Literatura académica sobre el tema "Electronic devices"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Electronic devices".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Electronic devices"
Bokka, Naveen, Venkatarao Selamneni, Vivek Adepu, Sandeep Jajjara y Parikshit Sahatiya. "Water soluble flexible and wearable electronic devices: a review". Flexible and Printed Electronics 6, n.º 4 (1 de diciembre de 2021): 043006. http://dx.doi.org/10.1088/2058-8585/ac3c35.
Texto completoLewis, James R., Patrick M. Commarford, Peter J. Kennedy y Wallace J. Sadowski. "Handheld Electronic Devices". Reviews of Human Factors and Ergonomics 4, n.º 1 (octubre de 2008): 105–48. http://dx.doi.org/10.1518/155723408x342880.
Texto completoDeswal, Chirag, Nikit T. Nagrare, Gaurav Singh, Himanshu Sharma y Bindu Garg. "Controlling Electronic Appliances Using Remote Devices". Paripex - Indian Journal Of Research 3, n.º 5 (15 de enero de 2012): 40–43. http://dx.doi.org/10.15373/22501991/may2014/14.
Texto completoXing, Junjie, Shixian Qin, Binglin Lai, Bowen Li, Zhida Li y Guocheng Zhang. "Top-Gate Transparent Organic Synaptic Transistors Based on Co-Mingled Heterojunctions". Electronics 12, n.º 7 (29 de marzo de 2023): 1596. http://dx.doi.org/10.3390/electronics12071596.
Texto completoJawade, Shubham. "Thermal Analysis of Microchannels Heat Sink using Super-hydrophobic Surface". International Journal for Research in Applied Science and Engineering Technology 9, n.º 9 (30 de septiembre de 2021): 654–57. http://dx.doi.org/10.22214/ijraset.2021.38024.
Texto completoKaur, Inderpreet, Shriniwas Yadav, Sukhbir Singh, Vanish Kumar, Shweta Arora y Deepika Bhatnagar. "Nano Electronics: A New Era of Devices". Solid State Phenomena 222 (noviembre de 2014): 99–116. http://dx.doi.org/10.4028/www.scientific.net/ssp.222.99.
Texto completoDasgupta, Abhijit, Donald Barker y Michael Pecht. "Reliability Prediction of Electronic Packages". Journal of the IEST 33, n.º 3 (1 de mayo de 1990): 36–45. http://dx.doi.org/10.17764/jiet.2.33.3.722130658127865r.
Texto completoRav Acha, Moshe, Elina Soifer y Tal Hasin. "Cardiac Implantable Electronic Miniaturized and Micro Devices". Micromachines 11, n.º 10 (29 de septiembre de 2020): 902. http://dx.doi.org/10.3390/mi11100902.
Texto completoPrime, Dominic y Shashi Paul. "Gold Nanoparticle Based Electrically Rewritable Polymer Memory Devices". Advances in Science and Technology 54 (septiembre de 2008): 480–85. http://dx.doi.org/10.4028/www.scientific.net/ast.54.480.
Texto completoPARK, YOON-SOO. "RECENT ADVANCES AND FUTURE TRENDS IN MODERN ELECTRONICS". International Journal of High Speed Electronics and Systems 10, n.º 01 (marzo de 2000): 1–4. http://dx.doi.org/10.1142/s0129156400000039.
Texto completoTesis sobre el tema "Electronic devices"
Sergueev, Nikolai. "Electron-phonon interactions in molecular electronic devices". Thesis, McGill University, 2005. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=102171.
Texto completoIn our formalism, we calculate electronic Hamiltonian via density functional theory (DFT) within the nonequilibrium Green's functions (NEGF) which takes care of nonequilibrium transport conditions and open device boundaries for the devices. From the total energy of the device scattering region, we derive the dynamic matrix in analytical form within DFT-NEGF and it gives the vibrational spectrum of the relevant atoms. The vibrational spectrum together with the vibrational eigenvector gives the electron-phonon coupling strength at nonequilibrium for various scattering states. A self-consistent Born approximation (SCBA) allows one to determine the phonon self-energy, the electron Green's function, the electronic density matrix and the electronic Hamiltonian, all self-consistently within equal footing. The main technical development of this work is the DFT-NEGF-SCBA formalism and its associated codes.
