelectronics: Metrology, Synthesis, Properties and Applications. Springer Berlin / Heidelberg, 2016.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
26

Lin, Ming-Fa, Chiun-Yan Lin, Ngoc Thanh Thuy Tran y Shih-Yang Lin. Geometric and Electronic Properties of Graphene-Related Systems: Chemical Bonding Schemes. Taylor & Francis Group, 2017.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
27

Lin, Ming-Fa, Chiun-Yan Lin, Ngoc Thanh Thuy Tran y Shih-Yang Lin. Geometric and Electronic Properties of Graphene-Related Systems: Chemical Bonding Schemes. Taylor & Francis Group, 2017.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
28

Geometric and Electronic Properties of Graphene-Related Systems: Chemical Bonding Schemes. Taylor & Francis Group, 2017.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
29

Lin, Ming-Fa, Chiun-Yan Lin, Ngoc Thanh Thuy Tran y Shih-Yang Lin. Geometric and Electronic Properties of Graphene-Related Systems: Chemical Bonding Schemes. Taylor & Francis Group, 2017.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
30

Lin, Ming-Fa, Chiun-Yan Lin, Ngoc Thanh Thuy Tran y Shih-Yang Lin. Geometric and Electronic Properties of Graphene-Related Systems: Chemical Bonding Schemes. Taylor & Francis Group, 2017.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
31

Torres, Luis E. F. Foa, Stephan Roche y Jean-Christophe Charlier. Introduction to Graphene-Based Nanomaterials: From Electronic Structure to Quantum Transport. University of Cambridge ESOL Examinations, 2020.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
32

Williams, James Ryan. Electronic transport in graphene: P-n junctions, shot noise, and nanoribbons. 2009.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
33

Luis E. F. Foa Torres, Stephan Roche y Jean-Christophe Charlier. Introduction to Graphene-Based Nanomaterials: From Electronic Structure to Quantum Transport. Cambridge University Press, 2014.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
34

Luis E. F. Foa Torres, Stephan Roche y Jean-Christophe Charlier. Introduction to Graphene-Based Nanomaterials: From Electronic Structure to Quantum Transport. Cambridge University Press, 2014.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
35

(Contributor), S. Adachi, R. Blachnik (Contributor), R. P. Devaty (Contributor), F. Fuchs (Contributor), A. Hangleiter (Contributor), W. Kulisch (Contributor), Y. Kumashiro (Contributor), B. K. Meyer (Contributor), R. Sauer (Contributor) y U. Rössler (Editor), eds. Electronic, Transport, Optical and Other Properties (Landolt-Bornstein). Springer, 2002.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
36

Fernandez-Serra, M. V. y X. Blase. Electronic and transport properties of doped silicon nanowires. Editado por A. V. Narlikar y Y. Y. Fu. Oxford University Press, 2017. http://dx.doi.org/10.1093/oxfordhb/9780199533046.013.2.

Texto completo
Resumen
This article describes a number of theoretical works and methods dedicated to the analysis of the atomic and electronic structure, doping properties and transport characteristics of silicon nanowires (SiNWs). The goal is to show how quantum confinement and dimensionality effects can intrinsically change the behavior of SiNWs as compared to their bulk and thin film counterparts. The article begins with a review of work done on surface reconstructions and electronic structure of SiNWs as a function of system doping and passivation. It then considers the problem of doping in SiNWs as well as the methodology typically used to analyze the problems of transport. It also discusses the electronic transport properties of SiNWs as a function of dopant type, along with their chemical functionalization. Finally, it demonstrates how surface dangling-bond defects trap the impurities in SiNWs and neutralize them.
Los estilos APA, Harvard, Vancouver, ISO, etc.
37

Li, Jianzhong. Electronic Optical and Transport Properties of Widegap II-VI Semiconductors. Dissertation Discovery Company, 2019.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
38

Li, Jianzhong. Electronic Optical and Transport Properties of Widegap II-VI Semiconductors. Dissertation Discovery Company, 2019.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
39

Andriotis, A. N., R. M. Sheetz, E. Richter y M. Menon. Structural, electronic, magnetic, and transport properties of carbon-fullerene-based polymers. Editado por A. V. Narlikar y Y. Y. Fu. Oxford University Press, 2017. http://dx.doi.org/10.1093/oxfordhb/9780199533053.013.21.

