Artículos de revistas sobre el tema "Electron-transport layers"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "Electron-transport layers".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.
Assi, Ahmed Ali, Wasan R. Saleh y Ezzedin Mohajerani. "Effect of Deposit Au thin Layer Between Layers of Perovskite Solar Cell on Cell's Performance". Iraqi Journal of Physics (IJP) 19, n.º 51 (1 de diciembre de 2021): 23–32. http://dx.doi.org/10.30723/ijp.v19i51.696.
Texto completoVasan, R., H. Salman y M. O. Manasreh. "All inorganic quantum dot light emitting devices with solution processed metal oxide transport layers". MRS Advances 1, n.º 4 (2016): 305–10. http://dx.doi.org/10.1557/adv.2016.129.
Texto completoWang, Yuxin y Sin Tee Tan. "Composition of Electron Transport Layers in Organic Solar Cells (OSCs)." Highlights in Science, Engineering and Technology 12 (26 de agosto de 2022): 99–105. http://dx.doi.org/10.54097/hset.v12i.1411.
Texto completoYusuf, Abubakar Sadiq, A. M. Ramalan, A. A. Abubakar y I. K. Mohammed. "Progress on Electron Transport Layers for Perovskite Solar Cells". Nigerian Journal of Physics 32, n.º 4 (5 de febrero de 2024): 81–90. http://dx.doi.org/10.62292/njp.v32i4.2023.156.
Texto completoLi, Bairu, Jieming Zhen, Yangyang Wan, Xunyong Lei, Lingbo Jia, Xiaojun Wu, Hualing Zeng, Muqing Chen, Guan-Wu Wang y Shangfeng Yang. "Steering the electron transport properties of pyridine-functionalized fullerene derivatives in inverted perovskite solar cells: the nitrogen site matters". Journal of Materials Chemistry A 8, n.º 7 (2020): 3872–81. http://dx.doi.org/10.1039/c9ta12188a.
Texto completoVannikov, Anatolii V., Antonina D. Grishina y S. V. Novikov. "Electron transport and electroluminescence in polymer layers". Russian Chemical Reviews 63, n.º 2 (28 de febrero de 1994): 103–23. http://dx.doi.org/10.1070/rc1994v063n02abeh000074.
Texto completoSynowiec, Z. y B. Paszkiewicz. "Electron transport in implant isolation GaAs layers". Microelectronics Reliability 43, n.º 4 (abril de 2003): 675–79. http://dx.doi.org/10.1016/s0026-2714(03)00016-7.
Texto completoMoiz, Syed Abdul. "Optimization of Hole and Electron Transport Layer for Highly Efficient Lead-Free Cs2TiBr6-Based Perovskite Solar Cell". Photonics 9, n.º 1 (31 de diciembre de 2021): 23. http://dx.doi.org/10.3390/photonics9010023.
Texto completoRani, R., K. Monga y S. Chaudhary. "Recent development in electron transport layers for efficient tin-based perovskite solar cells". IOP Conference Series: Materials Science and Engineering 1258, n.º 1 (1 de octubre de 2022): 012015. http://dx.doi.org/10.1088/1757-899x/1258/1/012015.
Texto completoMityashin, Alexander, David Cheyns, Barry P. Rand y Paul Heremans. "Understanding metal doping for organic electron transport layers". Applied Physics Letters 100, n.º 5 (30 de enero de 2012): 053305. http://dx.doi.org/10.1063/1.3681383.
Texto completoBailey, G. R. "Two-dimensional electron transport in InP surface layers". Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 5, n.º 4 (julio de 1987): 976. http://dx.doi.org/10.1116/1.583828.
Texto completoWei, Huiyun, Jionghua Wu, Peng Qiu, Sanjie Liu, Yingfeng He, Mingzeng Peng, Dongmei Li, Qingbo Meng, Francisco Zaera y Xinhe Zheng. "Plasma-enhanced atomic-layer-deposited gallium nitride as an electron transport layer for planar perovskite solar cells". Journal of Materials Chemistry A 7, n.º 44 (2019): 25347–54. http://dx.doi.org/10.1039/c9ta08929b.
Texto completoKim, Yujin, Sung Hwan Joo, Seong Gwan Shin, Hyung Wook Choi, Chung Wung Bark, You Seung Rim, Kyung Hwan Kim y Sangmo Kim. "Effect of Annealing in ITO Film Prepared at Various Argon-and-Oxygen-Mixture Ratios via Facing-Target Sputtering for Transparent Electrode of Perovskite Solar Cells". Coatings 12, n.º 2 (4 de febrero de 2022): 203. http://dx.doi.org/10.3390/coatings12020203.