A number of important physics issues are studied in this work. We start with a detailed analysis of transport properties of C60 molecular tunnel junction. We find that charge transport is mediated by resonances due to an alignment of the Fermi level of the electrodes and the lowest unoccupied C60 molecular orbital. We then make a first step toward the problem of analyzing phonon modes of the C60 by examining the rotational and the center-of-mass motions by calculating the total energy. We obtain the characteristic frequencies of the libration and the center-of-mass modes, the latter is quantitatively consistent with recent experimental measurements. Next, we developed a DFT-NEGF theory for the general purpose of calculating any vibrational modes in molecular tunnel junctions. We derive an analytical expression for dynamic matrix within the framework of DFT-NEGF. Diagonalizing the dynamic matrix we obtain the vibrational (phonon) spectrum of the device. Using this technique we calculate the vibrational spectrum of benzenedithiolate molecule in a tunnel junction and we investigate electron-phonon coupling under an applied bias voltage during current flow. We find that the electron-phonon coupling strength for this molecular device changes drastically as the bias voltage increases, due to dominant contributions from the center-of-mass vibrational modes of the molecule. Finally, we have investigated the reverse problem, namely the effect of molecular vibrations on the tunneling current. For this purpose we developed the DFT-NEGF-SCBA formalism, and an example is given illustrating the power of this formalism.
Kula, Mathias. "Understanding Electron Transport Properties of Molecular Electronic Devices". Doctoral thesis, KTH, Teoretisk kemi, 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-4500.
Texto completoQC 20100804. Ändrat titeln från: "Understanding Electron Transport Properties in Molecular Devices" 20100804.
Kula, Mathias. "Understanding electron transport properties in molecular electronic devices /". Stockholm : Bioteknologi, Kungliga Tekniska högskolan, 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-4500.
Texto completoRajagopal, Senthil Arun. "SINGLE MOLECULE ELECTRONICS AND NANOFABRICATION OF MOLECULAR ELECTRONIC DEVICES". Miami University / OhioLINK, 2006. http://rave.ohiolink.edu/etdc/view?acc_num=miami1155330219.
Texto completoBarlow, Iain J. "Nanostructured Molecular Electronic Devices". Thesis, University of Sheffield, 2007. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.486548.
Texto completoDriskill-Smith, Alexander Adrian Girling. "Nanoscale vacuum electronic devices". Thesis, University of Cambridge, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.621660.
Texto completoMalti, Abdellah. "Upscaling Organic Electronic Devices". Doctoral thesis, Linköpings universitet, Fysik och elektroteknik, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-122022.
Texto completoCao, Hui. "Dynamic Effects on Electron Transport in Molecular Electronic Devices". Doctoral thesis, KTH, Teoretisk kemi, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-12676.
Texto completoQC20100630
Taher, Elmasly Saadeldin Elamin. "Electronic evaluation of organic semiconductors towards electronic devices". Thesis, University of Strathclyde, 2013. http://oleg.lib.strath.ac.uk:80/R/?func=dbin-jump-full&object_id=22541.
Texto completoForsberg, Erik. "Electronic and Photonic Quantum Devices". Doctoral thesis, KTH, Microelectronics and Information Technology, IMIT, 2003. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-3476.
Texto completoIn this thesis various subjects at the crossroads of quantummechanics and device physics are treated, spanning from afundamental study on quantum measurements to fabricationtechniques of controlling gates for nanoelectroniccomponents.
Electron waveguide components, i.e. electronic componentswith a size such that the wave nature of the electron dominatesthe device characteristics, are treated both experimentally andtheoretically. On the experimental side, evidence of partialballistic transport at room-temperature has been found anddevices controlled by in-plane Pt/GaAs gates have beenfabricated exhibiting an order of magnitude improvedgate-efficiency as compared to an earlier gate-technology. Onthe theoretical side, a novel numerical method forself-consistent simulations of electron waveguide devices hasbeen developed. The method is unique as it incorporates anenergy resolved charge density calculation allowing for e.g.calculations of electron waveguide devices to which a finitebias is applied. The method has then been used in discussionson the influence of space-charge on gate-control of electronwaveguide Y-branch switches.
Electron waveguides were also used in a proposal for a novelscheme of carrierinjection in low-dimensional semiconductorlasers, a scheme which altogether by- passes the problem ofslow carrier relaxation in suchstructures. By studying aquantum mechanical two-level system serving as a model forelectroabsorption modulators, the ultimate limits of possiblemodulation rates of such modulators have been assessed andfound to largely be determined by the adiabatic response of thesystem. The possibility of using a microwave field to controlRabi oscillations in two-level systems such that a large numberof states can be engineered has also been explored.