Texto completo
Resumen
This article discusses the structural, electronic, magnetic, and transport properties of carbon-fullerene-based polymers. In particular, it examines the defect-induced ferromagnetism of the C60-based polymers and its analog in the case of non-traditional inorganic materials. It first reviews the computational methods currently used in the literature, highlighting the pros and cons of each one of them. It then considers the defects associated with the ferromagnetism of the C60-based polymers, namely carbon vacancies, the 2 + 2 cycloaddition bonds and impurity atoms, and their effect on the electronic structure. It also evaluates the effect of codoping and goes on to describe the electronic, magnetic and transport properties of the rhombohedral C60-polymer. Finally, it looks at the origin of magnetic coupling among the magnetic moments in the rhombohedral C60-polymer and provides further evidence for the analogy between the magnetism of the rhombohedral C60-polymer and zinc oxide.
Los estilos APA, Harvard, Vancouver, ISO, etc.
40

Kim, Ju H. Electronic and transport properties of the copper oxides: Fermi liquid description. 1990.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
41

First-Principles Calculations In Real-Space Formalism: Electronic Configurations And Transport Properties Of Nanostructures. Imperial College Press, 2005.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
42

Shuai, Zhigang, Linjun Wang y Chenchen Song. Theory of Charge Transport in Carbon Electronic Materials. Springer, 2012.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
43

Shuai, Zhigang, Linjun Wang y Chenchen Song. Theory of Charge Transport in Carbon Electronic Materials. Springer, 2012.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
44

Oshiyama, Atsushi y Susumu Okada. Roles of shape and space in electronic properties of carbon nanomaterials. Editado por A. V. Narlikar y Y. Y. Fu. Oxford University Press, 2017. http://dx.doi.org/10.1093/oxfordhb/9780199533053.013.3.

Texto completo
Resumen
This article examines how internal space and boundary shapes affect the electronic properties of carbon nanomaterials by conducting total-energy electronic-structure calculations based on the density-functional theory. It first considers the existence of nanospace in carbon peapods before discussing boundaries in planar and tubular nanostructures. It also describes double-walled nanotubes, defects in carbon nanotubes, and hybrid structures of carbon nanotubes. Finally, it discusses the magnetic properties of zigzag-edged graphene ribbons and carbon nanotubes as well as the essential role of the edge state. The article shows that both space and peas (fullerenes) are decisive in electronic properties. In carbon peapods, nearly free-electron states occurring in the internal space hybridize with carbon orbitals and then make the peapod a new multicarrier system. The edge state belongs to a new class of electron states that is inherent to zigzag borders in hexagonally bonded networks.
Los estilos APA, Harvard, Vancouver, ISO, etc.
45

Transport in Semiconductor Mesoscopic. IOP Publishing Ltd, 2016.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
46

Saito, R., A. Jorio, J. Jiang, K. Sasaki, G. Dresselhaus y M. S. Dresselhaus. Optical properties of carbon nanotubes and nanographene. Editado por A. V. Narlikar y Y. Y. Fu. Oxford University Press, 2017. http://dx.doi.org/10.1093/oxfordhb/9780199533053.013.1.

Texto completo
Resumen
This article examines the optical properties of single-wall carbon nanotubes (SWNTs) and nanographene. It begins with an overview of the shape of graphene and nanotubes, along wit the use of Raman spectroscopy to study the structure and exciton physics of SWNTs. It then considers the basic definition of a carbon nanotube and graphene, focusing on the crystal structure of graphene and the electronic structure of SWNTs, before describing the experimental setup for confocal resonance Raman spectroscopy. It also discusses the process of resonance Raman scattering, double-resonance Raman scattering, and the Raman signals of a SWNT as well as the dispersion behavior of second-order Raman modes, the doping effect on the Kohn anomaly of phonons, and the elastic scattering of electrons and photons. The article concludes with an analysis of excitons in SWNTs and outlines future directions for research.
Los estilos APA, Harvard, Vancouver, ISO, etc.
47

Succi, Sauro. Relativistic Lattice Boltzmann (RLB). Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780199592357.003.0034.