Texto completoYang, Jien, Qiong Zhang, Jinjin Xu, Hairui Liu, Ruiping Qin, Haifa Zhai, Songhua Chen y Mingjian Yuan. "All-Inorganic Perovskite Solar Cells Based on CsPbIBr2 and Metal Oxide Transport Layers with Improved Stability". Nanomaterials 9, n.º 12 (22 de noviembre de 2019): 1666. http://dx.doi.org/10.3390/nano9121666.
Texto completoJang, Ji Geun y Hyun Jin Ji. "Blue Phosphorescent Organic Light-Emitting Devices with the Emissive Layer of mCP:FCNIr(pic)". Advances in Materials Science and Engineering 2012 (2012): 1–5. http://dx.doi.org/10.1155/2012/192731.
Texto completoRashed, Shukri, Vishnu Vilas Kutwade, Ketan Prakash Gattu, Ghamdan Mahmood Mohammed Saleh Gubari y Ramphal Sharma. "Growth and Exploration of Inorganic Semiconductor Electron and Hole Transport Layers for Low-Cost Perovskite Solar Cells". Trends in Sciences 20, n.º 10 (19 de junio de 2023): 5839. http://dx.doi.org/10.48048/tis.2023.5839.
Texto completoDavis, Denet, M. S. Shamna, K. S. Nithya y K. S. Sudheer. "Graphene as a hole transport layer for enhanced performance of P3HT: PCBM bulk heterojunction organic solar cell: a numerical simulation study". IOP Conference Series: Materials Science and Engineering 1248, n.º 1 (1 de julio de 2022): 012011. http://dx.doi.org/10.1088/1757-899x/1248/1/012011.
Texto completoMizuta, Yosuke, Mayumi Nagayama, Kazunari Sasaki y Akari Hayashi. "Investigation of a Method of Evaluating Proton Transport Resistance in PEFC Catalyst Layers". ECS Transactions 109, n.º 9 (30 de septiembre de 2022): 369–77. http://dx.doi.org/10.1149/10909.0369ecst.
Texto completoMcCarthy, Melissa M., Arnaud Walter, Soo-Jin Moon, Nakita K. Noel, Shane O’Brien, Martyn E. Pemble, Sylvain Nicolay, Bernard Wenger, Henry J. Snaith y Ian M. Povey. "Atomic Layer Deposited Electron Transport Layers in Efficient Organometallic Halide Perovskite Devices". MRS Advances 3, n.º 51 (2018): 3075–84. http://dx.doi.org/10.1557/adv.2018.515.
Texto completoMehdi, S., R. Amraoui y A. Aissat. "Numerical investigation of organic light emitting diode OLED with different hole transport materials". Digest Journal of Nanomaterials and Biostructures 17, n.º 3 (1 de agosto de 2022): 781. http://dx.doi.org/10.15251/djnb.2022.173.781.
Texto completoFriedl, Jared D., Ramez Hosseinian Ahangharnejhad, Adam B. Phillips y Michael J. Heben. "Materials requirements for improving the electron transport layer/perovskite interface of perovskite solar cells determined via numerical modeling". MRS Advances 5, n.º 50 (2020): 2603–10. http://dx.doi.org/10.1557/adv.2020.319.
Texto completoJung, Jaroslaw, Arkadiusz Selerowicz, Paulina Maczugowska, Krzysztof Halagan, Renata Rybakiewicz-Sekita, Malgorzata Zagorska y Anna Stefaniuk-Grams. "Electron Transport in Naphthalene Diimide Derivatives". Materials 14, n.º 14 (19 de julio de 2021): 4026. http://dx.doi.org/10.3390/ma14144026.
Texto completoShih, Wei-Kai, Srinivas Jallepalli, Mahbub Rashed, Christine M. Maziar y Al F. Tasch Jr. "Study of Electron Velocity Overshoot in NMOS Inversion Layers". VLSI Design 8, n.º 1-4 (1 de enero de 1998): 429–35. http://dx.doi.org/10.1155/1998/65364.
Texto completoKwak, Hee Jung, Collins Kiguye, Minsik Gong, Jun Hong Park, Gi-Hwan Kim y Jun Young Kim. "Enhanced Performance of Inverted Perovskite Quantum Dot Light-Emitting Diode Using Electron Suppression Layer and Surface Morphology Control". Materials 16, n.º 22 (15 de noviembre de 2023): 7171. http://dx.doi.org/10.3390/ma16227171.
Texto completoJana, Atanu, Vijaya Gopalan Sree, Qiankai Ba, Seong Chan Cho, Sang Uck Lee, Sangeun Cho, Yongcheol Jo, Abhishek Meena, Hyungsang Kim y Hyunsik Im. "Efficient organic manganese(ii) bromide green-light-emitting diodes enabled by manipulating the hole and electron transport layer". Journal of Materials Chemistry C 9, n.º 34 (2021): 11314–23. http://dx.doi.org/10.1039/d1tc02550c.