A more fundamental study on quantum mechanical measurementshas been done, in which the transition from a classical to aquantum "interaction free" measurement was studied, making aconnection with quantum non-demolition measurements.
Libros sobre el tema "Electronic devices"
Floyd, Thomas L. Electronic devices. 2a ed. Columbus: Merrill Pub. Co., 1988.
Buscar texto completoElectronic devices. 5a ed. Upper Saddle River, N.J: Prentice Hall, 1999.
Buscar texto completoElectronic devices. 4a ed. Englewood Cliffs, N.J: Prentice Hall, 1996.
Buscar texto completoElectronic devices. 7a ed. Upper Saddle River, NJ: Pearson Prentice Hall, 2005.
Buscar texto completoFloyd, Thomas L. Electronic devices. 5a ed. London: Prentice-Hall International, 1999.
Buscar texto completoEngdahl, Sylvia. Electronic devices. Detroit: Greenhaven Press, 2012.
Buscar texto completoElectronic devices. 7a ed. New Jersey: Pearson/Prentice Hall, 2004.
Buscar texto completoAbraham, Pallas y Carr Joseph J, eds. Electronic devices. New York, N.Y: Glencoe, Macmillan/McGraw-Hill, 1993.
Buscar texto completoElectronic devices. 6a ed. Upper Saddle River, N.J: Prentice Hall, 2002.
Buscar texto completoKristof, Sienicki, ed. Molecular electronics and molecular electronic devices. Boca Raton, FL: CRC Press, 1993.
Buscar texto completoCapítulos de libros sobre el tema "Electronic devices"
Sobot, Robert. "Electronic Devices". En Wireless Communication Electronics, 67–125. Boston, MA: Springer US, 2012. http://dx.doi.org/10.1007/978-1-4614-1117-8_4.
Texto completoMiyamoto, Hironobu, Manabu Arai, Hiroshi Kawarada, Naoharu Fujimori, Sadafumi Yoshida, Takashi Shinohe, Akio Hiraki, Hirohisa Hiraki, Hideomi Koinuma y Masao Katayama. "Electronic Devices". En Wide Bandgap Semiconductors, 231–80. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-47235-3_4.
Texto completoForster, E. "Electronic devices". En Equipment for Diagnostic Radiography, 35–43. Dordrecht: Springer Netherlands, 1985. http://dx.doi.org/10.1007/978-94-009-4930-0_3.
Texto completoAnand, M. L. "Electronic Devices". En Modern Electronics and Communication Engineering, 33–94. London: CRC Press, 2021. http://dx.doi.org/10.1201/9781003222972-5.
Texto completoSpellman, Frank R. "Electronic Devices". En The Science of Lithium, 27–28. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003387879-7.
Texto completoWallis, R. H. "Key Electrical Devices". En Electronic Materials, 47–65. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4615-3818-9_6.
Texto completoNelson, A. W. "Key Optoelectronic Devices". En Electronic Materials, 67–89. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4615-3818-9_7.
Texto completoChen, J., M. A. Reed, S. M. Dirk, D. W. Price, A. M. Rawlett, J. M. Tour, D. S. Grubisha y D. W. Bennett. "Molecular Electronic Devices". En Molecular Electronics: Bio-sensors and Bio-computers, 59–195. Dordrecht: Springer Netherlands, 2003. http://dx.doi.org/10.1007/978-94-010-0141-0_5.
Texto completoSobot, Robert. "Electronic Devices: Solutions". En Wireless Communication Electronics by Example, 143–59. Cham: Springer International Publishing, 2013. http://dx.doi.org/10.1007/978-3-319-02871-2_16.
Texto completoSobot, Robert. "Electronic Devices: Problems". En Wireless Communication Electronics by Example, 19–23. Cham: Springer International Publishing, 2013. http://dx.doi.org/10.1007/978-3-319-02871-2_4.
Texto completoActas de conferencias sobre el tema "Electronic devices"
"Electronic devices". En 8th International Multitopic Conference, 2004. Proceedings of INMIC 2004. IEEE, 2004. http://dx.doi.org/10.1109/inmic.2004.1492967.
Texto completoZhou, Jianhua y Li Shi. "Scanning Probe Microscopy of Carbon Nanotube Electronic Devices". En ASME 2004 International Mechanical Engineering Congress and Exposition. ASMEDC, 2004. http://dx.doi.org/10.1115/imece2004-62318.
Texto completo"Opto electronic devices". En 2009 67th Annual Device Research Conference (DRC). IEEE, 2009. http://dx.doi.org/10.1109/drc.2009.5354976.