Texto completo
Resumen
Relativistic hydrodynamics and kinetic theory play an increasing role in many areas of modern physics. Besides their traditional arenas, astrophysics and cosmology, relativistic fluids have recently attracted much attention also within the realm of high-energy and condensed matter physics, mostly in connection with quark-gluon plasmas experiments in heavy-ion colliders and electronic transport in graphene. This chapter describes the extension of the Lattice Boltzmann formalism to the case of relativistic fluids.
Los estilos APA, Harvard, Vancouver, ISO, etc.
48

Kamarás, Katalin y Àron Pekker. Identification and separation of metallic and semiconducting carbon nanotubes. Editado por A. V. Narlikar y Y. Y. Fu. Oxford University Press, 2017. http://dx.doi.org/10.1093/oxfordhb/9780199533053.013.4.

Texto completo
Resumen
This article describes the identification and separation of metallic and semiconducting carbon nanotubes according to their electric properties. It first provides an overview of the electronic structure of nanotubes, focusing on how their metallic and semiconducting properties arise. It then considers the most widely used characterization techniques used in determining metallic or semiconducting behavior, including Raman spectroscopy and photoluminescence measurements. It also discusses specific chirality-selective growth techniques, physical postgrowth selection methods, enrichment by chirality-sensitive chemical reactions, and modification of transport properties without change in chirality. The article concludes with a review of some applications of metallic and semiconducting carbon nanotubes as transparent conductive coatings.
Los estilos APA, Harvard, Vancouver, ISO, etc.
49

Bi, J. F. y K. L. Teo. Nanoscale Ge1−xMnxTe ferromagnetic semiconductors. Editado por A. V. Narlikar y Y. Y. Fu. Oxford University Press, 2017. http://dx.doi.org/10.1093/oxfordhb/9780199533053.013.17.

Texto completo
Resumen
This article discusses the structure characterizations, magnetic and transport behaviors of the nanoscale ferromagnetic semiconductors Ge1-xMnxTe grown by molecular beam epitaxy with various manganese compositions x ranging from 0.14 to 0.98. After providing an overview of the growth procedure and characterization, the article analyzes the structures of the Ge1-xMnxTe system using X-ray diffraction and high-resolution transmission electron microscopy. It then considers the optical, magnetic and transport properties of the semiconductors and shows that the crystal quality is degraded and the proportion of amorphous phase increases with increasing Mn composition. Nanoclusters and nanoscale grains can be observed when x > 0.24, which greatly affect their magnetic and electronic properties. The magnetic anisotropy is weakened due to different orientations of the clusters embedded in the GeTe host. An anomalous Hall effect is also observed in the samples, which can be attributed to extrinsic skew scattering.
Los estilos APA, Harvard, Vancouver, ISO, etc.
50

Narlikar, A. V. y Y. Y. Fu, eds. Oxford Handbook of Nanoscience and Technology. Oxford University Press, 2017. http://dx.doi.org/10.1093/oxfordhb/9780199533053.001.0001.

Texto completo
Resumen
This Handbook presents important developments in the field of nanoscience and technology, focusing on the advances made with a host of nanomaterials including DNA and protein-based nanostructures. Topics include: optical properties of carbon nanotubes and nanographene; defects and disorder in carbon nanotubes; roles of shape and space in electronic properties of carbon nanomaterials; size-dependent phase transitions and phase reversal at the nanoscale; scanning transmission electron microscopy of nanostructures; the use of microspectroscopy to discriminate nanomolecular cellular alterations in biomedical research; holographic laser processing for three-dimensional photonic lattices; and nanoanalysis of materials using near-field Raman spectroscopy. The volume also explores new phenomena in the nanospace of single-wall carbon nanotubes; ZnO wide-bandgap semiconductor nanostructures; selective self-assembly of semi-metal straight and branched nanorods on inert substrates; nanostructured crystals and nanocrystalline zeolites; unusual properties of nanoscale ferroelectrics; structural, electronic, magnetic, and transport properties of carbon-fullerene-based polymers; fabrication and characterization of magnetic nanowires; and properties and potential of protein-DNA conjugates for analytic applications.
Los estilos APA, Harvard, Vancouver, ISO, etc.
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!

Pasar a la bibliografía