Texto completoCurzon, A. E. "The structure and properties of misfit layer compounds". Proceedings, annual meeting, Electron Microscopy Society of America 54 (11 de agosto de 1996): 708–9. http://dx.doi.org/10.1017/s0424820100166002.
Texto completoLi, Chang, Ge Wang, Yajun Gao, Chen Wang, Shanpeng Wen, Huayang Li, Jiaxin Wu, Liang Shen, Wenbin Guo y Shengping Ruan. "Highly efficient polymer solar cells based on low-temperature processed ZnO: application of a bifunctional Au@CNTs nanocomposite". Journal of Materials Chemistry C 7, n.º 9 (2019): 2676–85. http://dx.doi.org/10.1039/c8tc05653f.
Texto completoErdogar, Kubra, Ozgun Yucel y Muhammed Enes Oruc. "Investigation of Structural, Morphological, and Optical Properties of Novel Electrospun Mg-Doped TiO2 Nanofibers as an Electron Transport Material for Perovskite Solar Cells". Nanomaterials 13, n.º 15 (5 de agosto de 2023): 2255. http://dx.doi.org/10.3390/nano13152255.
Texto completoJenkins, Michael B., Barbara S. Eaglesham, Larry C. Anthony, Scott C. Kachlany, Dwight D. Bowman y William C. Ghiorse. "Significance of Wall Structure, Macromolecular Composition, and Surface Polymers to the Survival and Transport of Cryptosporidium parvum Oocysts". Applied and Environmental Microbiology 76, n.º 6 (22 de enero de 2010): 1926–34. http://dx.doi.org/10.1128/aem.02295-09.
Texto completoVogelsang, Th y K. R. Hofmann. "Electron transport in strained Si layers on Si1−xGexsubstrates". Applied Physics Letters 63, n.º 2 (12 de julio de 1993): 186–88. http://dx.doi.org/10.1063/1.110394.
Texto completoOsman, M. A. "Minority electron transport acrossp+doped submicron layers of GaAs". Journal of Applied Physics 71, n.º 1 (enero de 1992): 308–13. http://dx.doi.org/10.1063/1.350707.
Texto completoRoldán, J. B., F. Gámiz, J. A. López Villanueva y P. Caetujo. "Electron transport properties of quantized silicon carbide inversion layers". Journal of Electronic Materials 26, n.º 3 (marzo de 1997): 203–7. http://dx.doi.org/10.1007/s11664-997-0151-3.
Texto completoPatil, M. B., Y. Okuyama, Y. Ohkura, T. Toyabe y S. Ihara. "Transmission matrix approach for electron transport in inversion layers". Solid-State Electronics 37, n.º 7 (julio de 1994): 1359–65. http://dx.doi.org/10.1016/0038-1101(94)90192-9.
Texto completoThakur, Ujwal, Ryan Kisslinger y Karthik Shankar. "One-Dimensional Electron Transport Layers for Perovskite Solar Cells". Nanomaterials 7, n.º 5 (29 de abril de 2017): 95. http://dx.doi.org/10.3390/nano7050095.
Texto completoCHEN Ya-wen, 陈亚文, 黄. 航. HUANG Hang, 魏雄伟 WEI Xiong-wei, 李. 哲. LI Zhe, 宋晶尧 SONG Jing-yao, 谢相伟 XIE Xiang-wei, 付. 东. FU Dong y 陈旭东 CHEN Xu-dong. "QLEDs with Organic/Inorganic Hybrid Double Electron Transport Layers". Chinese Journal of Luminescence 39, n.º 10 (2018): 1439–44. http://dx.doi.org/10.3788/fgxb20183910.1439.
Texto completoKojima, H., M. E. Gershenson, V. M. Pudalov, G. Brunthaler, A. Prinz y G. Bauer. "Interaction Effects in Electron Transport in Si Inversion Layers". Journal of the Physical Society of Japan 72, Suppl.A (3 de enero de 2003): 57–62. http://dx.doi.org/10.1143/jpsjs.72sa.57.
Texto completoChetverikov, A. P., W. Ebeling, G. Röpke y M. G. Velarde. "Electron Transport Mediated by Nonlinear Excitations in Atomic Layers". Contributions to Plasma Physics 53, n.º 4-5 (mayo de 2013): 355–59. http://dx.doi.org/10.1002/ctpp.201200124.
Texto completoChoi, Jongmin, Jea Woong Jo, F. Pelayo García de Arquer, Yong-Biao Zhao, Bin Sun, Junghwan Kim, Min-Jae Choi et al. "Activated Electron-Transport Layers for Infrared Quantum Dot Optoelectronics". Advanced Materials 30, n.º 29 (28 de mayo de 2018): 1801720. http://dx.doi.org/10.1002/adma.201801720.