Texto completoIsberg, J., Gabriel Ferro y Paul Siffert. "Diamond Electronic Devices". En 2010 WIDE BANDGAP CUBIC SEMICONDUCTORS: FROM GROWTH TO DEVICES: Proceedings of the E-MRS Symposium∗ F∗. AIP, 2010. http://dx.doi.org/10.1063/1.3518277.
Texto completoRitzkowsky, Felix, Mina R. Bionta, Marco Turchetti, Karl K. Berggren, Franz X. Kärtner y Philip D. Keathley. "Engineering the Frequency Response of Petahertz-Electronic Nanoantenna Field-Sampling Devices". En CLEO: Applications and Technology. Washington, D.C.: Optica Publishing Group, 2022. http://dx.doi.org/10.1364/cleo_at.2022.jw3a.56.
Texto completoDaniel, Susan. "Biomembrane organic electronic devices". En Organic and Hybrid Sensors and Bioelectronics XIII, editado por Ruth Shinar, Ioannis Kymissis y Emil J. List-Kratochvil. SPIE, 2020. http://dx.doi.org/10.1117/12.2569287.
Texto completoBiolek, Zdenek, Viera Biolkova, Jan Voralek y Dalibor Biolek. "Digitally Emulated Electronic Devices". En 2017 Asia Modelling Symposium (AMS). 11th International Conference on Mathematical Modelling & Computer Simulation. IEEE, 2017. http://dx.doi.org/10.1109/ams.2017.36.
Texto completo"Materials for electronic devices". En Conference on Electron Devices, 2005 Spanish. IEEE, 2005. http://dx.doi.org/10.1109/sced.2005.1504420.
Texto completo"2D Electronic Devices I". En 2018 76th Device Research Conference (DRC). IEEE, 2018. http://dx.doi.org/10.1109/drc.2018.8442182.
Texto completo"2D Electronic Devices II". En 2018 76th Device Research Conference (DRC). IEEE, 2018. http://dx.doi.org/10.1109/drc.2018.8442259.
Texto completoInformes sobre el tema "Electronic devices"
Schubert, William Kent, Paul Martin Baca, Shawn M. Dirk, G. Ronald Anderson y David Roger Wheeler. Polymer electronic devices and materials. Office of Scientific and Technical Information (OSTI), enero de 2006. http://dx.doi.org/10.2172/896554.
Texto completoSohn, Lydia L., David Beebe y Daniel Notterman. Electronic Sensing for Microfluidic Devices. Fort Belvoir, VA: Defense Technical Information Center, octubre de 2005. http://dx.doi.org/10.21236/ada455539.
Texto completoPerrey, Arnold G., Barry A. Bell y Marshall J. Treado. Evaluation of electronic monitoring devices. Gaithersburg, MD: National Bureau of Standards, 1986. http://dx.doi.org/10.6028/nbs.ir.86-3501.
Texto completoGrubin, H. L. y J. P. Kreskovsky. Studying Quantum Phase-Based Electronic Devices. Fort Belvoir, VA: Defense Technical Information Center, septiembre de 1988. http://dx.doi.org/10.21236/ada200376.
Texto completoNordman, James E. Superconductive Electronic Devices Using Flux Quanta. Fort Belvoir, VA: Defense Technical Information Center, febrero de 1996. http://dx.doi.org/10.21236/ada310962.
Texto completoGrubin, H. L., M. Cahay y J. P. Kreskovsky. Studying Quantum Phase-Based Electronic Devices. Fort Belvoir, VA: Defense Technical Information Center, agosto de 1990. http://dx.doi.org/10.21236/ada226809.
Texto completoFendler, J. Bilayer lipid membrane-supported electronic devices. Office of Scientific and Technical Information (OSTI), enero de 1989. http://dx.doi.org/10.2172/5367733.
Texto completoZhou, Ming. Novel carbon materials for electronic devices fabrication. Office of Scientific and Technical Information (OSTI), agosto de 2015. http://dx.doi.org/10.2172/1213508.
Texto completoO'Brien, Gavin. Securing Electronic Health Records on Mobile Devices. Gaithersburg, MD: National Institute of Standards and Technology, septiembre de 2017. http://dx.doi.org/10.6028/nist.sp.1800-1.
Texto completoAshton, E. C. y G. C. Bergeson. Electronic systems miniaturization using programmable logic devices. Office of Scientific and Technical Information (OSTI), octubre de 1990. http://dx.doi.org/10.2172/6278105.
Texto completo