Texto completoSon, Hyojung y Byoung-Seong Jeong. "Optimization of the Power Conversion Efficiency of CsPbIxBr3−x-Based Perovskite Photovoltaic Solar Cells Using ZnO and NiOx as an Inorganic Charge Transport Layer". Applied Sciences 12, n.º 18 (7 de septiembre de 2022): 8987. http://dx.doi.org/10.3390/app12188987.
Texto completoNguyen, Nguyen, Nguyen, Le, Vo, Ly, Kim y Le. "Recent Progress in Carbon-Based Buffer Layers for Polymer Solar Cells". Polymers 11, n.º 11 (11 de noviembre de 2019): 1858. http://dx.doi.org/10.3390/polym11111858.
Texto completoTarique, Walia Binte, Md Habibur Rahaman, Shahriyar Safat Dipta, Ashraful Hossain Howlader y Ashraf Uddin. "Solution-Processed Bilayered ZnO Electron Transport Layer for Efficient Inverted Non-Fullerene Organic Solar Cells". Nanomanufacturing 4, n.º 2 (1 de abril de 2024): 81–98. http://dx.doi.org/10.3390/nanomanufacturing4020006.
Texto completoCui Yupeng, 崔玉鹏, 弓爵 Gong Jue y 刘明侦 Liu Mingzhen. "钙钛矿太阳能电池中的二氧化锡电子传输层调控". Laser & Optoelectronics Progress 61, n.º 5 (2024): 0516002. http://dx.doi.org/10.3788/lop230905.
Texto completoHuang, Wen, Rui Zhang, Xuwen Xia, Parker Steichen, Nanjing Liu, Jianping Yang, Liang Chu y Xing’ao Li. "Room Temperature Processed Double Electron Transport Layers for Efficient Perovskite Solar Cells". Nanomaterials 11, n.º 2 (27 de enero de 2021): 329. http://dx.doi.org/10.3390/nano11020329.
Texto completoIvanova, A., A. Tokmakov, K. Lebedeva, M. Roze y I. Kaulachs. "Influence of the Preparation Method on Planar Perovskite CH3NH3PbI3-xClx Solar Cell Performance and Hysteresis". Latvian Journal of Physics and Technical Sciences 54, n.º 4 (1 de agosto de 2017): 58–68. http://dx.doi.org/10.1515/lpts-2017-0027.
Texto completoChang, Tsung-Wen, Chzu-Chiang Tseng, Dave W. Chen, Gwomei Wu, Chia-Ling Yang y Lung-Chien Chen. "Preparation and Characterization of Thin-Film Solar Cells with Ag/C60/MAPbI3/CZTSe/Mo/FTO Multilayered Structures". Molecules 26, n.º 12 (9 de junio de 2021): 3516. http://dx.doi.org/10.3390/molecules26123516.
Texto completoDeo, Meenal, Alexander Möllmann, Jinane Haddad, Feray Ünlü, Ashish Kulkarni, Maning Liu, Yasuhiro Tachibana et al. "Tantalum Oxide as an Efficient Alternative Electron Transporting Layer for Perovskite Solar Cells". Nanomaterials 12, n.º 5 (25 de febrero de 2022): 780. http://dx.doi.org/10.3390/nano12050780.
Texto completoYusuf, Abubakar S., A. M. Ramalan, A. A. Abubakar y I. K. Mohammed. "Effect of Electron Transport Layers, Interface Defect Density and Working Temperature on Perovskite Solar Cells Using SCAPS 1-D Software". East European Journal of Physics, n.º 1 (5 de marzo de 2024): 332–41. http://dx.doi.org/10.26565/2312-4334-2024-1-31.
Texto completoHattori, Nagisa, Kazuhiro Manseki, Yuto Hibi, Naohide Nagaya, Norimitsu Yoshida, Takashi Sugiura y Saeid Vafaei. "Simultaneous Li-Doping and Formation of SnO2-Based Composites with TiO2: Applications for Perovskite Solar Cells". Materials 17, n.º 10 (14 de mayo de 2024): 2339. http://dx.doi.org/10.3390/ma17102339.
Texto completoRani, Sweta y Jitendra Kumar. "Modeling charge transport mechanism in inorganic quantum dot light-emitting devices through transport layer modification strategies". Journal of Applied Physics 133, n.º 10 (14 de marzo de 2023): 104302. http://dx.doi.org/10.1063/5.0139599.
Texto completoPham, Hoang Minh, Syed Dildar Haider Naqvi, Huyen Tran, Hung Van Tran, Jonabelle Delda, Sungjun Hong, Inyoung Jeong, Jihye Gwak y SeJin Ahn. "Effects of the Electrical Properties of SnO2 and C60 on the Carrier Transport Characteristics of p-i-n-Structured Semitransparent Perovskite Solar Cells". Nanomaterials 13, n.º 24 (6 de diciembre de 2023): 3091. http://dx.doi.org/10.3390/nano13243091.
Texto completo